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Abstract. In recent studies, global Hopf branches were investigated for de-
layed model of HTLV-I infection with delay-independent parameters. It is

shown in [8, 9] that when stability switches occur, global Hopf branches tend

to be bounded, and different branches can overlap to produce coexistence of
stable periodic solutions. In this paper, we investigate global Hopf branches for

delayed systems with delay-dependent parameters. Using a delayed predator-

prey model as an example, we demonstrate that stability switches caused by
varying the time delay are accompanied by bounded global Hopf branches.

When multiple Hopf branches exist, they are nested and the overlap produces

coexistence of two or possibly more stable limit cycles.

1. Introduction. In mathematical models of biological systems with time delays,
it is known that varying a time delay can destabilize an otherwise stable equilibrium
and result in sustained oscillations through a mechanism called Hopf bifurcation.
When using the time delay as a bifurcation parameter, it is known that Hopf bifurca-
tion can occur in a sequence of bifurcation points. These Hopf branches can extend
to infinity or they can be bounded and connect different bifurcation points. It is
highly nontrivial to determine whether a global Hopf branch will remain bounded.
In a well-known study [1], Kuang and Beretta investigated the phenomenon of sta-
bility switch: when the time delay is varied across a sequence of Hopf bifurcation
points, the equilibrium can switch back and forth between being stable and being
unstable. They have developed an systematic way to detect stability switches in
when model parameters are delay-dependent. In a recent study, Li and Shu [8]
provided a more geometric explanation for the occurrence of stability switch. They
have shown, in a delayed model for HTLV-I infection, that when a cubic polynomial
associated with the characteristic polynomial has two positive roots, stability switch
occurs. Furthermore, they have investigated the global Hopf branches accompany-
ing the stability switch and shown that the global Hopf branches are bounded and
will eventually overlap. The overlap of global Hopf branches can produce the co-
existence of stable limit cycles. In a subsequent study [9], we extended the results
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in [8] to the case when the cubic polynomial has three positive roots and show that
coexistence of stable limit cycles are also possible. Other effects on global Hopf
branches include [11,12].

The previous studies [8, 9, 12] considered a delayed model in which parameters
are independent of delay. In this paper, we investigate stability switch as a possible
mechanism for the coexistence of stable limit cycles in delayed systems when pa-
rameters are delay dependent. Using a delayed Lotka-Volterra type predator-prey
model with Holling Type I and Type II functional responses, we show that stability
switches in this case produce bounded global Hopf branches that are nested. When
multiple Hopf branches exist, the overlap can produce coexistence of stable limit cy-
cles. The effects of the delay in Lotka-Volterra type predator-prey models have been
extensively studied in the ecological and mathematical literature (e.g. [4,5,10,13]).
Our study is the first to investigate global Hopf branches accompanying stability
switches, and establish the stability switch as a mechanism for coexistence of stable
limit cycles.

2. Preliminaries. We consider a delayed Lotka-Volterra type predator-prey model
described by the following system:

x′(t) = rx(t)

(
1− x(t)

K

)
− βf(x(t))y(t),

y′(t) = γβ e−djτf(x(t− τ))y(t− τ)− dy(t),

(1)

where the response function f(x) is increasing for all x > 0. We are interested in
f(x) of Holling types:

f(x) = x [Type I] and f(x) =
x

D + x
[Type II],

Nondimensionalizing the system with the following transform and ignoring addi-
tional subscripts,

t1 = rt, x1 = x/K,

y1 = βy/r (Type I) or y1 = βy/rK (Type II),

d1 = d/r, dj1 = dj/r, D1 = D/K(Type II only),

γ1 = γβK/r (Type I) or γ1 = γβ/r (Type II),

we obtain
x′(t) = x(t)(1− x(t))− f(x(t))y(t),

y′(t) = γ e−djτf(x(t− τ))y(t− τ)− dy(t).
(2)

There are three possible equilibria: the extinction equilibrium P0 = (0, 0), predator
extinction equilibrium P1 = (1, 0) and the coexistence equilibrium P2 = (x∗, y∗),
where

x∗ = f−1
(
d

γ
edjτ

)
> 0, y∗ =

x∗(1− x∗)
f(x∗)

=
γx∗(1− x∗)

dedjτ
> 0. (3)

Existence of P0 and P1 is unconditional, while P2 exists if and only if

d

γ
edjτ < f(1) ⇔ R(τ) :=

γf(1)

d
e−djτ > 1, (4)
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or equivalently,

τ < τm :=
1

dj
log

γf(1)

d
and R0 := R(0) =

γf(1)

d
> 1.

Parameter R(τ) is called the basic reproduction number, it is the average number
of offspring reaching adulthood from a single adult over its life span.

Theorem 2.1 (Positivity and Boundedness). Given any positive initial condition
φ ∈ C+ × C+, φ(0) > 0, where C+ := C([−τ, 0],R+), a Banach space of continuous
non-negative-valued functions on [−τ, 0] with infinity norm, the solution of system
(2) is positive and ultimately bounded in C+ × C+. Specifically, all trajectories
eventually enter and remain in the following bounded invariant region.

Γ =

{
(x, y) ∈ C+ × C+ : ||x|| ≤ 1, ||y|| ≤ γe−djτ

min{1, d}

}
.

Proof. Positivity of solutions follows from standard theory of autonomous DDE
with constant delays. From

x′(t) ≤ x(1− x),

we know that x(t) is ultimately bounded by 1,

lim sup
t→+∞

x(t) ≤ 1.

Adding the two equations of (2) we obtain(
γe−djτx(t) + y(t+ τ)

)′
= γe−djτx(t)(1− x(t))− dy(t+ τ)

≤ γe−djτ (1− x(t))− dy(t+ τ)

≤ γe−djτ −min{1, d}
(
γe−djτx(t) + y(t+ τ)

)
,

and thus

lim sup
t→+∞

(γe−djτx(t) + y(t+ τ)) ≤ γe−djτ

min{1, d}
.

This implies that

lim sup
t→+∞

y(t) ≤ γe−djτ

min{1, d}
,

and that all solutions in Γ′ will eventually enter and remain in Γ. �

3. Stability of the boundary equilibrium P1. Linearizing system (2) at P1 =
(1, 0) and letting u = x− 1, v = y, we obtain the following linear system

u′(t) = −u(t)− f(1)v(t),

v′(t) = −dv(t)− γe−djτf(1)v(t− τ).
(5)

The characteristic equation of system (5) is

D1(λ, τ) =λ2 + (d+ 1)λ+ d− γf(1)e−djτ (λ+ 1) e−λτ

=(λ+ 1)(λ+ d− γf(1)e−djτe−λτ ) = 0.
(6)

Theorem 3.1 (Stability of P1).

(1) If R(τ) ≤ 1, then the interior equilibrium does not exist and P1(1, 0) is globally
asymptotically stable in Γ;

(2) If R(τ) > 1, then P1(1, 0) is unstable.
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Proof. 1) Let c := γ e−djτf(1) ≤ d. Then

dy

dt
= γe−djτf(x(t))y(t− τ)− dy(t)

≤ γe−djτf(1)y(t− τ)− dy(t) (7)

= cy(t− τ)− dy(t).

Consider the Lyapunov function

V (y(t)) =
1

2
y2(t) +

c

2

∫ t

t−τ
y2(s) ds.

We have V (0) = 0, V (y(t)) ≥ 0, and

dV (y(t))

dt
=y(t) y′(t) +

c

2
(y2(t)− y2(t− τ))

≤cy(t)y(t− τ)− dy2(t) +
c

2
(y2(t)− y2(t− τ))

≤ c
2

(
y2(t) + y2(t− τ)

)
− dy2(t) +

c

2
(y2(t)− y2(t− τ))

=(c− d) y2(t) ≤ 0.

Using (7), the equality is attained only if x(t) = 1 and y(t) = 0. The maximal
invariant set where V ′(y(t)) = 0 is the singleton {P1(1, 0)}, and thus (1, 0) is globally
attractive by LaSalle’s Invariance Principle [3, 7].

2) If R(τ) > 1, then γ e−djτf(1) > d. Let α(λ) = λ+ d− γf(1)e−djτ−λτ . Then

α(0) = d− γf(1)e−djτ < 0, α(+∞) = +∞ > 0.

So there exists λ0 > 0 such that α(λ0) = 0, and λ0 > 0 is a characteristic root.
Therefore P1 is unstable. �

In ecological perspective, Theorem 3.1 implies that if the maturation delay of
juvenile predators is so large that the recruitment rate to adulthood is smaller than
its death rate, predators will go extinct.

4. Stability and bifurcation of the coexistence equilibrium P2. For P2 =
(x∗, y∗) to exists, it is necessary and sufficient that γf(1) > d and

τ < τm :=
1

dj
log

γf(1)

d
.

Let x = x∗ + u, y = y∗ + v and |u|, |v| << 1. The linearized system at P2 is

u′(t) =(1− 2x∗ − y∗f ′(x∗))u(t)− f(x∗)v(t),

v′(t) =γ e−djτy∗f ′(x∗)u(t− τ) + γ e−djτf(x∗)v(t− τ)− dv(t),
(8)

whose characteristic equation is

D(λ, τ) = λ2 + a1λ+ a0 + (b1λ+ b0) e−λτ

=: P (λ, τ) +Q(λ, τ) e−λτ = 0,
(9)

with

a1 =d+ y∗f ′ (x∗) + 2x∗ − 1,

a0 =d(a1 − d),

b1 =− d,
b0 =− d(2x∗ − 1).
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We investigate possible stability switches as τ increases from zero to τm. When
τ = 0, the characteristic equation can be simplified as

λ2 +H(0)λ+ γ y∗f(x∗)f ′(x∗) = 0, (10)

where

H(τ) = 2x∗ + y∗f ′(x∗)− 1.

Here we used that fact that when τ = 0, γ f(x∗) = d.
Notice that γ y∗f(x∗)f ′(x∗) > 0. If H(0) < 0, the two solutions of (10) have

positive real parts, thus P2 is unstable; if H(0) > 0, the two solutions both have
negative real parts, and P2 is stable.

For τ > 0, suppose D(λ, τ) = 0 has purely imaginary solutions of the form λ = iω
(ω > 0). Noticing that |e−iωτ | = 1, we have from (9) that |P (iω, τ)|2−|Q(iω, τ)|2 =
0, and thus

F (ω, τ) := ω4 + (a1 − d)2ω2 + d2y∗f ′(x∗)J(τ) = 0, (11)

where

J(τ) = y∗f ′(x∗) + 4x∗ − 2.

Let

I− = {τ ∈ (0, τm) : J(τ) < 0}, I+ = {τ ∈ (0, τm) : J(τ) ≥ 0}.
If I− = ∅, namely, J(τ) ≥ 0,∀τ ∈ (0, τm), then F (ω, τ) has no positive root for
0 < τ < τm. Therefore, no characteristic root will cross the imaginary axis, and
thus no bifurcation or stability switch occurs. Indeed, one can verify that there
is no zero characteristic root in (9) as a0 + b0 6= 0. Thus even at τ value where
J(τ) = 0, there is no bifurcation or stability switch. Since 2H(τ) = J(τ)+y∗f ′(x∗),
which implies H(0) = y∗(0)f ′(x∗(0)) > 0, P2 is stable when τ = 0, thus stable for
0 ≤ τ < τm.

If I− 6= ∅, then F (ω, τ) has a unique positive solution for τ ∈ I−. Rewrite the
characteristic equation (9) as

eiω(τ)τ = −Q(iω(τ), τ)

P (iω(τ), τ)
. (12)

Define

θ(τ) = arg{−Q(iω(τ), τ)

P (iω(τ), τ)
}. (13)

Note that θ(τ) is not necessarily unique or continuous. On each interval Ik− of I−, by

restricting θ(τ) to the principal branch, there exists a τ0 ∈ Ik− such that θ(τ0) > 0,
and θ(τ) is unique, continuous and differentiable by the implicit function theorem.
Define

Sn(τ) := τ − θ(τ) + 2nπ

ω(τ)
, n ∈ N0. (14)

Then zeros of Sn(τ) are solutions of D(iω, τ) = 0. Furthermore, according to [1],
we have

sign

{
dReλ

dτ

∣∣∣∣
λ=iω(τ∗)

}
= sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
, (15)

since ω is the only positive root and F ′ω(ω, τ) > 0.
In the remaining part of the paper, we study model (2) with Holling Type I and

Type II functional responses mainly for stability switches and Hopf bifurcations
about the coexistence equilibrium P2 with more details.
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5. Holling Type I functional response.

5.1. Stability at P2 and global Hopf bifurcation. Assume that f(x) = x.
Then the coexistence equilibrium P2(x∗, y∗) is

x∗ =
1

R(τ)
, y∗ = 1− 1

R(τ)
,

where

R0 = γ/d, R(τ) = R0e
−djτ .

If R0 > 1, τm =
1

dj
logR0. The corresponding characteristic equation is

D(λ, τ) = P (λ, τ) +Q(λ, τ)e−λτ

= λ2 +

(
d+

1

R(τ)

)
λ+

d

R(τ)
+

(
−dλ+ d− 2d

R(τ)

)
e−λτ .

(16)

F (ω, τ) = ω4 +
1

R(τ)2
ω2 − d2

R(τ)2
(R(τ)− 1)(R(τ)− 3),

H(0) =
1

R0
, J(τ) =

3

R(τ)
− 1.

For τ = 0, equilibrium P2 is locally asymptotically stable whenever it exists since
H(0) > 0. For τ > 0, similar to the discussion on J(τ) in the preceding section, we
define

I− ={τ ∈ (0, τm) : J(τ) < 0} = (0, τc),

I+ ={τ ∈ (0, τm) : J(τ) ≥ 0} = [τc, τm),
(17)

where τc =
1

dj
log

R0

3
is the unique root of J(τ).

Theorem 5.1. If R0 ≤ 3, then P2 is locally asymptotically stable wherever it exists
for τ ∈ [0, τm).

Proof. Since R(τ) = R0e
−djτ < 3, τ > 0, we have I− = ∅, I+ = [0, τm), and

stability does not change in I+. Notice that P2 is stable when τ = 0, we know that
P2 is stable for τ ∈ [0, τm). �

5.2. Global Hopf branches and multiple stable periodic solutions. From
bifurcation theories [1, 3], as τ increases through τn1 , a pair of characteristic roots
cross the imaginary axis to the right and Hopf bifurcation occurs. When τ further
increases through τn2 , a pair of characteristic roots cross the imaginary axis to the
left and the Hopf bifurcation terminates. We use DDE-BIFTOOL to numerically
explore the global Hopf branches at τn1 and τn2 . The original parameter values used
for simulations are

r = 1, K = 50, β = 0.08, γ = 0.2, d = 0.2, dj = 0.002. (18)

The corresponding parameters after nondimensionalization are

γ = 0.8, d = 0.2, dj = 0.002. (19)

Graphs for Sn(τ) are numerically computed and are shown in Figure 1.
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Figure 1. Graph of Sn(τ) in the Type I model. We see that only
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Figure 2. Global Hopf branches of the Type I model.

Furthermore, we have

on S0 : τ01 = 4.24465, τ02 = 142.973;

on S1 : τ11 = 33.9897, τ12 = 135.109;

on S2 : τ21 = 88.2029, τ22 = 100.837.

(20)
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Figure 3. Two stable periodic solutions for τ = 70, which lies in
the overlap of the stable intervals in Figure 2.

Using DDE-BIFTOOL, we computed the global Hopf bifurcation branches as
shown in Figure 2.

From Figure 2, we see that global Hopf branches are all bounded and each of
them connects a pair of Hopf bifurcation points τn1 , τ

n
2 . These graphs look similar

to those of Sn but they represent different objects. The blue solid curves represent
stable Hopf branches, while the red dashed curves represent unstable Hopf branches.
We observe that there is an overlap of stable parts on the first two branches, which
indicates that two stable limit cycles coexist for the same set of parameters (see an
example in Figure 3). In Figure 4, we demonstrate that the largest moduli of the
Floquet multipliers for the two periodic solutions in the overlap region are less than
one, and the cyclic period of each branch is always an increasing function of the
time delay.

6. Holling Type II functional response.

6.1. Stability at P2 and global Hopf bifurcation. Assume that f(x) =
x

D + x
.

Then the coexistence equilibrium P2(x∗, y∗) is

x∗ =
D

S − 1
, y∗ =

SD(S −D − 1)

(S − 1)2
,

where

S =
γ

d
e−djτ ,

and

R0 =
γ

d
f(1) =

γ

d(1 +D)
, R(τ) = R0e

−djτ =
S

1 +D
.
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Figure 4. Left: periods of periodic solutions on the overlap stable
region. Right: norm of the nontrivial Floquet multipliers with
largest norm on the overlap stable region.

Equilibrium P2 exists if R(τ) > 1 or equivalently if S > 1 + D. If R0 > 1,

τm =
1

dj
logR0. We always assume R0 > 1 (which also implies γ > d) and we will

analyze the stability of P2. Other quantities became

H(0) =
d(d(1 +D) + γ(D − 1))

γ(γ − d)
,

J(τ) =
d2e2djτ (1 +D) + 2γdDedjτ − γ2

γ(γ − dedjτ)

=

(
dedjτ

γ

)2
(1 +D) + 3D

(
dedjτ

γ

)
− 1

1−
(
dedjτ

γ

)
=

(
1
S

)2
(1 +D) + 3D

(
1
S

)
− 1

1−
(
1
S

) .

Stability of P2 when τ = 0 depends on sgn{H(0)}. We have

H(0) > 0

⇔ d(1 +D) + γ(D − 1) > 0

⇔ D >
γ − d
γ + d

=: D0,

and

H(0) < 0⇐⇒ D <
γ − d
γ + d

= D0.
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Therefore, if D > D0, P2 is locally asymptotically stable when τ = 0, while if
D < D0, P2 is unstable.

For τ > 0, we need to determine sgn{J(τ)}. Using S = γ
d e
−djτ for τ ∈ (0, τm),

we get

(1 +D) < S <
γ

d
⇐⇒ d

γ
<

1

S
<

1

1 +D
.

Let
h(s) = (1 +D)s2 + 3Ds− 1.

Then sgn{J(τ)} = sgn{h(1/S)}. It can be verified that h(s) has exactly one positive
solution, so does J(τ) since 1/S is a monotone function of τ . A sufficient and
necessary condition for the positive root to be in ( dγ ,

1
1+D ) is

0 > h(d/γ)⇐⇒ D <
γ2 − d2

d2 + 3dγ
=: D1,

and

0 < h

(
1

1 +D

)
⇐⇒ d

γ
<

1

1 +D
.

The second condition is always satisfied since R0 =
γ

d(1 +D)
> 1. Hence

J(τ) has a positive root τc in (0, τm) ⇐⇒ D < D1,

where

τc =
1

dj
log

γ

d

−3D +
√

9D2 + 4(1 +D)

2(1 +D)
.

Notice that D0 < D1 and we have the following theorem.

Theorem 6.1.

(i) If D < D0, then P2 is unstable when τ = 0, I− = (0, τc) 6= ∅, ω(τ) and Sn(τ)
is unique and well defined in I−.

(ii) If D0 < D < D1, then P2 is stable when τ = 0, I− = (0, τc) 6= ∅, ω(τ) and
Sn(τ) is unique and well defined in I−.

(iii) If D > D1, then P2 is stable when τ = 0 and I− = ∅. Thus P2 is stable for
all τ ∈ (0, τm).

6.2. Global Hopf branches and multiple stable periodic solutions. Con-
sider the following set of parameter values in original scale:

r = 1, K = 50, D = 50, β = 4, γ = 0.2, d = 0.2, dj = 0.001. (21)

The corresponding parameters after nondimensionalization are

D = 1, γ = 0.8, d = 0.2, dj = 0.001. (22)

Then we have τm = 693.15, τc = 116.10, and H(0) > 0. This is case (ii) in
Theorem 6.1. Graphs of Sn(τ) are shown in Figure 5.

Then we have
on S0 : τ01 = 4.12, τ02 = 115.08;

on S1 : τ11 = 40.83, τ12 = 104.37.
(23)

Global Hopf branches were computed using DDE-BIFTOOL and are shown in
Figure 6. Note that the small piece of red dashed curve attached on the upper
branch is real (not a numerical error). Further details need to be examined.



GLOBAL HOPF BRANCHES OF A DELAYED MODEL 757

20 40 60 80 100
Τ

-150

-100

-50

50

Sn

Plot of SnHΤL

S2

S1

S0

Figure 5. Graph of Sn(τ) in the Type II model. We see that only
S0, S1 have zeros.

0 20 40 60 80 100 120
0

5

10

15

20

25

time delay, τ

m
a
x
(x

)−
m

in
(x

)

 

 

stable

unstable

Figure 6. Global Hopf branches of the Type II model.

We have observed similar behaviors of the global Hopf branches as in the pre-
ceding subsection, when the function response was of Holling Type I. The overlap
of stability regions (blue solid portions) shows coexistence of two stable limit cycles
in the Holling Type II model (see Figure 7 as an example).

In Figure 8, we illustrate existence of torus bifurcations on the lower Hopf branch
of Figure 6.
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pair of Floquet mutipliers at the first secondary bifurcation point
move inside the unit circle; Right: A pair of Floquet mutipliers
at the second secondary bifurcation point move outside the unit
circle.

On both Hopf branches, the cyclic period is an increasing function of the time
delay (see the left panel of Figure 9). The right panel shows that, on the interesting
overlap stable region, the largest norm of the nontrivial Floquet multipliers for each
branch is less than one.

7. Discussion. Our study shows that for a delayed predator-prey model, Hopf bi-
furcation values of the delay generate global Hopf branches in pairs. When multiple
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Figure 9. Left: periods of periodic solutions on the overlap stable
region. Right: the largest norm of the nontrivial Floquet multipli-
ers for the overlap stable region.

Hopf branches exist, the overlap can produce coexistence of two or possibly more
stable limit cycles.

Extending periodic solutions around Hopf bifurcation values is a feasible and
useful method to find periodic solutions, especially for weakly stable or even instable
ones, which are generally hard to observe via DDE23.

Further mathematical theorems need to be developed in depth for the illustration
of the relationship between stability switch points and Hopf bifurcations. Stabil-
ity of global Hopf branches needs to be analytically verified. We propose these
intriguing mathematical questions as open problems.

If f is a Holling Type III response function, we can still analyze the model in the
same way. The difficulty is that the function J(τ) may have multiple zeros and thus
multiple Sn(τ) sequences in different τ intervals, which leads to multiple replicates
of Figure 5 and Figure 6 on separate τ intervals.

Biologically dj < d is possible though not general. If predators are on top of a
food chain such as human being, juveniles fed and protected by adults are of lower
risk, since adults who are out to hunt may be attacked by competing species or may
face the risk of being killed by the group defence of their prey. In this case, the
juvenile death rate dj can be much smaller than the adult death rate d.

Numerically it is very easy to encounter the failure of DDE-BIFTOOL when
dj > d and S0(τ), S1(τ) have intersections with the τ -axis. We do observe multiple
Sn(τ), n = 0, 1, 2, · · · , intersecting with the τ -axis similar to what we see in Figure
1 and Figure 5, for example, when

r = 3.92, K = 18, β = 850, γ = 0.006, d = 0.1, dj = 0.28,
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in the model with Type I response function. However, when DDE-BIFTOOL is
applied, the first Hopf branch is extended incorrectly. Periodic solutions on the
branch given by DDE-BIFTOOL are not really periodic solutions for our model,
which can be checked by the Floquet multipliers or DDE23 in MATLAB. As for the
second Hopf branches, DDE-BIFTOOL even fails to find periodic solutions around
where Hopf bifurcation occurs, whose existence is theoretically proven. Such a
failure also happens even for some dj < d. Although no evidence could be found,
we believe that similar phenomena observed in Figure 2 and Figure 6 preserve even
for dj > d.
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