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Abstract. In this paper, we investigate an in-host model for the viral dynam-
ics of HIV-1 infection and its interaction with the CTL immune response. The

model is sufficiently general to allow nonlinear forms for both viral infection and

CTL response. Threshold parameters are identified that completely determine
the global dynamics and outcomes of the virus-target cell-CTL interactions.

Impacts of key parameter values for CTL functions and viral budding rate on

the HIV-1 viral load and CD4 count are investigated using numerical simu-
lations. Results support clinical evidence for important differences between

HIV-1 nonprogressors and progressors.

1. Introduction. In peripheral blood, the human immunodeficiency virus type
1(HIV-1) mainly infects CD4+ T helper lymphocyte cells. HIV-1 infection promotes
strong immune responses from the body [1]. For infected individuals, the slow
depletion of CD4+ T-cells due to HIV-1 infection and the killing of cytotoxic T-
lymphocytes (CTL) is a hallmark of HIV-1 infection. The CD4 count, together with
the viral load, is an important measure of the progression of the HIV-1 infection
[1, 12, 42]. When the CD4 count gradually decreases from a normal level of 1000
cells mm−3 to below 200 mm−3, acquired immune deficiency syndrome (AIDS)
develops and opportunistic infections can cause death [1, 43]. Understanding the
viral dynamics of HIV-1 infection and its interaction with the CTL responses is
crucial for eventual goal of virus clearance and a cure of AIDS.

Mathematical models have been developed to describe and investigate the HIV-1
infection dynamics. Analysis of these models can help improve our understanding of
the pathogenesis HIV-1 within the host, explain the disease progression, and identify
the possible risk factors for infection and diseases; It can also provide insights for
limiting virus spread and developing vaccines, and inform potential treatment and
intervention measures [2, 34, 36, 38]. The basic within-host viral infection model
of HIV takes into consideration three variables: healthy CD4+ T cells x, infected
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CD4+ T cells y, and free virus particles v. The interaction of the three variables
can be described by a set of nonlinear differential equations [30, 31]:

ẋ = λ− µ1x− βxv,
ẏ = βxv − µ2y,

v̇ = ky − µ3v.

(1)

In this model, it is assumed that target cells x are produced at a constant rate
λ and have a death rate µ1. The infection of healthy cells by free virus is given
by the simple mass-action term βxv, where β is the transmission coefficient. The
infected cells have a death rate µ2. The free virus are produced at a rate k and
die at a natural decay rate µ3. The viral dynamics described by this model are
quite simple. Outcomes of the infection are completely determined by a basic
reproduction number for the viral infection R0 = λβk

µ1µ2µ3
. More specifically, if

R0 ≤ 1, then the infection-free equilibrium (λ/µ1, 0, 0) is globally asymptotically
stable in the feasible region and the infection will be cleared irrespective of the
initial viral loads; if R0 > 1, then a unique chronic-infection equilibrium (x∗, y∗, v∗),
x∗, y∗, v∗ > 0, exists and is globally asymptotically stable, and the infection becomes
chronic irrespective of the initial (positive) viral loads [33, 34].

Improved models for HIV-1 viral dynamics incorporated mitotic division in CD4+

T cells when stimulated by antigen or mitogen in model (1) ([33, 34, 41]), using a
standard logistic growth term in the equation for x:

rx
[
1− x+ y

xmax

]
,

where r is the intrinsic growth rate for the mitotic growth, and xmax is the max-
imum level of CD4+ T cells in the body. In addition to threshold dynamics, in
some range of the parameter region, periodic oscillations are shown to exist ([41]).
When logistic growth term are coupled with ART treatment in a model, it was
shown in [26] that backward bifurcations can occur. The bi-stability accompany-
ing the backward bifurcation can have significant implications for the control of
HIV-1 infection. Model (1) are further extended to incorporate intracellular delays.
Interested readers are referred to [6, 29, 37, 45].

The human immune system reacts to HIV-1 infection with a strong CTL response
by killing infected cells and suppressing viral replications [18, 22, 32]. Mathematical
models of HIV-1 dynamics with CTL response have been proposed to study the
complex interaction between virus infection and CTL response, see [4, 27, 30, 32,
35, 37, 44, 45] and references therein.

To derive a simple HIV-1 infection model with immune response, we consider
the fourth variable z of the number of CTLs, in addition to the three variables in
model (1): healthy cells x, infected cells y, free virus v, and describe the interaction
between HIV-1 infection and the CTL response by the following system of nonlinear
differential equations:

ẋ = λ− µ1x− βxf(v)

ẏ = σβxf(v)− µ2y − αyz
v̇ = ky − µ3v

ż = cyg(z)− µ4z

(2)

Compartments x, y, v, and z have death rates µ1,µ2, µ3 and µ4, respectively. The
killing of infected cells by CTL action is given by the term αyz, and production of
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Figure 1. Transfer-infection diagram of model (2). Solid lines
indicate cell transfer and dotted lines indicated virus-cell or cell-
cell interaction.

CTLs in response to HIV-1 infection is described by term cyg(z), where g(z) is called
the CTL response function. We also included effects of antibody immune responses
to HIV-1 infection indirectly by assuming that only a fraction σ (0 ≤ σ ≤ 1) of
newly-infected cells escape the killing of antibody-dependent cellular cytotoxicity
by effector cells such as natural killer cells ([39, 40]). The infection of healthy cells
infected by free virus is described by a nonlinear mass-action term βxf(v), where
β is the transmission coefficient. We make the following biologically motivated
assumptions on the function f(v) in the incidence term.

(H). Assume that f(v) is continuous, f(0) = 0, f(v) ≥ 0, f ′(v) > 0, and f ′′(v) ≤ 0,
for v ≥ 0.

Nonlinear incidence terms satisfying assumption (H) include the bilinear form βxv
and saturation form βxv/(v + b) commonly used in the literature. All parameters
in the model are assumed to be positive.

Several forms of CTL response function g(z) have been considered in the modeling
literature of immune responses to viral infections. The most common form is g(z) =
z [31]. Given the complex process of immune responses, nonlinear forms of immune
response function are justified. These include g(z) = z/(z + a) [11, 31] and more
generally g(z) = zn/(zn+a) [22]. In [11], for a model of HTLV-I infection with CTL
response, the response function g(z) = z

(z+a) was used and the global dynamics of

the model were completely determined mathematically. It is the primary objective
of our study to establish the complete global dynamics of model (2) assuming

g(z) =
z

z + a
, a > 0, (3)
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and derive the associated the threshold parameters. The main mathematical tool
for establishing the global stability of equilibria is the Lyapunov functions of form
x−x∗ log x, which was first used by Goh for ecological models [10] and S-Z. Hsu for
predator-prey systems [17] and for chemostat models [3], and later by Korobeinikov
for epidemic models [19, 20]. Lyapunov function of this form for complex models
were constructed by Guo, Li, and Shuai using a graph theoretic method [13, 14, 24,
25].

We completely establish the global dynamics of model (1) for general nonlinear
incidence form βxf(v), with f satisfying assumption (H) and a nonlinear CTL
response functions g(z) as in (3). The global stability of the positive equilibrium
for HIV infection models with nonlinear response functions g(z) has not previously
been established in the literature.

We note that, in a model of HTLV-I infection with CTL response using g(z) =
z2/(z2 + a), a > 0, global stability of the positive equilibrium is no longer true,
and completely different dynamics including transient periodic oscillations were
discovered in [22]. It is of interest to determine if this type of unstable robust
periodic oscillations that lasts only for finite time can exist for model (2).

Our simulations of model (1) using biologically plausible parameter values show
that several key parameters including the CTL response rate c, CTL killing rate α,
and viral budding rate N can greatly influence the HIV viral load. These findings
are consistent with previous modeling study results (see e.g. [4, 5] and references
therein), and suggest that these factors might help to explain differences between
HIV nonprogressors and progressors [9] and are worthy of further modeling study.

2. Feasible region and equilibria. Since populations of cells are non-negative,
we study model (2) in R4

+. By examining directions of the vector field associated
with model (2) on the boundaries of R4

+, we can verify that R4
+ is positively invariant

with respect to model (2). This implies that solutions with nonnegative initial
conditions will remain nonnegative for t ≥ 0, and the model is well defined.

We show that all solutions of model (2) are uniformly ultimately bounded. From
the first equation of (2), we have that ẋ ≤ λ− µ1x, This implies that x(t) ≤ λ

µ1
for

t ≥ 0 if x(0) ≤ λ
µ1

, and that limt→∞ supx(t) ≤ λ
µ1

. Using the first two equations

of (2), we have ẋ+ ẏ ≤ λ−min{µ1, µ2}(x+ y). Denote µ̃ = min{µ1, µ2}. Then we
obtain that

x(t) + y(t) ≤ λ

µ̃
for t ≥ 0 if x(0) + y(0) ≤ λ

µ̃
,

and that limt→∞ sup(x(t) + y(t)) ≤ λ
µ̃ . Using a similar argument, we can obtain

that

v(t) ≤ kλ

µ̃µ3
for t ≥ 0, if v(0) ≤ kλ

µ̃µ3
,

and limt→∞ sup v(t) ≤ kλ
µ̃µ3

, and that

z(t) ≤ cλ

µ̃µ4
for t ≥ 0, if z(0) ≤ cλ

µ̃µ4
,

and limt→∞ sup z(t) ≤ cλ
µ̃µ4

. In summary, the bounded region

Γ =

{
(x, y, v, z) ∈ R4

+ : x ≤ λ

µ1
, x+ y ≤ λ

µ̃
, v ≤ kλ

µ̃µ3
, z ≤ cλ

µ̃µ4

}
(4)
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is positively invariant with respect to model (2) and contains its global attractor.
It suffices to study that global dynamics of model (2) in the feasible region Γ.

From equilibrium equations:

λ− µ1x− βxf(v) = 0,

σβxf(v)− µ2y − αyz = 0,

ky − µ3v = 0,

cy
z

z + a
− µ4z = 0,

(5)

we see that the infection-free equilibrium P0 = ( λµ1
, 0, 0, 0) always exists. Two

chronic-infection equilibria are possible: P1 = (x̄, ȳ, v̄, 0) with no CTL response, and
P2 = (x∗, y∗, v∗, z∗) with CTL response, where x̄, ȳ, v̄, x∗, y∗, v∗, z∗ > 0. Biological
significances of these chronic equilibria are discussed in the next section.

By equation (5), when z = 0 and v 6= 0, we have µ3v
k = σβxf(v)

µ2
and x =

λ
µ1
− µ2µ3v

kσµ1
. Then we obtain the chronic-infection equilibrium with no CTL reponse

P1 = (
λ

µ1
− µ2µ3v̄

kσµ1
,
µ3v̄

k
, v̄, 0).

This equilibrium exists if v̄ satisfies the following equation

F (v) :=
λσβkf(v)

µ2µ3(µ1 + βf(v))
− v = 0, (6)

and the first coordinate of P1 is positive, namely,

0 < v̄ <
kσλ

µ2µ3
:= v0.

Direct calculation shows that

F ′′(v) =
λσβkµ1

µ2µ3

f ′′(v)[µ1 + βf(v)]− 2β[f ′(v)]2

[µ1 + βf(v)]3
.

By the assumption that f ′′(v) ≤ 0 and f ′(v) > 0 for for all v > 0, we get that
F ′′(v) < 0 for v > 0, and thus F (v) is concave down for 0 ≤ v ≤ v0. Let

R0 =
λσβk

µ1µ2µ3
f ′(0). (7)

Then, F ′(0) = λσβk
µ1µ2µ3

f ′(0)− 1 = R0 − 1 and F ′(0) > 0 if and only if R0 > 1. Since

F (0) = 0 and

F (v0) = − kσλµ1

µ2µ3(µ1 + βf(v0))
< 0,

we know that F (v) = 0 has a unique positive root 0 ≤ v̄ ≤ v0 if and only if R0 > 1.
As a consequence, a unique chronic-infection equilibrium P1 = ( λµ1

− µ2µ3v̄
kσµ1

, µ3v̄
k , v̄, 0)

exists if and only if R0 > 1.
From equilibrium equation (5), a positive equilibrium P2 = (x∗, y∗, v∗, z∗) satis-

fies

x∗ =
λ

µ1
+ (

αµ3a

µ1σk
− µ2µ3

µ1σk
)v∗ − αcµ2

3

µ1σµ4k2
v∗2,

y∗ =
µ3v
∗

k
,

z∗ =
cµ3

kµ4
v∗ − a,

(8)
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Figure 2. Graphs of functions F (v) and G(v) and a geometric
demonstration of existence of chronic-infection equilibria P1 and
P2.

and z∗ > 0. Set

G(v) =
λ

µ1 + βf(v)
−
[
− αcµ2

3

µ1µ4σk2
v2 + (

αµ3a

µ1σk
− µ2µ3

µ1σk
)v +

λ

µ1

]
.

Then v∗ satisfies

v∗ >
akµ4

cµ3
= v0 (9)

and
G(v∗) = 0.

It can be verified that G(0) = 0, G′(0) < 0 if R0 > 1, and G′′(v) > 0 for v > 0, since
f ′′(v) ≤ 0. The strict convexity of G(v) implies that a unique positive equilibrium
with v∗ > v0 exists if and only if

G(v0) < 0. (10)

By direct calculation we can verify that condition (10) is equivalent to

βf(v0)(λσc− aµ2µ4) > aµ1µ2µ4.

Using f(0) = 0 and convex property of f(v) we obtain f(v) ≤ vf ′(0) for v > 0. The
above relation can be rewritten as

λσβkcf ′(0)

cµ1µ2µ3 + akβµ2µ4f ′(0)
=

cµ1µ2µ3

cµ1µ2µ3 + akβµ2µ4f ′(0)
R0 > 1,

which is equivalent to

R0 > 1 +
akβµ2µ4

cµ1µ2µ3
f ′(0). (11)

We summarize the above analysis and results in the following theorem.

Theorem 2.1. Assume that function f satisfies assumption (H).

(i) The infection-free equilibrium P0 = ( λµ1
, 0, 0, 0) always exists;

(ii) A unique chronic-infection equilibrium with no CTL response P1 = ( λµ1
−

µ2µ3v̄
kσµ1

, µ3v̄
k , v̄, 0), v̄ > 0, exists if and only if R0 = λσβk

µ1µ2µ3
f ′(0) > 1;

(iii) A unique positive equilibrium P2 = (x∗, y∗, v∗, z∗), x∗, y∗, v∗, z∗ > 0 exists if
and only if

R0 > 1 +
akβµ4

cµ1µ3
f ′(0).
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Corollary 1. (i) If R0 ≤ 1, then P0 is the only equilibrium of system (2) in Γ;

(ii) If 1 < R0 ≤ 1 + akβµ4

cµ1µ3
f ′(0), then only P0 and P1 exist in Γ, and they are on

the boundary of Γ.
(iii) If R0 > 1 + akβµ4

cµ1µ3
f ′(0), then P0, P1 and P2 all exist in Γ.

3. Global dynamics and outcomes of infection. In this section, we investigate
the global dynamics of model (2). Mathematical results are interpreted in terms of
the outcomes of interactions of HIV-1 infection and the immune responses.

3.1. Global dynamics. We assume that function f satisfies assumption (H) and
establish the following result.

Theorem 3.1. (i) If R0 ≤ 1, then the infection-free equilibrium P0 = ( λµ1
, 0, 0, 0)

is globally asymptotically stable in Γ and the infection clears. If R0 > 1, then
P0 is unstable, and system (2) is uniformly persistent.

(ii) If 1 < R0 ≤ 1 + akβµ4

cµ1µ3
f ′(0), then the unique chronic-infection equilibrium

without CTL response, P1 = ( λµ1
− µ2µ3v̄

kσµ1
, µ3v̄
k , v̄, 0), v̄ > 0, is globally asymp-

totically stable in Γ.
(iii) If R0 > 1+ akβµ4

cµ1µ3
f ′(0), then both P0 and P1 are unstable, and a unique positive

equilibrium P2 = (x∗, y∗, v∗, z∗), x∗, y∗, v∗, z∗ > 0 is globally asymptotically
stable in the interior of Γ.

Theorem 3.1 completely determines the global dynamics of model (2). It estab-
lishes sharp threshold values in term of the basic reproduction number R0. Biolog-
ical implications of Theorem 3.1 are the following:

(i) If the basic reproduction number R0 is below 1, the any initial infection will
eventually clear irrespective of the initial viral load. If R0 is greater than 1,
any initial infection will become chronic.

(ii) If the basic reproduction number R0 is in the range (1, 1 + akβµ4

cµ1µ3
f ′(0)), then

the longtime outcome of any initial infection will be at the equilibrium P1 =
( λµ1
− µ2µ3v̄

kσµ1
, µ3v̄
k , v̄, 0), namely, the infection becomes chronic while the body

will not mount a persistent CTL response.
(iii) If R0 exceeds the threshold value 1 + akβµ4

cµ1µ3
f ′(0), then the longtime outcome

of any initial infection will be at the positive equilibrium P2 = (x∗, y∗, v∗, z∗),
x∗, y∗, v∗, z∗ > 0, namely, the infection becomes chronic and the body mounts
a persistent CTL response.

Technical proofs of global stability will be provided in the Appendix. We present
the proof of local stability of P0 in the following, to establish R0 as a threshold
parameter for the stability of P0.

The Jacobian matrix of system (2) at P0 is

J(P0) =


−µ1 0 −λβµ1

f ′(0) 0

0 −µ2
λσβ
µ1
f ′(0) 0

0 k −µ3 0
0 0 0 −µ4

 .
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The characteristic polynomial of J(P0) is as follows:

|sI − J(P0)| =

∣∣∣∣∣∣∣∣∣∣∣

s+ µ1 0 λβ
µ1
f ′(0) 0

0 s+ µ2 −λσβµ1
f ′(0) 0

0 −k s+ µ3 0

0 0 0 s+ µ4

∣∣∣∣∣∣∣∣∣∣∣
= (s+ µ1)(s+ µ4)

[
(s+ µ2)(s+ µ3)− λσβk

µ1
f ′(0)

]
= (s+ µ1)(s+ µ4)[s2 + (µ2 + µ3)s+ µ2µ3(1−R0)].

When R0 > 1, a positive root exists and P0 is unstable. If R0 < 1, real parts of all
roots are negative and P0 is asymptotically stable. When R0 = 1, one of the root
is 0 and the method of linearization is not applicable. The case is proved using a
Lyapunov function in the Appendix.

3.2. Threshold values for CTL response and implications to HIV vaccines.
Our mathematical analysis in previous sections has identified two key values for
the threshold parameter R0, the basic reproduction number, namely, R0 = 1 and
R0 = 1 + akβµ4

cµ1µ3
f ′(0).

When R0 is below the first threshold value 1, namely, R0 < 1, then Theorem 3.1
implies that all initial infection will eventually clear. Since most, if not all, of the
HIV-1 infected persons can not clear the virus, the biologically relevant parameter
region should be R0 > 1, in which case, Theorem 3.1 implies that all initial HIV-1
infection will become chronic. Note that R0 > 1 is expressed as, using (7),

λσβk

µ1µ2µ3
f ′(0) > 1.

This expression does not involve parameters related to the CTL immune response.
Therefore, in this parameter region, an initial HIV-1 infection will become chronic
with or without any effective CTL response. In another word, our model predicts
that CTL response alone can not clear the HIV-1 virus.

The second threshold value for R0 is related to the interaction between viral
infection and the CTL response that aims at controlling the viral infection. In the
parameter range

1 < R0 < 1 +
akβµ4

cµ1µ3
f ′(0),

all positive solutions of model (1) converge to the boundary equilibrium P1 =
(x̄, ȳ, v̄, 0). Outcome of any initial infection is that the HIV-1 infection becomes
chronic and the body does not mount a persistent CTL response. Clinical evidence
has established that HIV-1 infected individuals develop persistent CTL responses
[9], this suggests that the equilibrium P1 may not be biologically relevant to HIV-1
infection.

Based on model (2) and our analysis, the most biologically relevant parameter
range for HIV-1 infection is

R0 > 1 +
akβµ4

cµ1µ3
f ′(0). (12)

While it is not feasible to discuss viral clearance in this parameter range, there are
other important biological issues regarding HIV-1 infection, on which our model
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can provide insight, in particular for HIV vaccine development. Cellular vaccines
such as the one in the STEP trial [16] aim at boosting effective HIV-specific CTL
responses in the body. These vaccines, if effective, will help to control the viral
infection through effective killing of HIV infected cells. Our modeling result based
on the discussion of R0 show that cellular vaccines alone will not be able to achieve
clearance of HIV virus. In contrast, vaccines that elicit broad neutralizing antibody
responses will allow antibodies to bind to viral antigens on the surface viruses and
render the virus noninfectious. The effect is to reduce the number of infectious
viruses and hence to reduce the transmission rate β. This will reduce the basic
reproduction number, ideally to below 1, and achieve viral clearance. Another effect
of antibody responses is the antibody dependent cellular cytotoxicity (ADCC), in
which antibodies bind to viral antigens on the surface of infected cells and allow
effector cells such as natural killer cells to kill the infected cell. This effect is to
reduce the fraction σ of newly infected CD4 T cells that survived ADCC. Reducing
σ will also directly reduce the basic reproduction number R0 and help to achieve
viral clearance. Our results agree with the current HIV vaccine strategies that
aim to stimulate more than one branch of the immune responses, from antibody
responses, to primary responses and CTL responses [8].

3.3. Key factors for differences between a progressor and a nonprogres-
sor. The progression of HIV-1 infection is marked by increasingly higher level of
viral load and decreasing CD4 count. Anti-retroviral therapies (ART) can effec-
tively suppress HIV-1 replication, reduce the viral load to undetectable levels and
restore CD4 count. A subset of HIV-1 patients are known to be able to control the
viral load at low levels for long periods of time without undertaking ART. These
patients are called “nonprogressors” [9]. Since both progressors and nonprogressors
maintain persistent CTL responses, they are both represented in our model by the
positive equilibrium P2 = (x∗, y∗, v∗, z∗). An interesting biological question is the
following: what parameters in our model can be used to explain differences between
nonprogressors and progressors?

Clinical evidence has suggested that frequency of CTL z∗ is not a good biomarker
to separate progressors and long-term nonprogressors and that there is no clear cor-
relation between the frequency of CTL z∗ and viral load y∗ in the plasma [9]. Recent
clinical research has discovered a key clinical difference between nonprogressors and
progressors. It is shown in [9, 28] that the nonprogressors maintain an increased
proliferation capacity for the HIV-1 specific CD8+ T cells linked to effector func-
tions. Translated into our model setting, CTL response parameters c, and CTL
killing rate parameter α are key parameters that may help to characterize nonpro-
gressors. We will investigate the effects of these parameters on the temporal viral
load v(t). We also examine effects of the average number of virus particles that bud
out each of each infected CD4+ cells on the viral load v(t).

In the following numerical simulations, we have chosen f(v) = v and taken the
following values for model parameters: λ = 20, β = 0.00048, µ1 = 0.04, µ2 = 0.055,
µ3 = 0.1, µ4 = 0.05, σ = 0.8, k = 0.04, c = 0.02, a = 2.45, and α = 0.04.
These parameter values are adapted from the literature [2, 5, 11, 30, 31, 33]. These
parameter values give R0 = 38, which fall in the parameter range of interest R0 >
1 + akβµ4

cµ1µ3
(f ′(0) = 1). Simulations were carried out using the ODE45 package of

Matlab. Simulation results are given in Figure 3 - Figure 5.

(I). Effects of CTL response parameter c on HIV-1 viral load
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Figure 3. Effects of CTL response parameter c on HIV-1 viral
load and CD4 count.
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Figure 4. Effects of CTL killing rate α on HIV-1 viral load and
CD4 count.

In Figure 3, we have shown that an increase in CTL response parameter c can
effectively decrease the HIV-1viral load v(t) to very low levels and increase the
CD4+ count x(t) + y(t) to healthy levels.

(II). Effects of CTL killing rate α on HIV-1 viral load
In Figure 4, we have shown that an increase in CTL killing rate α can also

effectively decrease the HIV-1viral load v(t) to very low levels and increase the
CD4+ count x(t) + y(t) to healthy levels.

Our simulation results in both (I) and (II) support the clinical results in [9, 28],
providing further evidence that CTL functions might constitute a major difference
between HIV-1 progressors and nonprogressors.

(III). Effects of viral budding rate N on HIV-1 viral load
We have also examined the effects of changing the average number N of HIV-

1 virus particles that bud out of an infected CD4+ cell at the end of replication
cycle. The parameter k for the production term ky(t) of HIV-1 virus can be written
as k = Nµ2. In Figure 5, we have increased N from 7 to 20 and observed a
drastic effects on the rise of the HIV-1 viral load and the decline of CD4+ count.
This suggests that the nonprogressors may harbour HIV-1 viruses that have a low
replication rate or of shortened replication cycle inside an infected cell. It will be
of interest to explore clinical evidence that may support this difference.
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Then V1 ≥ 0 and V1(P0) = 0. Differentiating V1 along the solution of system (2)
we obtain

V̇1 = kẏ + µ2v̇ = kσβxf(v)− kαyz − µ2µ3v ≤ kσβxf(v)− µ2µ3v.

When v = 0, the derivative V̇1 ≤ 0. If v > 0, then

V̇1 ≤ kσβxf(v)− µ2µ3v = µ2µ3v
[kσβxf(v)

µ2µ3v
− 1
]
≤ µ2µ3v

[kσβλf(v)

µ1µ2µ3v
− 1
]

≤ µ2µ3v
[kσβλf ′(0)

µ1µ2µ3
− 1
]

= µ2µ3v(R0 − 1) ≤ 0,

Therefore V̇1 = 0 if and only if v = 0 or R0 = 1. It can be verified that the largest
invariant subset of the set where V̇1 = 0 is the singleton {P0}. Using the LaSalle’s
invariant principle [21], we conclude that P0 is globally asymptotically stable in Γ.

If R0 > 1 and v 6= 0, we know that, since f(v)/v → f ′(0) as v → 0+,

kσβxf(v)

µ2µ3v
− 1 > 0,

and hence V̇1 > 0 for points in the interior of Γ and sufficiently close to P0. There-
fore, for initial points sufficiently close to P0, solutions move away from P0. This
implies that P1 is unstable. Using a uniform persistence result from [7] and a similar
argument as in the proof of Proposition 3.3 of [23], we can show that, when R0 > 1,
the instability of P0 implies the uniform persistence of system (2). This completes
the proof of conclusion (i).

For conclusion (ii), we note that the coordinates of equilibrium P1 satisfy the
following equations:

λ− µ1x̄− βx̄f(v̄) = 0,
σβx̄f(v̄)− µ2ȳ = 0,
kȳ = µ3v̄.

(13)

Define a Lyapunov function

V2(x, y, v, z) = x− x̄ lnx+
1

σ
(y − ȳ ln y) +

µ2

σk
(v − v̄ ln v) +

αa

cσ
z.

Then, V2 has a global minimum at P1. Differentiating V2 along the solution of
system (2) and using equations (13), we obtain

V̇2 = λ− µ1x−
α

σ
yz − µ2µ3v

σk
− x̄

x
λ+ µ1x̄+ βx̄f(v)− βxȳ

y
f(v)

+
µ2ȳ

σ
+
αȳz

σ
− µ2yv̄

σv
+
µ2µ3v̄

σk
+

aαyz

σ(z + a)
− αaµ4

cσ
z

= 2µ1x̄+ 2βx̄f(v̄)− µ1x−
v

v̄
βx̄f(v̄)− µ1

x
x̄2 − β

x
x̄2f(v̄) + βx̄f(v)− βxȳ

y
f(v)

− yv̄βx̄

vȳ
f(v̄) + βx̄f(v̄)− α

σ
yz +

α

σ
ȳz +

aαyz

σ(z + a)
− αaµ4

cσ
z

= µ1x̄
[
2− x̄

x
− x

x̄

]
+ βx̄f(v̄)

[
3− x̄

x
− xȳf(v)

x̄yf(v̄)
− v

v̄
+
f(v)

f(v̄)
− v̄y

vȳ

]
+ [−α

σ
yz +

α

σ
ȳz +

aαyz

σ(z + a)
− αaµ4

cσ
z].
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Let Φ(x) = 1− x+ lnx. We have

3− x̄

x
− xȳf(v)

x̄yf(v̄)
− v

v̄
+
f(v)

f(v̄)
− v̄y

vȳ

=Φ
( x̄
x

)
+ Φ

(xȳf(v)

x̄yf(v̄)

)
+ Φ

( v̄y
vȳ

)
+ ln

vf(v̄)

v̄f(v)
− v

v̄
+
f(v)

f(v̄)

=Φ
( x̄
x

)
+ Φ

(xȳf(v)

x̄yf(v̄)

)
+ Φ

( v̄y
vȳ

)
+ Φ

(vf(v̄)

v̄f(v)

)
+
[f(v)

f(v̄)
− 1
][

1− vf(v̄)

v̄f(v)

]
=Φ
( x̄
x

)
+ Φ

(xȳf(v)

x̄yf(v̄)

)
+ Φ

( v̄y
vȳ

)
+ Φ

(vf(v̄)

v̄f(v)

)
+

(f(v)− f(v̄))

f(v)

[f(v)

f(v̄)
− v

v̄

]
.

(14)

Since f(v) is concave and monotonically increasing on v ≥ 0, we have

(f(v)− f(v̄))
(f(v)

f(v̄)
− v

v̄

)
≤ 0,

which, together with the fact that Φ(x) ≤ 0 for x > 0, yields that

3− x̄

x
− xȳf(v)

x̄yf(v̄)
− v

v̄
+
f(v)

f(v̄)
− v̄y

vȳ
≤ 0.

Next, we consider the third group of terms in V̇2:

−α
σ
yz +

α

σ
ȳz +

aαyz

σ(z + a)
− αaµ4

cσ
z =

αz

σ

[ ay

z + a
− y
]

+
αz

σ
Big[ȳ − aµ4

c

]
=
αz

σ

−yz
z + a

+
αz

σ

[
ȳ − aµ4

c

]
.

Let F (v) be defined by (6) and v0 = akµ4

cµ3
be defined by (9). Then we have

F (v0) =
λσβkf(v0)

µ2µ3(µ1 + βf(v0))
− v0 =

(λσβk − v0µ2µ3β)f(v0)− v0µ1µ2µ3

µ2µ3(µ1 + βf(v0))

=
1

µ2µ3(µ1 + βf(v0))

1

c
[(λσβkc− akµ2µ4β)f(v0)− akµ1µ2µ4]

≤ (λσβkc− akµ2µ4β)f ′(0)− cµ1µ2µ3

c[µ2µ3(µ1 + βf(v0))] · cµ3

akµ4

,

where the last inequality follows from f(v) ≤ vf ′(0) for all v > 0. From

R0 ≤ 1 +
akβµ2µ4

cµ1µ2µ3
f ′(0),

namely,

λσβkcf ′(0) ≤ cµ1µ2µ3 + akβµ2µ4f
′(0),

we obtain

(λσβkc− akβµ2µ4)f ′(0) ≤ cµ1µ2µ3.

Therefore, F (v0) ≤ 0. Using the properties of F (v) and the uniqueness of P1, we
have the relation

v̄ ≤ v0.

Using the equilibrium equation (13), ȳ = µ3v̄
k , we obtain

ȳ − aµ4

c
=
cµ3v̄ − akµ4

kc
≤ cµ3v

0 − akµ4

kc
=
cµ3 · akµ4

cµ3
− akµ4

kc
= 0,
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and thus,

−α
σ
yz +

α

σ
ȳz +

aαyz

σ(z + a)
− αaµ4

cσ
z ≤ 0,

which implies that V̇2 ≤ 0 for all x, y, v, z > 0.
Using the expression of V̇2 and equation (14) we can show that V̇2 = 0 only at

P1. This implies V̇2 is negative definite with respect to equilibrium P1, and thus P1

is locally asymptotically stable by the classical Lyapunov stability result [15], and
P1 attracts all points in Γ. This implies that P1 is globally asymptotically stable in
Γ when 1 < R0 < 1 + akβµ2µ4

cµ1µ2µ3
f ′(0).

To show conclusion (iii), we assume that

R0 > 1 +
akβµ2µ4

cµ1µ2µ3
f ′(0),

and consider the Lyapunov function

V3 = x− x? lnx+
1

σ
(y − y? ln y) +

βx?f(v?)

ky∗
(v − v∗ ln v) +

α(z∗ + a)

σc
(z − z∗ ln z).

It can be verified that V has a global minimum at the equilibrium P2. We will be
using the equilibrium equations for the coordinates of P2:

λ = µ1x
∗ + βx∗f(v∗), µ2 =

σβx∗f(v∗)

y∗
− αz∗,

µ3 =
ky∗

v∗
, µ4 =

cy∗

z∗ + a
.

(15)

Differentiating V3 along the solution of system (2) and using (15), we obtain

V̇3 = λ− µ1x−
µ2

σ
y − α

σ
yz +

αyz(z∗ + a)

σ(z + a)
− αµ4(z∗ + a)z

σc
− x∗

x
λ+ µ1x

∗

+ βx∗f(v)− y∗

y
βxf(v) +

µ2y
∗

σ
+
αy∗z

σ
− βx∗v∗f(v∗)y

y∗v
+
βx∗v∗µ3f(v∗)

ky∗

− αyz∗(z∗ + a)

σ(z + a)
+
αµ4z

∗(z∗ + a)

σc
+
yβx∗f(v∗)

y∗
− βx∗f(v∗)

v∗
v

= 2µ1x
∗ − µ1x−

µ1x
∗2

x
+ 3βx∗f(v∗)− βx∗2f(v∗)

x
+ βx∗f(v)− y∗

y
βxf(v)

− βx∗v∗f(v∗)y

y∗v
− βx∗f(v∗)v

v∗
+
αyz∗

σ
− αyz

σ
+
αyz(z∗ + a)

σ(z + a)
− αyz∗(z∗ + a)

σ(z + a)

= µ1x
∗
[
2− x

x∗
− x∗

x

]
+ βx∗f(v∗)

[
3− x∗

x
+

f(v)

f(v∗)
− xy∗f(v)

yx∗f(v∗)
− v

v∗
− v∗y

y∗v

]
+
αy

σ

[
(z∗ − z) +

(z∗ + a)(z − z∗)
z + a

]
.

We can use the same method as in the proof of conclusion (ii) and obtain

3− x∗

x
+

f(v)

f(v∗)
− xy∗f(v)

yx∗f(v∗)
− v

v∗
− v∗y

y∗v
≤ 0.

Furthermore, we have

αy

σ
[(z∗ − z) +

(z∗ + a)(z − z∗)
z + a

] =
αy(z∗ − z)

σ
[1− (z∗ + a)(z − z∗)

z + a
]

= −αy(z∗ − z)2

σ(z + a)
≤ 0.
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Therefore V̇3 ≤ 0 for all x, y, v, z > 0.
It can be verified that V̇3 is negatively definite with respect to the equilibrium P2,

and thus P2 is locally asymptotically stable and globally attracting in the interior
of Γ when R0 > 1 + akβµ2µ4

cµ1µ2µ3
f ′(0). This completes the proof of Theorem 3.1.
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