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Abstract For a two-neuron network with self-connection and time delays, we
carry out stability and bifurcation analysis. We establish that a Hopf bifurcation
occurs when the total delay passes a sequence of critical values. The stability and
direction of the local Hopf bifurcation are determined using the normal form method
and center manifold theorem. To show that periodic solutions exist away from
the bifurcation points, we establish that local Hopf branches globally extend for
arbitrarily large delays.
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1 Introduction

Research has been devoted to rigorous stability and bifurcation analysis of small
neural network models with time delays [1–6,8,10,11,15,16,18,20,21]. Shayer and
Campbell [19] studied bifurcation and multistability in the following two-neuron
network with self-connection and time delays:
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{
ẋ1(t) =−kx1(t)+β tanh(x1(t))+ a12 tanh(x2(t − τ2)),

ẋ2(t) =−kx2(t)+β tanh(x2(t))+ a21 tanh(x1(t − τ1)),
(1)

where k > 0, β , a12, a21 are all constants. Their numerical investigation shows that
the model possesses very rich dynamics. For a more general class of neural network
model {

u̇1(t) =−μ1u1(t)+ a1 f1(u1(t))+ b1g1(u2(t − τ1)),

u̇2(t) =−μ2u2(t)+ a2 f2(u2(t))+ b2g2(u1(t − τ2)),
(2)

Wei et al. [21] carried out bifurcation analysis for the case μ1 = μ2 and a1 f1 = a2 f2.
In this chapter, we carry out complete and detailed analysis on the stability, the
bifurcation, and the global existence of periodic solutions for the general two-neuron
network (2).

In Sect. 2, we investigate stability and local Hopf bifurcation as we vary the
total delay τ = τ1 + τ2, by analyzing the related characteristic equation for system
(2). We show that a sequence of Hopf bifurcations occur at the origin as the
total delay increases. In Sect. 3, we establish the direction and stability of the
first Hopf bifurcation branch using the center manifold theorem and normal form
method. Global extensions of the local Hopf branch are established in Sect. 4, where
we apply a global Hopf bifurcation theorem of Wu [22] and higher-dimensional
Bendixson–Dulac criteria for ordinary differential equations of Li and Muldowney
[14]. Numerical simulations are carried out to support our theoretical results.

2 Stability and Local Hopf Bifurcation

In this section, we investigate the effect of delay on the dynamic behaviors of the
two-neuron network model (2).

Let x1(t) = u1(t − τ2), x2(t) = u2(t), and τ = τ1 + τ2. Then system (2) becomes{
ẋ1(t) =−μ1x1(t)+ a1 f1(x1(t))+ b1g1(x2(t − τ)),
ẋ2(t) =−μ2x2(t)+ a2 f2(x2(t))+ b2g2(x1(t)).

(3)

We make the following assumptions.

(H1) fi,gi ∈C4, x fi(x)> 0, and xgi(x)> 0 for x �= 0, i = 1,2.

Under (H1), the origin (0,0) is an equilibrium of system (3). Without loss of
generality, we assume that f ′i (0) = 1 and g′i(0) = 1, i = 1,2. Then the linearization
of system (3) at the origin is{

ẏ1(t) =−μ1y1(t)+ a1y1(t)+ b1y2(t − τ),
ẏ2(t) =−μ2y2(t)+ a2y2(t)+ b2y1(t).
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Its characteristic equation is

λ 2 +[(μ1 − a1)+ (μ2 − a2)]λ +(μ1 − a1)(μ2 − a2)− b1b2e−λ τ = 0. (4)

Lemma 2.1. Suppose that there exists a τ0 > 0 such that (4) with τ0 has a pair of
purely imaginary roots ±iω0, and the root of (4)

λ (τ) = α(τ)+ iω(τ)

satisfies α(τ0) = 0 and ω(τ0) = ω0. Then α ′(τ0)> 0.

Proof. Substituting λ (τ) into (4) and differentiating with respect to τ , we have

(
dλ
dτ

)−1

=−2λ +[(μ1 − a1)+ (μ2 − a2)]

b1b2λ e−λ τ − τ
λ
.

Note that

b1b2e−λ τ = λ 2 +[(μ1 − a1)+ (μ2 − a2)]λ +(μ1 − a1)(μ2 − a2),

and λ (τ0) = iω0. We have

(
dλ (τ0)

dτ

)−1
= [(μ1−a1)+(μ2−a2)]+2iω0

[(μ1−a1)+(μ2−a2)]ω2
0−iω0[(μ1−a1)(μ2−a2)−ω2

0 ]
− i τ0

ω0
,

and thus,

Re

(
dλ (τ0)

dτ

)−1

=
ω2

0

� [(μ1 − a1)
2 +(μ2 − a2)

2 + 2ω3
0 ],

where

�= [(μ1 − a1)+ (μ2 − a2)]
2ω4

0 +ω2
0 [(μ1 − a1)(μ2 − a2)−ω2

0 ]
2.

The conclusion follows. ��
We make the following further assumption.
(H2) (μ1 + μ2)− (a1 + a2)> 0.

Lemma 2.2. Suppose that assumption (H2) is satisfied.

(i) If

|b1b2| ≤ |(μ1 − a1)(μ2 − a2)| and 0 < (μ1 − a1)(μ2 − a2) �= b1b2,

then all the roots of (4) have negative real parts for all τ ≥ 0.
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(ii) If

b1b2 > (μ1 − a1)(μ2 − a2),

then (4) has at least one root with positive real part for all τ ≥ 0. If, in addition,

b1b2 > |(μ1 − a1)(μ2 − a2)|,
then there exist a sequence values of τ , τ̄0 < τ̄1 < · · · , such that (4) has a pair
of purely imaginary roots ±iω0 when τ = τ̄ j, j = 0,1,2, . . ..

(iii) If

b1b2 <−|(μ1 − a1)(μ2 − a2)|,
then, for the same sequence τ̄0 < τ̄1 < τ̄2 < · · · as in (ii), all the roots of (4)
have negative real parts when τ ∈ [0, τ̄0); (4) has at least a pair of roots with
positive real parts when τ > τ̄0; and (4) has a pair of purely imaginary root
±iω0 when τ = τ̄ j, j = 0,1,2, . . .. Furthermore, all the roots of (4) with τ = τ̄0

have negative real parts except ±iω0.

Proof. When τ = 0, the roots of (4) are

λ1,2 =
1
2

{
− [(μ1 − a1)+ (μ2 − a2)]

±
√
[(μ1 − a1)+ (μ2 − a2)]2 − 4[(μ1 − a1)(μ2 − a2)− b1b2]

}
.

This leads to

Reλ1,2 < 0 when (μ1 − a1)(μ2 − a2)> b1b2,

and
Reλ1 > 0 and Reλ2 < 0 when (μ1 − a1)(μ2 − a2)< b1b2.

Equation (4) has a pair of purely imaginary roots iω (ω > 0) if and only if ω satisfies{
(μ1 − a1)(μ2 − a2)−ω2 = b1b2 cosωτ,
((μ1 − a1)+ (μ2 − a2))ω =−b1b2 sinωτ.

(5)

It follows from (5) that

ω4 +((μ1 − a1)
2 +(μ2 − a2)

2)ω2 +[(μ1 − a1)
2(μ2 − a2)

2 − b2
1b2

2] = 0,

and thus,

ω2 =
1
2

{
− [(μ1 − a1)

2 +(μ2 − a2)
2]

±
√
[(μ1 − a1)2 +(μ2 − a2)2]2 − 4[(μ1 − a1)2(μ2 − a2)2 − b2

1b2
2]

}
.

(6)
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Clearly, a real number ω does not exist when |(μ1 − a1)(μ2 − a2)| ≥ |b1b2|. This
shows that (4) has no root on the imaginary axis. The conclusion (i) follows.

A real number ω satisfies (6) when |(μ1 − a1)(μ2 − a2)| < |b1b2|. In this case,
define

ω0 =
1√
2

[
− [(μ1 − a1)

2 +(μ2 − a2)
2]

+
√
[(μ1 − a1)2 − (μ2 − a2)2]2 + 4b2

1b2
2]

] 1
2

(7)

and

τ̄ j =
1

ω0

[
arccos

(μ1 − a1)(μ2 − a2)−ω2
0

b1b2
+ 2 jπ

]
, j = 0,1,2, . . . . (8)

Then ±iω0 is a pair of purely imaginary roots of (4) with τ = τ̄ j. Since (4) with
τ = 0 has a root with positive real part when b1b2 > (μ1 −a1)(μ2 −a2), conclusion
(ii) follows from Lemma 2.1.

Similarly, since the roots of (4) with τ = 0 have negative real parts when b1b2 <
(μ1 − a1)(μ2 − a2), and τ̄0 is the first value of τ ≥ 0 such that (4) has a root on the
imaginary axis, we know that conclusion (iii) follows from Lemma 2.1. ��

Applying Lemmas 2.1, 2.2, and a result in Hale [12, Theorem 1.1, p. 147] , we
have the following result.

Theorem 2.3. Suppose that assumptions (H1) and (H2) are satisfied.

(i) If

|b1b2| ≤ |(μ1 − a1)(μ2 − a2)| and 0 < (μ1 − a1)(μ2 − a2) �= b1b2,

then the zero solution of system (3) is absolutely stable, that is, the zero solution
is asymptotically stable for all τ ≥ 0.

(ii) If

b1b2 > (μ1 − a1)(μ2 − a2),

then the zero solution is unstable for all τ ≥ 0. If

b1b2 > |(μ1 − a1)(μ2 − a2)|,

then there exist a sequence of values of τ , τ̄0 < τ̄1 < τ̄2 < · · · defined in
(8), such that system (3) undergoes a Hopf bifurcation at the origin when
τ = τ̄ j, j = 0,1,2, . . . , where τ̄ j is defined in (8).

(iii) If

b1b2 <−|(μ1 − a1)(μ2 − a2)|,
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Fig. 1 Illustration of bifurcation sets. The horizontal axis is for values of x = (μ1 −a1)(μ2 −a2),
and vertical axis is for y = b1b2. The lines b1b2 =±(μ1 −a1)(μ2 −a2) divide the plane into four
regions, D1, D2, D3, and D4. D1 is an absolutely stable region, D2 is a conditionally stable region,
and D3 ∪D4 is an unstable region

then, for the same sequence, τ̄0 < τ̄1 < τ̄2 < · · · defined in (8), the zero solution
of system (3) is asymptotically stable when τ ∈ [0, τ̄0) and unstable when τ >
τ̄0, and system (3) undergoes a Hopf bifurcation at the origin when τ = τ̄ j , j =
0,1,2, . . ..

The conclusions of Theorem 2.3 are illustrated in Fig. 1.

3 Direction and Stability of the Local Hopf Bifurcation at τ̄0

In this section, we derive explicit formula for determining the direction and stability
of the Hopf bifurcation at the first critical value τ̄0, using the normal form and center
manifold theory as presented in [13]. From Lemmas 2.1 and 2.2 we know that, if
assumption (H2) and condition

b1b2 <−|(μ1 − a1)(μ2 − a2)|

are satisfied, then, at τ = τ̄0, all the roots of (4) except ±iω0 have negative real parts,
and the transversality condition is satisfied.

We introduce the following change of variables:

y1(t) = x1(τt) and y2(t) = x2(τt).
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Then system (3) becomes{
ẏ1(t) =−μ1τy1(t)+ a1τ f1(y1(t))+ b1τg1(y2(t − 1)),

ẏ2(t) =−μ2τy2(t)+ a2τ f2(y2(t))+ b2τg2(y1(t)).
(9)

The characteristic equation associated with the linearization of system (9) at (0,0) is

v2 + τ[(μ1 − a1)+ (μ2 − a2)]v+ τ2(μ1 − a1)(μ2 − a2)+ τ2b1b2e−v = 0. (10)

Comparing (10) and (4), we see that v = λ τ. All the roots of (10) at τ = τ̄0 except
±iτ̄0ω0 have negative real parts, and the root of (10)

v(τ) = β (τ)+ iγ(τ)

with β (τ̄0) = 0 and γ(τ̄0) = τ̄0ω0 satisfies

β ′(τ̄0) = τ̄0α ′(τ̄0).

For convenience of notation, we drop the bar in τ̄0 and let τ = τ0 + ν, ν ∈ R.
Then ν = 0 is a Hopf bifurcation value for system (9). Choose the phase space as
C =C([−1,0],R2). Under the assumption (H1), system (9) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1(t) =−(τ0 +ν)(μ1 − a1)y1(t)

+ (τ0 +ν)a1

[ f ′′1 (0)
2

y2
1(t)+

f ′′′1 (0)
6

y3
1(t)+ · · ·

]

+(τ0 +ν)b1

[
y2(t − 1)+

g′′1(0)
2

y2
2(t − 1)+

g′′′1 (0)
6

y3
2(t − 1)+ · · ·

]
,

ẏ2(t) =−(τ0 +ν)(μ2 − a2)y2(t)

+ (τ0 +ν)a2

[ f ′′2 (0)
2

y2
2(t)+

f ′′′2 (0)
6

y3
1(t)+ · · ·

]

+(τ0 +ν)b2

[
y1(t)+

g′′2(0)
2

y2
1(t)+

g′′′2 (0)
6

y3
1(t)+ · · ·

]
.

(11)

For ϕ ∈C, let

Lνϕ =−B0ϕ(0)+B1ϕ(−1),

where

B0 =

[
(τ0 +ν)(μ1 − a1) 0

−(τ0 +ν)b2 (τ0 +ν)(μ1 − a1)

]
,

B1 =

[
0 −(τ0 +ν)b1

0 0

]
,
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and

F(ν,φ) =
τ0 +ν

2

[
a1 f ′′1 (0)ϕ2

1 (0)+ b1g′′1(0)ϕ2
2 (−1)

a2 f ′′2 (0)ϕ
2
2 (0)+ b2g′′2(0)ϕ

2
1 (−1)

]

+
τ0 +ν

6

[
a1 f ′′′1 (0)ϕ3

1 (0)+ b1g′′′1 (0)ϕ3
2 (−1)

a2 f ′′′2 (0)ϕ3
2 (0)+ b2g′′′2 (0)ϕ3

1 (−1)

]
+O(|ϕ |4).

By the Riesz representation theorem, there exists matrix η(θ ,ν), whose compo-
nents are functions of bounded variation in θ ∈ [−1,0], such that

Lν ϕ =

∫ 0

−1
dη(θ ,ν)ϕ(θ ), for ϕ ∈C.

In fact, we can show

η(θ ,ν) =
{−B0, θ = 0,
−B1δ (θ + 1), θ ∈ [−1,0).

For ϕ ∈C1([−1,0],R2), define

A(ν)ϕ =

⎧⎪⎪⎨
⎪⎪⎩

dϕ(θ )
dθ

, θ ∈ [−1,0),∫ 0

−1
dη(t,ν)ϕ(t), θ = 0,

and

Rϕ = η(θ ,ν) =
{

0, θ ∈ [−1,0),
F(ν,ϕ), θ = 0.

We can rewrite (11) in the following form:

ẏt = A(ν)yt +R(ν)yt , (12)

where y = (y1,y2)
T , yt = y(t +θ ) for θ ∈ [−1,0]. For ψ ∈C1([0,1],R2), we define

A∗ψ =

⎧⎪⎪⎨
⎪⎪⎩

−dψ(s)
ds

, s ∈ (0,1],∫ 0

−1
dηT (t,0)ψ(−t), s = 0.

For ϕ ∈C[−1,0] and ψ ∈ [0,1], consider the bilinear form

〈ψ ,ϕ〉 = ψ̄(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ −θ )dη(θ )ϕ(ξ )dξ ,
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where η(θ ) = η(θ ,0). Then A(0) and A∗ are adjoint operators. Since ±iτ0ω0 are
eigenvalues of A(0), they are also eigenvalues of A∗.

By direct computation, we obtain that

q(θ ) =

[
1

μ1−a1+iω0
b1

eiτ0ω0

]
eiτ0ω0θ

is the eigenvector of A(0) for iτ0ω0, and

q∗(s) = D

[
1

b1
μ2−a2−iω0

eiτ0ω0

]
eiτ0ω0s

is the eigenvector of A∗ for −iτ0ω0, where

D =
[
1+

μ1 − a1 − iω0

μ2 − a2 − iω0
+ τ0(μ1 − a1 − iω0)

]−1
.

Moreover, 〈q∗(s),q(θ )〉 = 1, 〈q∗, q̄〉 = 0.
Using the same notations as in [13], we first compute the center manifold C0 at

ν = 0. Let yt be the solution of system (11) with ν = 0. Define

z(t) = 〈q∗,yt〉 and W (t,θ ) = yt(θ )− z(t)q(θ )− z̄(t)q̄(θ ).

Let z and z̄ be the local coordinates for the center manifold C0 in the direction of
q∗and q̄∗. Then, on C0, we have W (t,θ ) = W (z, z̄,θ ), where W (z, z̄,θ ) = W20

z2

2 +

W11zz̄+W02
z̄2

2 + · · · .
Note that W is real if yt is real. We only consider real-valued solutions. For

solution yt ∈ C0 of system (11), since ν = 0,

ż(t) = iτ0ω0z+ 〈q∗(s),F(W + 2Re{z(t)q(0)})〉
= iτ0ω0z+ q̄∗(0)F(W (z, z̄,0)+ 2Re{zq(0)})

de f
= iτ0ω0z+ q̄∗(0)F0(z, z̄).

We rewrite this as

ż(t) = iτ0ω0z+ g(z, z̄), (13)

where

g(z, z̄) = q̄∗(0)F(W (z, z̄,0)+ 2Re{z(t)q(0)})

= g20 +
z2

2
+ g11zz̄+ g02

z̄2

2
+ g21

z2z̄
2

+ · · · .
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From (12) and (13) we have

Ẇ = ẏt − żq− ˙̄zq̄ =

{
AW − 2Re{q̄∗(0)F0q(θ )}, θ ∈ [−1,0),

AW − 2Re{q̄∗(0)F0q(θ )}+F0, θ = 0.

de f
= AW +H(z, z̄,θ ),

where

H(z, z̄,θ ) = H20
z2

2
+H11zz̄+H02

z̄2

2
+ · · · . (14)

Expanding the above series and comparing the coefficients, we get

(A− 2iτ0ω0I)W20 =−H20(θ ), AW11(θ ) =−H11(θ ), . . . . (15)

Note

y1(t) =W (1)(0)+ z+ z̄,

y2(t) =W (2)(0)+
μ1 − a1 + iω0

b1
eiτ0ω0z+

μ1 − a1 − iω0

b1
e−iτ0ω0 z̄,

y2(t − 1) =W (2)(−1)+
μ1 − a1 + iω0

b1
z+

μ1 − a1 − iω0

b1
z̄,

where

W (1)(0) =W (1)
20 (0)

z2

2
+W (1)

11 (0)zz̄+W (1)
02 (0)

z̄2

2
+ · · · ,

W (2)(0) =W (2)
20 (0)

z2

2
+W (2)

11 (0)zz̄+W (2)
02 (0)

z̄2

2
+ · · · ,

W (2)(−1) =W (2)
20 (−1)

z2

2
+W (2)

11 (−1)zz̄+W (2)
02 (−1)

z̄2

2
+ · · · ,

and

F0 =
τ0

2

[
a1 f ′′1 (0)y

2
1(t)+ b1g′′1(0)y

2
2(t − 1)

a2 f ′′2 (0)y
2
2(t)+ b2g′′2(0)y

2
1(t)

]

+
τ0

6

[
a1 f ′′′1 (0)y3

1(t)+ b1g′′′1 (0)y
3
2(t − 1)

a2 f ′′′2 (0)y3
2(t)+ b2g′′′2 (0)y

3
1(t),

]
+ · · · .

Denote

M1 =
μ1 − a1 + iω0

b1
and M2 =

b1

μ1 − a2 + iω0
.
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Then

q∗(0) = D

[
1

M̄2eiτ0ω0

]
,

y2(t) =W 2(0)+M1eiτ0ω0z+ M̄1e−iτ0ω0 z̄,

y2(t − 1) =W 2(−1)+M1z+ M̄1z̄,

and

F0 = τ0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
2 f ′′1 (0)(W

(1)(0)+ z+ z̄)2 + b1
2 g′′1(0)(W

(2)(−1)+M1z+ M̄1z̄)2

+ a1
6 f ′′′1 (0)(W (1)(0)+ z+ z̄)3 + b1

6 g′′′1 (0)(W
(2)(−1)+M1z+ M̄1z̄)3

a2
2 f ′′2 (0)(W

(2)(0)+M1eiτ0ω0z+ M̄1e−iτ0ω0 z̄)2

+ b1
2 g′′2(0)(W

(1)(0)+ z+ z̄)2

+ a2
6 f ′′′2 (0)(W (2)(0)+M1eiτ0ω0z+ M̄1e−iτ0ω0 z̄)3

+ b2
6 g′′′2 (0)(W

(1)(0)+ z+ z̄)3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · · · · ·

= τ0

[
a1 f ′′1 (0)+ b1g′′1(0)M

2
1

a2 f ′′2 (0)M
2
1 e2iτ0ω0 + b2g′′2(0)

]
z2

2
+ τ0

[
a1 f ′′1 (0)+ b1g′′1(0)|M1|2

a2 f ′′2 (0)|M1|2 + b2g′′2(0)

]
zz̄

+ τ0

[
a1 f ′′1 (0)+ b1g′′1(0)M̄

2
1

a2 f ′′2 (0)M̄
2
1 e−2iτ0ω0 + b2g′′2(0)

]
z̄2

2

+ τ0

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 f ′′1 (0)(2W (1)
11 (0)+W (1)

20 (0))+ b1g′′1(0)(2W (2)
11 (−1)M1

+W (2)
20 (−1)M̄1)+ a1 f ′′′1 (0)+ b1g′′′1 (0)|M1|2M1

a2 f ′′2 (0)(2W (2)
11 (0)M1eiτ0ω0 +W (2)

20 (0)M̄1e−iτ0ω0)+ b2g′′2(0)(2W (1)
11 (0)

+W (1)
20 (0))+ a2 f ′′′2 (0)|M1|2M1eiτ0ω0 + b2g′′′2 (0)

⎤
⎥⎥⎥⎥⎥⎥⎦
z2z̄
2

+ · · · · · · .

Here

g(z, z̄) = q̄∗(0)F0 = D̄(1,M2e−iτ0ω0)F0

= D̄τ0

[
(a1 f ′′1 (0)+b1g′′1(0)M

2
1 +a2 f ′′2 (0)M

2
1 M2eiτ0ω0 +b2M2g′′2(0)e

−iτ0ω0)
z2

2

+(a1 f ′′1 (0)+b1g′′1(0)|M1|2 +a2 f ′′2 (0)|M1|2M2e−iτ0ω0 +b2M2g′′2(0)e
−iτ0ω0)zz̄

+(a1 f ′′1 (0)+b1g′′1(0)M̄
2
1 +a2 f ′′2 (0)M̄

2
1 M2e−3iτ0ω0 +b2M2g′′2(0)e

−iτ0ω0)
z̄2

2
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+(a1 f ′′1 (0)(2W (1)
11 (0)+W (1)

20 (0))+b1g′′1(0)(2W (2)
11 (−1)M1 +W (2)

20 (−1)M̄1)

+a1 f ′′′1 (0)+b1g′′′1 (0)|M1|2M1 +a2 f ′′2 (0)M2(2W (2)
11 (0)M1 +W (2)

20 (0)M̄1e−2iτ0ω0)

+b2g′′2(0)M2e−iτ0ω0(2W (1)
11 (0)+W (1)

20 (0))+a2 f ′′′2 (0)|M1|2M1M2

+b2g′′′2 (0)M2e−iτ0ω0)
z2z̄
2

]
+ · · · · · · .

This gives that

g20 = τ0D̄[a1 f ′′1 (0)+ b1g′′1(0)M
2
1 + a2 f ′′2 (0)M

2
1 M2eiτ0ω0 + b2M2g′′2(0)e

−iτ0ω0 ];

g11 = τ0D̄[a1 f ′′1 (0)+b1g′′1(0)|M1|2+a2 f ′′2 (0)|M1|2M2e−iτ0ω0 +b2M2g′′2(0)e
−iτ0ω0 ];

g02 = τ0D̄[a1 f ′′1 (0)+ b1g′′1(0)M̄
2
1 + a2 f ′′2 (0)M̄

2
1 M2e−3iτ0ω0 + b2M2g′′2(0)e

−iτ0ω0 ];

g21 = τ0D̄[a1 f ′′1 (0)(2W (1)
11 (0)+W (1)

20 (0))+ b1g′′1(0)(2W (2)
11 (−1)M1 +W (2)

20 (−1)M̄1)

+a1 f ′′′1 (0)+ b1g′′′1 (0)|M1|2M1

+a2 f ′′2 (0)M2(2W (2)
11 (0)M1 +W (2)

20 (0)M̄1e−2iτ0ω0)

+b2g′′2(0)M2e−iτ0ω0(2W (1)
11 (0)+W (1)

20 (0))+ a2 f ′′′2 (0)|M1|2M1M2

+b2g′′′2 (0)M2e−iτ0ω0 ]. (16)

We need to compute W20(θ ) and W11(θ ) in g21. Comparing the coefficients of

H(z, z̄,θ ) = −2Re{q̄∗(0)F0q(θ )}=−g(z, z̄)q(θ )− ḡ(z, z̄)q̄(θ )

= −
(

g20
z2

2
+ g11zz̄+ g02

z̄2

2
+ · · ·

)
q(θ )

−
(

ḡ20
z̄
2
+ ḡ11zz̄+ ḡ02

z2

2
+ · · ·

)
q̄(θ ),

with those in (14), we obtain

H20θ =−g20q(θ )− ḡ02q̄(θ ) and H11θ =−g11q(θ )− ḡ11q̄(θ ).

It follows from (15) that

Ẇ20(θ ) = 2iτ0ω0W20(θ )− g20q(0)eiτ0ω0θ − g02q(0)e−iτ0ω0θ .

Solving for W20(θ ) we obtain

W20(θ ) =− ig20

τ0ω0
q(0)eiτ0ω0θ +

ig02

3τ0ω0
q(0)e−iτ0ω0θ +E1e2iτ0ω0θ . (17)
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Similarly,

W11(θ ) =− ig11

τ0ω0
q(0)eiτ0ω0θ +

ig11

τ0ω0
q(0)e−iτ0ω0θ +E2,

where E1 and E2 are both two-dimensional constant vectors and can be determined
by setting θ = 0 in H. In fact, since

H(z, z̄,0) =−2Re{q̄∗(0)F0q(0)}+F0,

we have

H20(0) =−g20q(0)− g02q(0)+ τ0

[
a1 f ′′1 (0)+ b1g′′1(0)M

2
1

a2 f ′′2 (0)M
2
1 e2iτ0ω0 + b2g′′2(0)

]
(18)

and

H11(0) =−g11q(0)− g11q(0)+ τ0

[
a1 f ′′1 (0)+ b1g′′1(0)|M1|2
a2 f ′′2 (0)M

2
1 + b2g′′2(0)

]
.

From (15) and the definition of A, we have

τ0

[−μ1 + a1 0
b1 −μ2 + a2

]
W20(0)+ τ0

[
0 b1

0 0

]
W20(−1) = 2iτ0ω0W20(0)−H20(0),

(19)
and

τ0

[−μ1 + a1 0
b1 −μ2 + a2

]
W11(0)+ τ0

[
0 b1

0 0

]
W11(−1) =−H11(0).

Substituting (17) into (19) and noticing that

τ0

[−μ1 + a1 − iω0 b1e−iτ0ω0

b2 −μ2 + a2 − iω0

]
q(0) = 0,

we have

τ0

[−μ1 + a1 − 2iω0 b1e−2iτ0ω0

b2 −μ2 + a2 − 2iω0

]
E1 =−g20q(0)− ḡ20q̄(0)−H20(0).

Substituting (18) into this relation we get

[−μ1 + a1 − 2iω0 b1e−2iτ0ω0

b2 −μ2 + a2 − 2iω0

]
E1 =−

[
a1 f ′′1 (0)+ b1g′′1(0)M

2
1

a2 f ′′2 (0)M
2
1 e2iτ0ω0 + b2g′′2(0)

]
.

Solving the equation for E1 = (E(1)
1 ,E(2)

2 ) we get E1 = (
�(1)

1
�1

,
�(2)

1
�1

), where
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�1 = (μ1 − a1 + 2iω0)(μ2 − a2 + 2iω0)− b1b2e−2iτ0ω0 ,

�(1)
1 = (μ2 − a2 + 2iω0)(a1 f ′′1 (0)+ b1g′′1(0)M

2
1 )

+b1e−2iτ0ω0(a2 f ′′2 (0)M
2
1 e2iτ0ω0 + b2g′′2(0)),

�(2)
1 = (μ1 − a1 + 2iω0)(a2 f ′′2 (0)M

2
1 e2iτ0ω0 + b2g′′2(0))

+b2(a1 f ′′1 (0)+ b1g′′1(0)M
2
1).

Similarly, we can get[−μ1 + a1 b1

b2 −μ2 + a2

]
E2 =−

[
a1 f ′′1 (0)+ b1g′′1(0)|M1|2
a2 f ′′2 (0)|M1|2 + b2g′′2(0)

]
,

and thus E2 =
(�(1)

2
�2

,
�(2)

2
�2

)
, where

�2 = (μ1 − a1)(μ2 − a2)− b1b2,

�(1)
2 = (μ2 − a2)(a1 f ′′1 (0)+ b1g′′1(0)|M1|2)

+ b1(a2 f ′′2 (0)|M1|2 + b2g′′2(0)),

�(2)
2 = (μ1 − a1)(a2 f ′′2 (0)|M1|2 + b2g′′2(0))

+ b2(a1 f ′′1 (0)+ b1g′′1(0)|M1|2).
Based on the above analysis, we see that each gi j in (16) can be determined by the
parameters and delay in (3). Therefore, we can compute the following quantities:

c1(0) =
i

2τ0ω0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+

g21

2
,

ν2 =−Re{c1(0)}
τ0α ′(τ0)

,

β2 = 2Re{c1(0)},

T2 =− Im{c1(0)}+ τ0ν2 Im{λ ′
(τ0)}

τ0ω0
,

which determine the properties of bifurcating periodic solutions at the critical
value τ̄0. More specifically, parameter ν2 determines the direction of the Hopf
bifurcation: if ν2 > 0 (ν2 < 0), then the Hopf bifurcation is supercritical (subcritical)
and the bifurcating periodic solutions exist for τ > τ0 (τ < τ0); parameter β2

determines the stability of the bifurcating periodic solutions: they are stable
(unstable) if β2 < 0 (β2 > 0); and parameter T2 determines the period of the
bifurcating periodic solutions: the period increases (decreases) if T2 > 0 (T2 < 0).
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Consider a special case for system (2),{
ẋ1(t) =−μx1(t)+ a f (x1(t))+ b1 f (x2(t − τ1)),

ẋ2(t) =−μx2(t)+ a f (x2(t))+ b2 f (x1(t − τ2)).
(20)

When a = 0 and b1 = b2, system (20) has been studied in Chen and Wu [4].
We make the following assumptions.
(P) f ∈C3, x f (x) > 0 for x �= 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) �= 0, μ − a > 0,

and b1b2 <−(μ − a)2.
Let

τ0 =
1

ω0
arccos

(μ − a)2 −ω2
0

b1b2
,

and

ω0 = [−(μ − a)2 + |b1b2|] 1
2 .

We have the following result.

Theorem 3.1. If the hypothesis (P) is satisfied, then there exists τ0 > 0 such
that the zero solution of system (20) is asymptotically stable for τ ∈ (0,τ0], and
unstable for τ > τ0, and system (20) undergoes a Hopf bifurcation at the origin
when τ = τ0. Moreover, the direction of the Hopf bifurcation and the stability of
the bifurcating periodic solutions are determined by the sign of f ′′′(0). In fact, if
f ′′′(0)< 0 ( f ′′′(0)> 0), then the Hopf bifurcation is supercritical (subcritical), and
the bifurcating periodic solutions are orbitally asymptotically stable (unstable).

The conclusions on stability of the zero solution and the existence of Hopf
bifurcation follow from (iii) in Theorem 2.3. Using the fact that f ′′(0) = 0 and
relation (16), we have

g20 = g11 = g02 = 0,

and

g21 = τ0 f ′′′(0)D̄ [a(1+ |M1|2M1M2)+ b1|M1|M2 + b2M2e−iτ0ω0 ], (21)

where

M1 =
μ − a+ iω0

b1
, M2 =

b1

μ − a+ iω0
, D = (2+ τ0(μ − a− iω0))

−1,

and

e−iτ0ω0 =
[iω0 +(μ − a)]2

b1b2
.

Substituting M1, M2,D, and e−iτ0ω0 into (21), we obtain

Re{g21}= τ0

� (1+
(μ − a)2 +ω2

0

b2
2

)[μ(2+ τ0(μ − a))+ τ0ω2
0 ] f

′′′(0),



156 M.Y. Li and J. Wei

where

�= [2+ τ0(μ − a)]2 +ω2
0 .

Hence,

β2 = 2Re{c1(0)}< 0 (> 0) when f ′′′(0)< 0 (> 0),

and

ν2 =−Re{c1(0)}
τ0α ′(τ0)

> 0 (< 0) when f ′′′(0)< 0 (> 0).

The conclusions of the theorem follow from the standard Hopf bifurcation results
[13].

Example 3.2. Let f (x) = tanh(x) in (20); we arrive at the neural network model

{
u̇1(t) =−μu1(t)+ a tanh(u1(t))+ b1 tanh(u2(t − τ1)),

u̇2(t) =−μu2(t)+ a tanh(u2(t))+ b2 tanh(u1(t − τ2)),
(22)

where μ ,a,b1,b2,τ1 > 0, and τ2 > 0 are all constants. Noting that f ′′′(0) = −2, by
Theorems 2.3 and 3.1, we obtain the following result, which generalizes results in
[1] and [20] where system (22) was investigated when a = 0.

Corollary 3.3. Suppose μ −a > 0 and b1b2 <−(μ −a)2. Then there exists τ0 > 0
such that the zero solution of (22) is asymptotically stable when τ ∈ [0,τ0) and
unstable when τ > τ0. Furthermore, (22) undergoes a supercritical Hopf bifurcation
at the origin when τ = τ0, and the bifurcating periodic solutions are orbitally
asymptotically stable.

Theorem 2.3 shows that under the assumptions (H1) and (H2), if

|b1b2|> |(μ1 − a1)(μ2 − a2)|

is satisfied, then there exists sequence

0 < τ̄0 < τ̄1 < τ̄2 < · · ·< τ̄ j < · · ·

such that system (3) undergoes a Hopf bifurcation at the origin when τ = τ̄ j, j =
0,1,2, . . . . We have only investigated properties of the bifurcation at τ = τ̄0 when
b1b2 < 0. Using a similar procedure, we can investigate the direction and stability of
the Hopf bifurcations occurring at τ = τ̄ j for j > 0. In fact, for system (20), we can
show that the Hopf bifurcations at τ = τ̄ j ( j ≥ 0) are supercritical (resp. subcritical),
with nontrivial periodic solution orbits stable (resp. unstable) on the center manifold
if f ′′′(0)< 0 (resp. f ′′′(0)> 0).
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4 Global Existence of Periodic Solutions

In this section, we show that periodic solutions of system (2) exist when the
total delay τ = τ1 + τ2 is away from the bifurcation points. We apply a global
Hopf bifurcation theorem of Wu [7, 22] to establish global extension of local
Hopf branches. A key step of the proof is to establish that system (2) has no
periodic solutions of period 2τ . This is equivalent to show that a four-dimensional
ordinary differential equation has no nonconstant periodic solutions. This will be
done by applying high-dimensional Bendixson–Dulac criteria developed by Li and
Muldowney [14], which we briefly describe in the following.

Consider an n-dimensional ordinary differential equation

ẋ = f (x), x ∈ R
n, f ∈C1. (23)

Let x = x(t,x0) be the solution to (23) such that x(0,x0) = x0. The second compound
equation of (23) with respect to x(t,x0)

z′(t) =
∂ f
∂x

[2]

(x(t,x0))z(t) (24)

is a linear system of dimension
(n

2

)
, where ∂ f

∂x

[2]
is the second additive compound

matrix of the Jacobian matrix ∂ f
∂x [9, 17]. System (24) is said to be equi-uniformly

asymptotically stable with respect to an open set D ⊂ R
n, if it is uniformly

asymptotically stable for each x0 ∈ D, and the exponential decay rate is uniform
for x0 in each compact subset of D. The equi-uniform asymptotic stability of (24)
implies the exponential decay of the surface area of any compact two-dimensional
surface in D. If D is simply connected, this precludes the existence of any invariant
simple closed rectifiable curve in D, including periodic orbits. In particular, the
following result is proved in [15].

Proposition 4.1. Let D ⊂ R
n be a simply connected open set. Assume that the

family of linear systems

z′(t) =
∂ f
∂x

[2]

(x(t,x0))z(t), x0 ∈ D

is equi-uniformly asymptotically stable. Then:

(a) D contains no simple closed invariant curves including periodic orbits, homo-
clinic orbits, and heteroclinic cycles.

(b) Each semi-orbit in D converges to a simple equilibrium.

In particular, if D is positively invariant and contains a unique equilibrium x̄, then
x̄ is globally asymptotically stable in D.
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The uniform asymptotic stability requirement for the family of linear systems
(24) can be verified by constructing suitable Lyapunov functions. For instance, (24)
is equi-uniformly asymptotically stable if there exists a positive definite function
V (z), such that dV (z)

dt |(32) is negative definite, and V and dV
dt |(32) are both independent

of x0.
For a 4× 4 matrix

A =

⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦ ,

its second additive compound matrix A[2] is [14, 17],

A[2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 + a22 a23 a24 −a13 −a14 0
a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

Consider the ODE system⎧⎪⎪⎨
⎪⎪⎩

ẋ1 =−μ1x1 + a1 f1(x1)+ b1g1(x4),

ẋ2 =−μ2x2 + a2 f2(x2)+ b2g2(x1),

ẋ3 =−μ1x3 + a1 f1(x3)+ b1g1(x2),

ẋ4 =−μ2x4 + a2 f2(x4)+ b2g2(x3).

(26)

We make the following assumptions:
(H3) There exists L> 0 such that | fi(x)| ≤ L and |gi(x)| ≤ L for x∈R and i= 1,2.
(H4) There exist α j > 0, j = 1,2,3,4,5, such that

sup
x∈R4

{
− (μ1 + μ2 − a1 f ′1(x1)− a2 f ′2(x2))+

α1

α5
|b1g′1(x4)|,

−(2μ1 − a1 f ′1(x1)− a1 f ′1(x3))+
α2

α1
|b1g′1(x2)|+α2|b1g′1(x4)|,

−(μ1 + μ2 − a1 f ′1(x1)− a2 f ′2(x2))+
α3

α2
|b2g′2(x3)|,

−(μ1 + μ2 − a1 f ′1(x3)− a2 f ′2(x2))+
α4

α2
|b2g′2(x1)|,

−(2μ2 − a2 f ′2(x2)− a2 f ′2(x4))+
α5

α3
|b2g′2(x1)|+ α5

α4
|b2g′2(x3)|,

−(μ1 + μ2 − a1 f ′1(x3)− a2 f ′2(x4))+
1

α5
|b1g′1(x2)|

}
< 0. (27)
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Proposition 4.2. Suppose that assumptions (H1), (H3), and (H4) are satisfied.
Then system (26) has no nonconstant periodic solutions. Furthermore, the unique
equilibrium (0,0,0,0) is globally asymptotically stable in R

4.

Proof. First of all, we verify that the solutions of (26) are uniformly ultimately
bounded. Let

V (x1,x2,x3,x4) =
1
2

[
x2

1 + x2
2 + x2

3 + x2
4

]
.

Then the derivative of V along a solution of (26) is

dV
dt

∣∣∣
(34)

=−μ1x2
1 − μ2x2

2 − μ1x2
3 − μ2x2

4

+ a1x1 f1(x1)+ b1x1g1(x4)+ a2x2 f2(x2)+ b2x2g2(x1)

+ a1x3 f1(x3)+ b1x3g1(x2)+ a2x4 f2(x4)+ b2x4g2(x3).

Using (H3) we have

dV
dt

∣∣∣
(34)

≤−μ Σ4
i=1x2

i + 2aLΣ4
i=1|xi|,

where μ = min{μ1,μ2}, and a = max1≤i≤2{|ai|, |bi|}. Then there exists M > 1 such

that dV
dt

∣∣∣
(34)

< 0 for Σ4
i=1x2

i ≥ M2. As a consequence, solutions of (26) are uniformly

ultimately bounded.
Let x = (x1,x2,x3,x4) and

f (x) = (−μ1x1 + a1 f1(x1)+ b1g1(x4),−μ2x2 + a2 f2(x2)+ b2g2(x1),

−μ1x3 + a1 f1(x3)+ b1g1(x2),−μ2x4 + a2 f2(x4)+ b2g2(x3))
T .

Then ∂ f
∂x is given as follows:

⎡
⎢⎢⎣
−μ1 + a1 f ′1(x1) 0 0 b1g′1(x4)

b2g′2(x1) −μ2 + a2 f ′2(x2) 0 0
0 b1g′1(x2) −μ1 + a1 f ′1(x3) 0
0 0 b2g′2(x3) −μ2 + a2 f ′2(x4)

⎤
⎥⎥⎦ .

By (25),

∂ f
∂x

[2]

(x) = (mi j)6×6

with

m11 =−(μ1 + μ2)+ a1 f ′1(x1)+ a2 f ′2(x2),m12 = m13 = m14 = 0,

m15 =−b1g′1(x4), m16 = 0;
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m21 = b1g′1(x2), m22 =−2μ1 + a1 f ′1(x1)+ a1 f ′1(x3),

m23 = m24 = m25 = 0, m26 =−b1g′1(x4);

m31 = 0, m32 = b2g′2(x3), m33 =−(μ1 + μ2)+ a1 f ′1(x1)+ a2 f ′2(x4),

m34 = m35 = m36 = 0;

m41 = 0, m42 = b2g′2(x1), m43 = 0, m44 =−(μ1 + μ2)+ a2 f ′2(x2)+ a1 f ′1(x3),

m45 = m46 = 0;

m51 = m52 = 0, m53 = b2g′2(x1), m54 = b2g′2(x3),

m55 =−2μ2 + a2 f ′2(x2)+ a2 f ′2(x4), m56 = 0;

m61 = m62 = m63 = m64 = 0, m65 = b1g′1(x2),

m66 =−(μ1 + μ2)+ a1 f ′1(x3)+ a2 f ′2(x4).

The second compound system

Ż =
∂ f
∂x

[2]

(x)Z, Z = (z1, . . . ,z6), (28)

is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 =−(μ1 + μ2 − a1 f ′1(x1(t))− a2 f ′2(x2(t)))z1 − b1g′1(x4(t))z5,

ż2 = b1g′1(x2(t))z1 − (2μ1 − a1 f ′1(x1(t))− a1 f ′1(x3(t)))z2 − b1g′1(x4(t))z6,

ż3 = b2g′2(x3(t))z2 − (μ1 + μ2 − a1 f ′1(x1(t))− a2 f ′2(x4(t)))z3,

ż4 = b2g′2(x1(t))z2 − (μ1 + μ2 − a2 f ′2(x2(t))− a1 f ′1(x3(t)))z4,

ż5 = b2g′2(x1(t))z3 + b2g′2(x3(t))z4 − (2μ2 − a2 f ′2(x2(t))− a2 f ′2(x4(t)))z5,

ż6 = b1g′1(x2(t))z5 − (μ1 + μ2 − a1 f ′1(x3(t))− a2 f ′2(x4(t)))z6,

where x(t) = (x1(t),x2(t),x3(t),x4(t))T is a solution of system (26) with x(0) = x0 ∈
R

4. Set

W (t) = max{α1|z1|,α2|z2|,α3|z3|,α4|z4|,α5|z5|, |z6|}.
Then direct calculation leads to the following inequalities:

d+

dt
α1|z1| ≤ −(μ1 + μ2 − a1 f ′1(x1(t))− a2 f ′2(x2(t)))α1|z1|+ α1

α5
|b1g′1(x4(t))|α5|z5|,

d+

dt
α2|z2| ≤ −(2μ1 − a1 f ′1(x1(t))− a1 f ′1(x3(t)))α2|z2|

+
α2

α1
|b1g′1(x2(t))|α1|z1|+α2|b1g′1(x4(t))||z6|,
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d+

dt
α3|z3| ≤ −(μ1 + μ2 − a1 f ′1(x1(t))− a2 f ′2(x4(t)))α3|z3|+ α3

α2
|b2g′2(x3(t))|α2|z2|,

d+

dt
α4|z4| ≤ −(μ1 + μ2 − a1 f ′1(x3(t))− a2 f ′2(x2(t)))α4|z4|+ α4

α2
|b2g′2(x1(t))|α2|z2|,

d+

dt
α5|z5| ≤ −(2μ2 − a2 f ′2(x2(t))− a2 f ′2(x4(t)))α5|z5|

+
α5

α3
|b2g′2(x1(t))|α3|z3|+ α5

α4
|b2g′2(x3(t))|α4|z4|,

d+

dt
|z6| ≤ −(μ1 + μ2 − a1 f ′1(x3(t))− a2 f ′2(x4(t)))|z6|+ 1

α5
|b1g′1(x2(t))|α5|z5|,

where d+
dt denotes the right-hand derivative. Therefore,

d+

dt
W (Z(t)) ≤ μ(t)W (Z(t)),

with

μ(t) =max

{
−(μ1 + μ2 − a1 f ′1(x1(t))− a2 f ′2(x2(t)))+

α1

α5
|b1g′1(x4(t))|,

− (2μ1 − a1 f ′1(x1(t))− a1 f ′1(x3(t)))+
α2

α1
|b1g′1(x2(t))|+α2|b1g′1(x4(t))|,

− (μ1 + μ2 − a1 f ′1(x1(t))− a2 f ′2(x2(t)))+
α3

α2
|b2g′2(x3(t))|,

− (μ1 + μ2 − a1 f ′1(x3(t))− a2 f ′2(x2)(t))+
α4

α2
|b2g′2(x1(t))|,

− (2μ2 − a2 f ′2(x2(t))− a2 f ′2(x4(t)))+
α5

α3
|b2g′2(x1(t))|+ α5

α4
|b2g′2(x3(t))|,

−(μ1 + μ2 − a1 f ′1(x3(t))− a2 f ′2(x4(t)))+
1

α5
|b1g′1(x2(t))|

}
.

Thus, under assumption (H4), and by the boundedness of solution to (26), there
exists a δ > 0 such that μ(t)≤−δ < 0, and hence

W (Z(t))≤W (Z(s))e−δ (t−s), t ≥ s > 0.

This establishes the equi-uniform asymptotic stability of the second compound sys-
tem (28), and hence the conclusions of Proposition 4.2 follow from Proposition 4.1.

��
Now we are in the position to state the main result of this section.
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Theorem 4.3. Suppose that assumptions (H1) – (H4) and the condition

|b1b2|> |(μ1 − a1)(μ2 − a2)|
are satisfied. Let τ j be defined in (8).

(i) If b1b2 > 0, then system (3) has at least j + 1 nonconstant periodic solutions
for τ > τ̄ j , j ≥ 0.

(ii) If b1b2 < 0, then system (3) has at least j nonconstant periodic solutions for
τ > τ̄ j, j ≥ 1.

Proof. We regard (τ, p) as parameters and apply Theorem 3.3 in Wu [22]. By
(H1) we know that the origin is an equilibrium of system (3). Hence, (0,τ, p) is
a stationary point of (3), and the corresponding characteristic function is

Δ(0,τ,p)(λ ) = λ 2 +[(μ1 − a1)+ (μ2 − a2)]λ +(μ1 − a1)(μ2 − a2)− b1b2e−λ τ .

Clearly, Δ(0,τ,p)(λ ) is continuous in (τ, p,λ ) ∈ R+×R+×C. To locate centers, we
consider

Δ(0,τ,p)

(
i
2mπ

p

)
= −

(
2mπ

p

)2

+ i [(μ1 − a1)+ (μ2 − a2)]
2mπ

p

+(μ1 − a1)(μ2 − a2)− b1b2e−i 2mπ
p τ .

Using the conclusion (ii) in Lemma 2.2 we know that (0,τ, p) is a center if and only
if m = 1,τ = τ̄ j and p = 2τ

ω0
. In particular, (0, τ̄ j,

2τ
ω0
) is a center, and all the centers

are isolated. In fact, the set of centers is countable and can be expressed as

{(
0, τ̄ j,

2τ
ω0

)
: j = 0,1,2, . . .

}
,

where ω0 and τ̄ j are defined in (7) and (8), respectively.
Consider Δ(0,τ,p)(λ ) with m = 1. By Lemmas 2.1 and 2.2, for fixed j, there exist

ε,δ > 0 and a smooth curve λ : (τ̄ j − δ , τ̄ j + δ )→C, such that Δ(0,τ,p)(λ (τ)) = 0,
|λ (τ)− iω0|< ε for all τ ∈ (τ̄ j − δ , τ̄ j + δ ), and

λ (τ̄ j) = iω0,
d

dτ
Reλ (τ)|τ=τ̄ j > 0.

Let

Ωε =

{
(v, p) : 0 < v < ε,

∣∣∣p− 2τ
ω0

∣∣∣ < ε
}
.

Clearly, if |τ − τ̄ j|< δ and (v, p) ∈ ∂Ωε such that q(v+ i 2π
p ) = 0, then τ = τ̄ j,v = 0,

and p = 2π
ω0
. This verifies the hypothesis (A4) for m = 1 in Theorem 3.3 of Wu [22].

Moreover, if we set
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H±
m

(
0, τ̄ j,

2τ
ω0

)
(v, p) = Δ(0,τ̄ j±δ ,p)

(
v+ im

2π
p

)
,

then, at m = 1, we have

γm

(
0, τ̄ j,

2τ
ω0

)
= degB

(
H−

m

(
0, τ̄ j,

2τ
ω0

)
,Ωε

)
− degB

(
H+

m

(
0, τ̄ j,

2τ
ω0

)
,Ωε

)
= −1. (29)

If (3) has another equilibrium, say (x∗1,x
∗
2), then the characteristic equation associ-

ated with the linearization of (3) at (x∗1,x
∗
2) is

λ 2 +[(μ1 − a1 f ′1(x
∗
1))+ (μ2 − a2 f ′2(x

∗
2))]λ

+(μ1 − a1 f ′1(x
∗
1))(μ2 − a2 f ′2(x

∗
2))− b1b2g′1(x

∗
2)g

′
2(x

∗
1)e

−λ τ = 0. (30)

Suppose that equation (30) has a pair of purely imaginary roots ±iω∗ when τ = τ∗.
Denote

λ (τ) = α∗(τ)+ iω∗(τ)

be the root of (30) satisfying α∗(τ∗) = 0 and ω∗(τ∗) = ω∗. Similar to Lemma 2.1,
we have

dα∗(τ)
dτ

∣∣∣
τ=τ∗

> 0.

Similar to the discussion above, we know ((x∗1,x
∗
2),τ∗,

2π
ω∗ ) is an isolate center of

(3), and the crossing number, at m = 1, is

γm

((
x∗1,x

∗
2

)
,τ∗,

2π
ω∗
)
=−1.

Let

Σ = cl{(x,τ, p) : x is a p-periodic solution of (3)}.
By Theorem 3.3 in [22], we conclude that the connected component C(0, τ̄ j,

2π
ω0
)

through (0, τ̄ j ,
2π
ω0
) in Σ is nonempty. Meanwhile, (29) and (30) imply that the

first crossing number of each center is always −1. Therefore, we conclude that
C(0, τ̄ j,

2π
ω0
) is unbounded by Theorem 3.3 of [22].

Now, we prove that periodic solutions of (3) are uniformly bounded. Let

μ = min{μ1,μ2}, M ≥ max{1, L(|a1 + b1|+ |a2 + b2|)/μ },

and

r(t) =
√

x2
1(t)+ x2

2(t).
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Differentiating r(t) along a solution of (3) we have

ṙ(t) =
1

r(t)
[x1(t)ẋ1(t)+ x2(t)ẋ2(t)]

=
1

r(t)
[−(μ1x2

1(t)+ μ2x2
2(t))+ a1x1(t) f1(x1(t))+ b1x1(t)g1(x2(t − τ))

+a2x2(t) f2(x2(t))+ b2x2(t)g2(x1(t))]

≤ 1
r(t)

[−μ(x2
1(t)+ x2

2(t))+L(|a1 + b1||x1(t)|+ |a2 + b2||x2(t)|)].

If there exists t0 > 0 such that r(t0) = A ≥ M, we have

ṙ(t0)≤ 1
A
[−μA2 +AL(|a1 +b1|+ |a2 +b2|)] =−μA+L(|a1 +b1|+ |a2 +b2|)< 0.

It follows that if x(t) = (x1(t),x2(t))T is a periodic solution of (3), then r(t)< M for
all t. This shows that the periodic solutions of (3) are uniformly bounded.

Next, we establish that system (3) has no 2τ-periodic solutions. Suppose x(t) =
(x1(t),x2(t))T is a 2τ-periodic solution of system (3). Let

x3(t) = x1(t − τ), x4(t) = x2(t − τ).

Then (x1(t),x2(t),x3(t),x4(t))) is a nonconstant periodic solution to system (26).
This contradicts to the conclusion of Proposition 4.2 and implies that system (3) has
no 2τ-periodic solutions.

By the definition of τ̄ j in (8), we have that τ̄ j < τ̄ j+1, j ≥ 0, and

ω0τ̄0 = arcsin

(
− [(μ1 − a1)+ (μ2 − a2)]ω0

b1b2

)
∈ (π ,2π),

when b1b2 > 0. Hence, 2π
ω0

< 2τ̄0. Thus, there exists an integer m such that 2τ̄0
m+1 <

2π
ω0

< 2τ̄0
m . Since system (3) has no 2τ-periodic solutions, it has no 2τ

n -periodic
solutions for any integer n. This implies that the period p of a periodic solution on
the connected component C(0, τ̄0,

2π
ω0
) satisfies 2τ

m+1 < p< 2τ
m . Therefore, the periods

of the periodic solutions of system (3) on C(0, τ̄0,
2π
ω0
) are uniformly bounded for

τ ∈ [0, τ̄), where τ̄ is fixed.
The inequality (27) implies that

−[(μ1 − a1 f ′1(x))+ (μ2 − a2 f ′2(x))]< 0 for (x1,x2) ∈R
2,

and hence

∂
∂x1

[−μ1x1 + a1 f1(x1)+ b1g1(x2)]+
∂

∂x2
[−μ2x2 + a2 f2(x2)+ b2g2(x1)]

=−[(μ1 − a1 f ′1(x1)+ (μ2 − a2 f ′2(x2))]< 0
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for all (x1,x2) ∈ R
2. This shows that system (3) with τ = 0 has no nonconstant

periodic solutions, by the classical Bendixson’s criterion. Thus, the projection of
C(0, τ̄0,

2π
ω0
) onto the τ-space must be an interval [T,∞) with 0 < T ≤ τ̄0. This shows

that for any τ > τ̄0, system (3) has at least one nonconstant periodic solution on
C(0, τ̄0,

2π
ω0
).

Similarly, we can show that, for any τ > τ̄ j , j ≥ 1, system (3) has at least one
nonconstant periodic solution on C(0, τ̄ j,

2π
ω0
). Therefore, for any τ > τ̄ j, system (3)

has at least j+ 1 nonconstant periodic solutions in the case of b1b2 > 0. The proof
of (i) is complete.

The proof of (ii) is similar and is omitted. ��
Example 4.4. Consider the neural network model

{
u̇1(t) =−μu1(t)+ a tanh(u1(t))+ b1 tanh(u2(t − τ1)),

u̇2(t) =−μu2(t)+ a tanh(u2(t))+ b2 tanh(u1(t − τ2)).
(31)

For j = 0,1,2, . . . , let

τ̄ j =
1

ω0

[
arccos

(μ − a)2 −ω2
0

b1b2
+ 2 jπ

]
, j = 0,1,2, . . . ,

and

ω0 = [−(μ − a)2 + |b1b2|] 1
2 .

We have the following result.

Corollary 4.5. Suppose that a > 0, b1b2 > (μ − a)2 and

μ − a > max
{
|b1|/

√
2, |b2|/

√
2
}
. (32)

Then for any τ > τ̄ j j = 0,1,2, . . ., system (31) has at least j + 1 nonconstant
periodic solutions.

It is sufficient to verify that (H4) is satisfied. Noting that f1 = f2 = g1 = g2 = tanh
and 0 < tanh′(x)≤ 1 and taking α1 = α3 = α4 = 1, we have

−(2μ − a tanh′(x1)− a tanh′(x2))+
1

α5
|b1 tanh′(x4)| ≤ −2(μ − a)+

1
α5

|b1|,

−(2μ − a tanh′(x1)− a tanh′(x3))+α2|b1 tanh′(x2)|+α2|b1 tanh′(x4|
≤ −2(μ − a)+ 2α2|b1|,

−(2μ − a tanh′(x1)− a tanh′(x2))+
1

α2
|b2 tanh′(x3)| ≤ −2(μ − a)+

1
α2

|b2|,
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Fig. 2 The curves b1b2 = ±(μ −a)2 and b1b2 = ±2(μ −a)2 divide the right half plane into five
regions, D1,D2,D3,D4, and D5. D3 is an absolutely stable region, D1 ∪D2 is a conditionally stable
region, and D4 ∪D5 is an unstable region. Values of μ − a are plotted on the horizontal axis and
b1b2 plotted on the vertical axis. If (μ −a,b1b2) ∈ D4 (resp. D2) and (32) is satisfied, then system
(31) has at least one nonconstant periodic solution for τ > τ̄0 (resp. τ > τ̄1)

−(2μ − a tanh′(x2)− a tanh′(x3))+
1

α2
|b2 tanh′(x1)| ≤ −2(μ − a)+

1
α2

|b2|,

−(2μ − a tanh′(x2)− a tanh′(x4))+α5|b2 tanh′(x1)|+α5|b2 tanh′(x3|
≤ −2(μ − a)+ 2α5|b2|,

−(2μ − a tanh′(x3)− a tanh′(x4))+
1

α5
|b1 tanh′(x2)| ≤ −2(μ − a)+

1
α5

|b1|.

Let α2 = α5 =
1√
2
. Then (32) implies that

− 2(μ − a)+
1

α5
|b1|< 0, − 2(μ − a)+α2|b1|< 0,

− 2(μ − a)+
1

α2
|b2|< 0, − 2(μ − a)+α5|b2|< 0.

Therefore, (H4) is satisfied. The conclusion of Corollary 4.5 is illustrated in Fig. 2.
To demonstrate the Hopf bifurcation results in Theorems 3.1 and 4.3, we

carry out numerical simulations on system (31). The simulations are done using
Mathematica with different values of μ , a, bi, and τi and different initial values
for ui. The simulations consistently show the bifurcating periodic solution being
asymptotically stable and global existence of periodic solution: existence of periodic
solutions for values τ = τ1+τ2 near τ̄0 and far away from τ̄k. In Fig. 3, we show one
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Fig. 3 Mathematical simulations of a periodic solution to system (31) with μ = 2, a = 0.8, b1 =
−1.2, b2 = 1.5, τ1 = 2.8, and τ2 = 2.2. The total delay τ = τ1+τ2 = 5 is greater than the first Hopf
bifurcation value τ̄0 = 3.6905

Fig. 4 Mathematical simulations show that an asymptotically stable periodic solution to system
(31), with μ = 2, a = 0.8, b1 = −1.2, b2 = 1.5, τ1 = 9, and τ2 = 8, continues to exist when the
total delay τ = τ1 + τ2 = 17 is between the two consecutive Hopf bifurcation values τ̄1 = 14.1625
and τ̄2 = 24.6345

of the simulations using μ = 2, a = 0.8,b1 =−1,b2 = 1.5 such that (32) is satisfied
and (μ − a,b1b2) ∈ D2. In this case, it can be calculated that ω0 = 0.6 and for
k= 0,1,2, . . . , τ̄k = 3.6905+10.472×k.The delays are chosen as τ1 = 2.8, τ2 = 2.2
so that τ = τ1 +τ2 = 5 is larger than τ̄0 = 3.6905. An asymptotically stable periodic
solution is shown to exist in Fig. 3. Similarly, in Fig. 4, the parameters μ ,a, and bi

are chosen as above; the delays are chosen as τ1 = 9, τ2 = 8 so that τ = τ1+τ2 = 17
is between the two Hopf bifurcation values τ̄1 = 14.1625 and τ̄2 = 24.6345. An
asymptotically stable periodic solution is shown in Fig. 4.
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