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Interpolation/Regularization: 
It is all about simplicity  

•  The Plane wave model in t-x, f-x and f-k 
•  Using windows to keep it simple 
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Interpolation/Regularization: 
It is all about simplicity  

•  The Plane wave model in t-x, f-x and f-k 
  

–  Linear event in t-x 

–  Linear event in f-x 

–  Linear event in f-k 
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s(t, x) = a(t − px)

S(ω, x) = A(ω) e−iωpx


S(ω,k) = A(k + pω)



ω = 2π f

Part 5 - Data representation 

Interpolation/Regularization: 
It is all about simplicity  

•  The Plane wave model in t-x, f-x and f-k 
  

–  Remarks: Consider one monochromatic temporal frequency f  

•  The signal is predictable in x 
–   Data are represented by  complex exponentials  

•  Sparsity in k 
–  One wavenumber per linear event is needed to represent the spatial data. In 

other words, the k-spectrum is sparse 

4 Part 5 - Data representation 
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Interpolation/Regularization: 
It is all about simplicity  
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A linear event is predictable in x-space 
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Interpolation/Regularization: 
It is all about simplicity  
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A linear event is sparse in k-space 
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The simplicity assumption 
 

•  Linear events in t-x	

•  Using windows to keep it simple 
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Interpolation/Regularization: 
It is all about simplicity  

•  Predictability in fx (1 linear event) 

 
•  Consider the complex amplitude  at a given temporal frequency and spatial sample n 

8 

s(t,nΔx) = a(t − p(n−1)Δx)

S(ω,nΔx) = Sn (ω) = A(ω) e
−iωp(n−1) Δx

S
n
(ω) = Ae−iα (n−1)

= e
iα
Ae

−iα (n−2)

= aS
n−1(ω) S

n
(ω) = a(ω)S

n−1(ω)
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Interpolation/Regularization: 
It is all about simplicity  

•  Predictability in fx (p linear event) 

•  Consider the complex amplitude  at a given temporal frequency and spatial sample n, 
one can show that 

9 

s(t,nΔx) = Ak
k

∑ w(t − pk (n−1)Δx)

S(ω,nΔx) =W (ω) Ak
k

∑ e
−iωpk (n−1) Δx

S
n
(ω) = a

1
(ω)S

n−1(ω)+ a2 (ω)Sn−2 (ω)+ ap(ω)Sn−p(ω)

Part 5 - Data representation 

Interpolation/Regularization: 
It is all about simplicity  

•  Consider p=2, n=1..N, N=6 

 
•  Problem 1: Estimate prediction filter coefficients from data 
•  Problem 2: Estimate data from prediction filter 

10 

S6 (ω) = a1(ω)S5(ω)+ a2 (ω)S4 (ω)

S5(ω) = a1(ω)S4 (ω)+ a2 (ω)S3(ω)

S4 (ω) = a1(ω)S3(ω)+ a2 (ω)S1(ω)

S3(ω) = a1(ω)S2 (ω)+ a2 (ω)S1(ω)
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Data representation for interpolation  

•  Consider the expansion of a signal in terms of basis 
functions 

 
•  Consider a regression in terms of an over-complete 

(underdetermined) expansion: 

11 

  

€ 

dn = sn + εn

sn = c jφn, j
j=1

M

∑ n =1N

€ 

M > N

Part 5 - Data representation 

Data representation for interpolation  

•  We have an under-determined problem and therefore, an 
infinite number of solutions. 

 
•  Regularization methods are used to find a unique and 

stable solution. For this purpose we minimize the following 
cost function 

12 

  

€ 

 

d =Φ
 
c +
 
ε 

  

€ 

J =||
 

d −Φ
 
c ||

2 +µ2
R(
 
c )
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Data representation for interpolation  

 

•  The goal is to  
–  find the coefficients of the expansion from the 

available data by minimizing the cost J  
–  use the coefficients to synthesize unobserved 

data (new spatial and/or de-noised data) 

13 

  

€ 

J =||
 

d −Φ
 
c ||2 +µ2

R(
 
c )

=Misfit + µ2 Regularizer

Part 5 - Data representation 

Data representation for interpolation  

•  In general, the coefficients of the expansion must provide physical 
information about the wave field (e.g. curvature, dip) – They need 
to have a physical label. 

•  In other words, they should model pieces of the wave field we wish 
to represent. 

14 

J =||

d −Φ


c ||2 +µ 2R(


c)

=Misfit +µ 2 Regularizer
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Data representation for interpolation  

    Seismic data can be represented with  

–  Fourier Bases                  (frequency /  wavenumber) 
–  Gabor Bases                (time-frequency / space-wavenumber) 
–  Wavelets    (location and scale) 
–  Radon bases   (intercept and dip or curvature) 
–  Local Radon bases  (time-space-dip) 
–  Curvelets    (time-space-scale-dip) 

15 Part 5 - Data representation 

Data representation for interpolation  

•  One could also use data driven representations: 

–  Cadzow / Multichannel Singular Spectrum Analysis 
–  Tensor completion 
–  Sparse coding 

16 Part 5 - Data representation 
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Data representation for interpolation  

•  Sparsity: General schemes for signal reconstruction based on the 
solution of an inverse problem can be found in numerous articles. 
Of particular interest to the discussion are contributions that 
considered sparsity constraints:  

–  Thorson and Claerbout, GEO 1985 

–  Sacchi and Ulrych, GEO 1995 and 1996 

–  Sacchi, Ulrych and Walker, IEEE Trans.  SP 1998 

–  Fuchs, On sparse representations in arbitrary redundant bases, IEEE 
Trans. Inform. Theory 2004. 

–  Zwartjes and Gisolf, GP 2007 

–  Zwartjes and Sacchi, GEO 2007 
 17 Part 5 - Data representation 

Data representation for interpolation  

Connection to Compressive Sensing 

•  The above references are early (Non-mathematical but with 
good intuition) attempts to what today is called Compressive 
Sensing (CS) 

•  CS arises from various contributions by Donoho, Candes, 
Romberg and Tao in articles starting around 2005 

•  CS provides conditions for reconstruction (from limited 
information) for signals that admit a sparse representation 

 
 Try to Google Compressive Sensing 

18 Part 5 - Data representation 
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Sparsity and data reconstruction 

19 

€ 

R(c) =||c ||
2

R(c) =| c |1

R(c) = ln(1+ c j

2
/β 2)

j
∑

R(c) = c
H
Q

−1
c

Min norm solution 

Sparse solution 

  

€ 

J =||
 
d −Φ

 
c ||

2 +µ2
R(
 
c )

MWNI 

Assume 
Compressive 
solutions 

Part 5 - Data representation 

Sparsity and data reconstruction 

20 

Sacchi, M.D., Ulrych, T.J, and Walker, C., 1998, 
Interpolation and extrapolation using a high resolution 
discrete Fourier transform: IEEE Trans. on Signal 
Processing, 46, No. 1, 31-38. 
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Sparsity and data reconstruction 

•  Data are expanded as a sum of complex exponentials.  
•  The unknown coefficients are the complex Fourier amplitudes 

 

21 

  

€ 

d(x j ) = cne
iknx j

n
∑ + n(x j )

! 
d =Φ! c + ! n 
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Sparsity and data reconstruction 

•  Use DFT kernel (Slow) and minimizing cost function  

•  Use estimator of Fourier coefficients to synthetize new data 

•  In Sacchi et al IEEE-SP-1998 sparsity is obtained by the 
Cauchy criterion 

22 

J =||

d −Φ


c ||

2
+µ 2R(


c)

d̂(( j −1)Δx) = ĉne
ikn ( j−1)Δx

n

∑

R(

c) = ln(1+ c

j

2
/ β 2 )

j
∑
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Sparsity and data reconstruction 

•  IRLS (Iterative reweighted least squares) solution 

•  With diagonal weights given by 

23 

min c J =||

d −Φ


c ||

2
+µ 2R(


c){ }

⇒

c = (Φ

H
Φ+µ 2Q(


c))

−1
Φ

H

d

Qjj =
2

β 2+ | cj |
2
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Sparsity and data reconstruction 

•  IRLS (Iterative reweighted least squares) 

24 

Q
0
= I

k =1,2,3....

c
k
= (Φ

H
Φ+µ 2Q(


c
k−1
))
−1
Φ

H

d

Q
k

jj =
2
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k
|
2

end

We often replace the 
Inversion by a semi-iterative 

solver (CG) 

Part 5 - Data representation 



2015-‐09-‐24	  

13	  

function [x, y_pred, mse] = cauchy_gauss(A,y,mu,beta,Max_Iter,r0); 
% 
% Solve Ax-y \approx 0 
% 
% with x sparse, using the minimization of the following cost:  
% 
%  J  =  ||Ax - y||_2^2 + mu^2 \sum_i \log (1 + (x(i)/beta)^2) 
% 
 
 [ny,nx] = size(A); 
 
 x = r0; 
      q = 1./(beta^2 + x.^2); 
      q = q/max(q); 
      Q = 0.001*diag(q) + 0.01*eye(nx); 
 
 
 R = A'*A; 
 g = A'*y; 
 
 
   for k = 1:Max_Iter 
      x = (R +  Q+0.001*eye(nx))\g;              % for Radon, I do this with CG 
      xx = conv2(x.^2,hamming(3),'same'); 
      xx = xx/max(xx); 
      b = 0.001*xxr; 
      q = (mu^2 )./(b.^2 + x.^2); 
      Q = diag(q); 
   end 
 
  y_pred = A*x; 
  mse = (1/ny)*sum( (y-y_pred).^2); 

  return 

25 Part 5 - Data representation 

Sparsity and data reconstruction 

26 

Example: 

Part 5 - Data representation 
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IRLS iteration  

27 

ite
ra

tio
n  

Irregular sampling and sparsity working  together 
Part 5 - Data representation 

Sparsity and Radon transforms 

d(t, x) = m(τ =ϕ(t, x, p), p)
p

∑
ϕ(t, x, p) = t − px

ϕ(t, x, p) = t − px2

ϕ(t, x, p) = t − px2

min m J =|

d − L


m |

2

2
+µR(


m)

R(

m) =|


m |

2

2

R(

m) =|


m |

1

Linear RT 
 
Parabolic RT 
 
Hyperbolic RT 
  

Thorson and Clearbout (GEOPHYSICS 1985) 
Sacchi and Ulrych (GEOPHYSICS 1995) 
Trad, Ulrych and Sacchi (GEOPHYSICS, 2003)  

IRLS + CG 

CG 
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Parabolic Radon Transform 

R(

m) =|


m |

2

2

29 Part 5 - Data representation 

Sparse Parabolic Radon Transform 

R(

m) =|


m |

1
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Hyperbolic Radon transform 

ϕ(t, x,v,a) = t − (x − a)
2
/ v

2

R(

m) =|


m |

2

2
31 Part 5 - Data representation 

Sparse Hyperbolic Radon Transform 

R(

m) =|


m |

1 32 Part 5 - Data representation 
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The simplicity assumption and connection to rank 
(Singular Spectrum Analysis (SSA)/Embedding) 
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€ 

S
n

= aS
n−1 ⇒

Cadzow, J.A. Signal Enhancement, A Composite Property Mapping Algorithm. IEEE 
Trans. on Acoustics, Speech and Signal Processing 36 (1988) 
 
Ghil, M., M.R. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann, A.W. Robertson, 
A. Saunders, Y. Tian, F. Varadi, and P. Yiou. Advance Spectral Methods for Climatic 
time series. Reviews of Geophysics 40 (2002) 

rank(M) =1
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•  Predictability in fx (p linear events) 

s(t,nΔx) = Ak
k

∑ w(t − pk (n−1)Δx)

S(ω,nΔx) =W (ω) Ak
k

∑ e
−iωpk (n−1) Δx

S
n
(ω) = a

1
(ω)S

n−1(ω)+ a2 (ω)Sn−2 (ω)+ ap(ω)Sn−p(ω)

rank(M) = p

Yang, H.H. and Y. Hua. On rank of block Hankel matrix for 2-D frequency detection and Estimation. IEEE Transactions 
on Signal Processing 44 (1996) 
 
Hua, Y. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Transactions on 
Signal Processing 40 (1992) 
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•  Sparsity, Predictability and Rank are connected for the Fourier synthesis model 

•  Methods to interpolated data based on simplicity or sparsity in Fourier domain 
(MP, ALFT, MWNI, POCS) work all under similar assumptions 

–  Wakefield can be synthesized by a superposition of plane waves 
–  Simplicity (or sparsity) in the distribution of Fourier coefficients 
–  The idea very similar to ideas used today in CS (Compressive Sensing) 
 

•  Rank is the new sparsity but it is not so new if one thinks the connection that 
exists between predictability (SPITZ, 91), sparsity (SACCHI et al 98) and rank 
(Cazdow 88)… as someone said: All goes back to Gauss or Laplace. 

Part 5 - Data representation 35 


