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Abstract Human T-cell leukaemia/lymphoma virus type I (HTLV-I) is a retrovirus that
has been identified as the causative agent of HTLV-I-associated myelopathy/tropical spas-
tic paraparesis (HAM/TSP) and other illnesses. HTLV-I infects primarily CD4+ T cells
and the transmission occurs through direct cell-to-cell contact. HAM/TSP patients harbor
higher proviral loads in peripheral blood lymphocytes than asymptomatic carriers. Also,
HAM/TSP patients exhibit a remarkably high number of circulating HTLV-I-specific
CD8+ cytotoxic T lymphocytes (CTLs) in the peripheral blood. While CTLs have a
protective role by killing the infected cells and lowering the proviral load, a high level
of CTLs and their cytotoxicity are believed to be a main cause of the development of
HAM/TSP. A mathematical model for HTLV-I infection of CD4+ T cells that incorporates
the CD8+ cytotoxic T-cell (CTL) response is investigated. Our mathematical analysis re-
veals that the system can stabilize at a carrier steady-state with persistent viral infection
but no CTL response, or at a HAM/TSP steady-state at which both the viral infection
and CTL response are persistent. We also establish two threshold parameters R0 and R1,
the basic reproduction numbers for viral persistence and for CTL response, respectively.
We show that the parameter R1 can be used to distinguish asymptomatic carriers from
HAM/TSP patients, and as an important control parameter for preventing the develop-
ment of HAM/TSP.

Keywords HTLV-I · HAM/TSP · CD4 T cells · CD8 T cells · Global dynamics ·
Lyapunov functions
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1. Introduction

Human T-cell leukaemia/lymphoma virus type I (HTLV-I) is a human retrovirus that can
cause a slowly progressive neurologic disease HTLV-I-associated myelopathy/tropical
spastic paraparesis (HAM/TSP) (Gessain et al., 1985; Osame et al., 1986). The num-
ber of HTLV-I-infected people is estimated between 15 to 25 million worldwide. The
infection is endemic in the southern region of Japan, the Caribbean Islands, the equa-
torial regions of Africa, South America, the Middle East. and Melanesia (Kubota et al.,
2000). The majority of HTLV-I-infected individuals remain as lifelong asymptomatic car-
riers (ACs), while approximately 0.25% to 3% develop HAM/TSP (Kaplan et al., 1990;
Yamano et al., 2002). Unlike HIV viruses, which break free from host cells and infect
other T cells, HTLV-I viruses are not very infectious and seldom found in plasma (Okochi
et al., 1984). Direct cell-to-cell contact is required to transmit the viruses among
CD4+ T cells, which HTLV-I preferentially infects in vivo (Cann and Chen, 1996;
Richardson et al., 1990; Shiraki et al., 2003). The exact mechanism for the cell-to-cell
spread is a subject of current research. It is shown (Igakura et al., 2003) that cell contact
rapidly induces polarization of the cytoskeleton of the infected CD4+ T cell to the cell–
cell junction. HTLV-I core (Gag protein) complexes and the HTLV-I genome accumulate
at the cell–cell junction and are then transferred to the uninfected cell. In an infected cell,
integrated viral DNAs are called proviruses.

HTLV-I-infected patients harbor remarkably high proviral loads in peripheral blood
lymphocytes (PBLs), ranging from 2% to 20% among HAM/TSP patients, and from
0.04% to 8% among ACs (Kira et al., 1991; Kubota et al., 1993). Moreover, HAM/TSP
patients show high levels of circulating HTLV-I-specific CD8+ cytotoxic T lymphocytes
(CTLs), which are specific for an immunodominant HLA-A2-restricted epitope, HTLV-I
Tax 11–19. HTLV-I Tax 11–19-specific CD8+ CTLs are estimated in the range of 1:75 to
1:320 CD8+ lymphocytes in the PBL of HAM/TSP patients (Elovaara et al., 1993; Koenig
et al., 1993). Activated CD8+ CTLs are also found in the cerebrospinal fluid (Greten et al.,
1998). Recent clinical evidence shows that peripheral CD8+ T lymphocytes produce in-
terleukin (IL) 2, γ -interferon (IFN-γ ), and tumor necrosis factor α (TNF-α) in HAM/TSP
patients (Greten et al., 1998). Collectively, these findings suggest that, on the one hand,
the CTLs have a protective role to the host by lowering the proviral load (Asquit and
Bangham, 2007; Mosley et al., 2005); and on the other, a high level of HTLV-I-specific
CD8+ T lymphocytes and their cytotoxic effects may be the cause for the inflammatory
responses in HAM/TSP patients (Jacobson, 2002). Preventive measures that can regulate
the HTLV-I-specific CTL response to a low level may effectively prevent the development
of HAM/TSP.

CTL response to HTLV-I infection, especially the correlation between proviral load
and responsiveness of CTLs, has been investigated using mathematical models in Nowak
and Bangham (1996), Nowak and May (2000), Wodarz et al. (1999). In Wodarz et al.
(1999), a mathematical model is investigated that incorporates HTLV-I infection of CD4+

T cells, HTLV-I induced mitotic division in infected CD4s, and HTLV-I specific CTL
response. While the focus in Nowak and May (2000), Wodarz et al. (1999) is to explain
immunological phenomena using mathematical models, the goal of the present paper is
to provide a complete mathematical analysis of the dynamics of CTL response to HTLV-I
infection in a special case of the model considered in Wodarz et al. (1999), in which we
ignore the mitosis of CD4+ T cells. Our analysis reveals for the first time the existence of
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two possible equilibria where the HTLV-I infection is persistent, and both equilibria can
be stable in reasonable parameter regions.

To set up a mathematical model for the dynamics of CTL response to HTLV-I infection
in vivo, the CD4+ T-cell population is partitioned into uninfected and infected compart-
ments, whose numbers at time t are denoted by x(t), y(t), respectively. Similarly, we
consider a compartment of HTLV-I-specific CD8+ T cells, and let z(t) denote their num-
bers at time t . Since HTLV-I infection occurs by cell-to-cell contact between infected
cells and uninfected ones, a bilinear incidence βxy is assumed (Nowak and May, 2000;
Perelson and Nelson, 1999), where β is the transmission coefficient. Soon after the pri-
mary infection, HTLV-I-carrier cells confront a strong antibody response targeted mainly
to Tax proteins (Bangham, 2000; Manns et al., 1991). Moreover, the low mutation rate
observed during HTLV-I replication (Mansky, 2000; Mortreux et al., 2001) suggests that
only a fraction σ ∈ [0,1] of cells newly infected by contact will survive the antibody
immune response. CTL-driven elimination of infected CD4+ cells due to the cytotoxic
actions of CD8+ T cells is assumed to be of the form γyz, where γ is the rate of CTL-
mediated lysis. Anti-HTLV-I CTLs reduce the proviral load, but this reduction would
imply less stimulation for CTL proliferation. Therefore, it is reasonable to consider that
CD8+ T-cell stimulation has a density-dependent form νyz/(z + K), where ν denotes
the cytotoxic responsiveness. The CTL responsiveness depends on the contact frequency
and attachment effectivity between T-cell receptors and MHC-I molecules. The form of
response function z/(z + K) is more general than that in Nowak and Bangham (1996),
Nowak and May (2000), Wodarz et al. (1999).

The maintenance of the CD4+ T-cell pool may involve proliferation of mature cells in
the periphery or maturation of hematopoietic stem cells (Clark et al., 1999). It is custom-
ary to assume CD4+ T cells are produced at constant rate λ and all of them are suscepti-
ble (Nowak and May, 2000; Perelson and Nelson, 1999). The probability of lymphocyte
elimination in function of time is unknown (Perelson and Nelson, 1999), thus constant per
capita elimination rates are generally assumed: µ1 and µ2 represent the removal rates of
uninfected and infected CD4+ T cells, respectively, and µ3 that of HTLV-I-specific CD8+

T cells. All parameters are assumed to be positive. A transfer diagram is shown in Fig. 1.
The preceding assumptions and the transfer diagram lead to the following system of

differential equations:

x ′ = λ − µ1x − βxy,

y ′ = σβxy − µ2y − γyz, (1)

z′ = ν
yz

z + K
− µ3z.

Fig. 1 Transfer diagram for the CTL response to HTLV-I infection.
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From the first equation of (1), we obtain x ′ ≤ λ − µ1x, and thus lim supt→∞ x(t) ≤ λ
µ1

.

Adding the first two equations of (1), we get

(
x(t) + y(t)

)′ = λ − µ1x(t) − µ2y(t) − (1 − σ )βx(t)y(t) − γy(t)z(t)

≤ λ − µ̃
(
x(t) + y(t)

)
,

where µ̃ = min{µ1,µ2}. Thus, lim supt→∞(x(t) + y(t)) ≤ λ
µ̃
. From this relation and (1),

we conclude that, for a solution (x(t), y(t), z(t)) of (1) with x(0) + y(0) ≤ λ/µ̃, the
following differential inequality holds:

z′(t) ≤ νy − µ3z ≤ ν
λ

µ̃
− µ3z,

and, therefore, lim supt→∞ z(t) ≤ νλ
µ̃µ3

. Thus, the dynamics of system (1) can be analyzed
in the following feasible region:

Γ =
{
(x, y, z) ∈ R3

+ : x ≤ λ

µ1
, x + y ≤ λ

µ̃
, z ≤ νλ

µ̃µ3

}
. (2)

The region Γ is positively invariant and the model is well posed.
We will show that, in addition to the infection-free equilibrium P0 = (λ/µ1,0,0), sys-

tem (1) can have two chronic-infection equilibria P1 = (x, y,0) and P2 = (x∗, y∗, z∗)
in Γ , where x, y, x∗, y∗, z∗ are all positive and will be given later. The equilibrium P1

corresponds to the steady-state of asymptomatic carriers, namely, of chronic HTLV-I in-
fection with no CTL response, while P2 that of HAM/TSP patients, namely, of chronic
HTLV-I infection with persistent CTL response. Which of the three steady-states the
system eventually settles to is determined by a combination of two threshold parame-
ter

R0 = σβλ

µ1µ2
and R1 = σβλν

µ2(µ1ν + βµ3K)
. (3)

We call R0 and R1 the basic reproduction numbers for viral infection and for CTL re-
sponse, respectively. Note that R1 < R0 always holds. The following three outcomes are
possible:

(a) If R0 ≤ 1, the infection-free equilibrium P0 is globally stable in the feasible region Γ ,
and no chronic HTLV-I infection is possible.

(b) if R1 ≤ 1 < R0, then P0 is unstable, the carrier equilibrium P1 is stable, and all so-
lutions in the interior of Γ converge to P1. In this case, HTLV-I infection always
becomes chronic, but no CTL response can be established. The system behaves like
that of an asymptomatic carrier.

(c) If 1 < R1, then both P0 and P1 are unstable. The HAM/TSP equilibrium P2 in the
interior of Γ is stable. System (1) is uniformly persistent and all persistent solu-
tions converge to P2. In this case, both a chronic HTLV-I infection and a long-term
positive CTL response are established. The system mimics that of a HAM/TSP pa-
tient.
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The parameter R0 is the standard basic reproduction number in the literature of com-
partmental models. It measures the average number of secondary infections caused by
a single infected CD4+ T cell in a T-cell population at the infection-free equilibrium
(Nelson et al., 2000; Nowak and May, 2000). Thus, R0 is the threshold parameter that de-
termines if a chronic HTLV-I infection can be established in the CD4+ T-cell population.
In the face of a chronic infection, namely when R0 > 1, the parameter R1 determines if a
long-term HTLV-I specific CTL response can be established. The value of R1 may help
to explain why some people develop HAM/TSP while the majority of infected individu-
als remain as ACs. From a control viewpoint, making R0 < 1 will achieve clearance of
HTLV-I viruses, and hence the ultimate control and prevention of HTLV-I infection; while
making R1 < 1 will keep the level of CTL response low to reduce its cytotoxic effects,
and prevent an AC from developing HAM/TSP. Considering that R1 < R0, and the fact
that the majority of HTLV-I infected people are ACs, our results show that maintaining
R1 < 1 while allowing R0 > 1 can be a practical and achievable control and prevention
strategy for HAM/TSP.

The plan of the paper is as follows. In Sections 2 and 3, we describe the dynamics of
system (1). In Section 4, we discuss the implications of our mathematical results and var-
ious roles of CTL-related parameters in the development of HAM/TSP. The conclusions
are summarized in Section 5. The proof of our main result is given in the Appendix at the
end of the paper.

2. Equilibria

The infection-free equilibrium P0 = (λ/µ1,0,0) always exists. A chronic-infection equi-
librium P1 = (x, y,0) with no CTL response exists when R0 > 1, where R0 is given in
(3) and

x = µ2

σβ
= λ

µ1R0
, y = µ1(R0 − 1)

β
. (4)

We call P1 the carrier equilibrium. A chronic-infection equilibrium P2 = (x∗, y∗, z∗) with
CTL response (z∗ > 0) will be called a HAM/TSP equilibrium. The coordinates x∗, y∗, z∗

must satisfy

0 = λ − µ1x
∗ − βx∗y∗,

0 = σβx∗y∗ − µ2y
∗ − γy∗z∗,

0 = ν
y∗z∗

z∗ + K
− µ3z

∗.

(5)

From the second and third equations of (5), we obtain

x∗ = γ z∗ + µ2

σβ
≥ µ2

σβ
= x and y∗ = µ3(z

∗ + K)

ν
. (6)
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Fig. 2 Graphic illustration of the uniqueness of the chronic-infection equilibrium P2 with CTL response.

Substitute (6) into the first equation of (5), we obtain that z∗ is a positive root of the
quadratic polynomial

g(z) = ζ

[
R1 − 1 − z

(
γ

µ2
+ βµ3

µ1ν + βµ3K

)
− z2

(
γβµ3

µ2(µ1ν + βµ3K)

)]
, (7)

where

ζ = µ2(µ1ν + βµ3K)

σβν
.

Observe that g(0) = ζ(R1 − 1), g′(0) < 0, and the graph of g is concave down. These
observations imply that g has a unique positive root if R1 > 1; see Fig. 2. We thus have
the following result.

Theorem 2.1. If R0 ≤ 1, then P0 = (λ/µ1,0,0) is the only equilibrium in Γ . If R1 ≤
1 < R0, there is only the carrier equilibrium P1 = (x, y,0) with y > 0. If R1 > 1, there
are two chronic-infection equilibria: P1 and the HAM/TSP equilibrium P2 = (x∗, y∗, z∗)
with x∗, y∗, z∗ > 0.

3. Stability of equilibria and global dynamics

The global dynamics of system (1) is described in the following theorem. The proof is
given in the Appendix.

Theorem 3.1.

(a) If R0 ≤ 1, then the infection-free equilibrium P0 is globally asymptotically stable in
the closed region Γ .

(b) If R1 < 1 < R0, then P0 is unstable, and the carrier equilibrium P1 = (x, y,0) on the
boundary of Γ is globally asymptotically stable in Γ \ {x-axis}.

(c) If R1 > 1, then P0 and P1 are both unstable, and the HAM/TSP equilibrium is globally
asymptotically stable in the interior of Γ .

Theorem 3.1 completely determines the global dynamics of (1). It establishes R0 and
R1 as two sharp threshold parameters. These threshold parameters together determine the
outcomes of the HTLV-I infection:
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Fig. 3 Numerical simulations demonstrate three distinct outcomes of system (1). In (a), R0 ≤ 1, all so-
lutions converge to the infection-free equilibrium P0 = (λ/µ1,0,0). In (b), R1 < 1 < R0, all interior
solutions converge to the carrier equilibrium P1 = (x̄, ȳ,0). In (c), R1 > 1, all interior solutions converge
to the HAM/TSP equilibrium P2 = (x∗, y∗, z∗).

(1) If R0 ≤ 1, then the HTLV-I viruses are cleared.
(2) If R1 < 1 < R0, then HTLV-I infection becomes chronic but with a low level of provi-

ral load, and causes no CTL response. The system can be characterized as that of an
AC.

(3) If 1 < R1, then the HTLV-I infection is chronic with a high level of proviral load
and causes a persistent CTL response. The system can be characterized as that of a
HAM/TSP patient.

The results in Theorems 2.1 and 3.1 are illustrated by numerical simulations shown
in Fig. 3. For our numerical simulations, the time scale is days. A production rate of
CD4+ T cells is λ = 20 cells/mm/day3, which is of the same order of magnitude as
the one proposed in Nelson et al. (2000). The removal rates of infected and uninfected
CD4+ T cells are chosen to be equal, i.e., µ1 = µ2, and the rates are selected in the
range of 0.01–0.05 day−1, which is within the range given in Nelson et al. (2000).
The death rate for HTLV-I-specific CD8+ cells is assumed to be equal to that of the
CD4+, i.e., µ3 = µ1. The average CD4+ T-cell count in a healthy adult is approximately
1000 cells/mm3. Using Perelson’s scaling relation (Perelson, 1989), values of β in the
range of 10−3 mm3/cell/day are chosen. The range for σ is chosen as (0.01,0.05). The
range for ν is (0.001,0.03), and that for γ (0.002,0.02). We set K = 1. Within these
ranges of parameter values, the gap between R0 and R1 can be as big as one order of
magnitude.
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4. Biological implications

In this section, we discuss biological implications of our mathematical results in the pre-
vious two sections.

4.1. Asymptotic carriers and HAM/TSP patients

The majority of HTLV-I-infected individuals remain as lifelong asymptomatic carriers
even though they harbor detectable proviral loads. The basic reproduction number in the
presence of CTL response, R1, determines whether a long-term anti-HTLV-I CTL re-
sponse can be established. When R1 < 1, CD8+ T cells remain at a sufficiently low level
that cytotoxicity in the peripheral blood remains low. Thus, it is likely that R1 < 1 hold
for ACs. In contrast, the high level of CD8+ in HAM/TSP patients suggests that R1 > 1 is
likely for most of them. Therefore, the value of R1 may be used to distinguish ACs from
HAM/TSP patients.

4.2. Two different control strategies

The basic reproduction number in the absence of CTL response, R0, determines whether a
chronic HTLV-I-infection can be established. Thus, a total control strategy should achieve
a reduction of R0 to below 1, e.g., through a reduction in the ratio β/µ2. It is shown in
Macchi et al. (1997) that the reverse-transcriptase inhibitor zidovudine (AZT) inhibits
transmission of HTLV-I to PBLs and reduces β/µ2. Therefore, in principle, R0 could be
reduced with the help of reverse-transcriptase inhibitors.

In practice, it may be more realistic and even desirable to keep the infected individu-
als in the asymptomatic stage and prevent the development HAM/TSP. The basic repro-
duction number in the presence of CTL response, R1, determines whether a persistent
anti-HTLV-I CTL response can be established. When R1 < 1, CD8+ T cells remain at a
sufficiently low level that cytotoxicity in the peripheral blood remains low. A more prac-
tical control strategy is to keep the values of R0 and R1 in the range of R1 < 1 < R0 to
prevent the development of HAM/TSP. From (3), we have the relation

R1 = R0

(
1

1 + β
µ1

Kµ3
ν

)
. (8)

This relation shows that, given the same level of viral production in terms of R0 and β/µ1,
individuals with lower ratio Kµ3

ν
will have smaller R1, and hence a lower risk to develop

HAM/TSP. In Section 4.5, we will see that this ratio can be regarded as a threshold value
for the equilibrium proviral load ȳ the immune system will tolerate without mounting a
CTL response.

4.3. Positive correlation between proviral load and CD8 levels

Clinical experiments in the PBLs of HAM/TSP patients show that there exists a positive
correlation between the proviral load and the CD8+ T-cell level (Nagai et al., 2001). Note
that, when R1 > 1, the relation (6) can be rewritten as

y∗ = 1
d

(z∗ + K), (9)
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where d = ν
µ3

. This relation shows that, at equilibrium, the CD8+ T-cell level is propor-
tional to the proviral load, which is in accordance with the experiments.

4.4. The role of CTL-driven elimination rate γ

Note in (3) that the rate of CTL-driven elimination, γ , does not affect the values of R1

nor R0. Nevertheless, a larger γ leads to lower CD8+ CTL levels as we show in the next
result.

Theorem 4.1. Assume that R1 > 1. Then both y∗ and z∗ are decreasing functions of γ .

Proof: Rewrite the function g in (7) as

g(z) = d − c(γ + b)z − aγ z2,

where a, b, c, and d are positive constants independent of γ . Let z∗ = z∗(γ ) be the posi-
tive root of g. Then implicit differentiation leads to

dz∗

dγ
= − cz∗ + az∗2

c(γ + b) + 2aγ z∗ < 0,

and thus z∗ decreases as γ increases. From the linear relation (9) between y∗ and z∗, we
know that y∗ also decreases as γ increases. !

A larger γ means that CTLs eliminate infected CD4s more effectively, and by The-
orem 4.1, the body then requires fewer CTLs to maintain the proviral load at equi-
librium. A lower level of CTLs in turn lowers the cytotoxic effects of the CTL re-
sponse. This agrees with the earlier observation that HAM/TSP patients may have
less effective CTL functions than asymptomatic carriers (Nowak and Bangham, 1996;
Wodarz et al., 1999).

4.5. CTL response: what constitutes a good responder?

Analysis in Sections 4.3 and 4.4 show that HTLV-I specific CTLs play a protective role
in keeping the HTLV-I proviral load in check, and a more efficient CTL lysis will lead to
lower levels of CTLs and proviral load. While this suggests ACs may have more efficient
CTLs, it does not explain the observed inter-individual differences of proviral load and
CTL levels, nor does it explain why many ACs have a higher proviral load than HAM/TSP
patients (Asquit and Bangham, 2007; Bangham et al., 2009). Related to CTL efficacy, or
CTL responsiveness in particular, questions remain as to what constitutes a good respon-
der, and thus reduces risk of developing HAM/TSP.

In model (1), CTL responsiveness to HTLV-I is related to parameters ν, µ3, and K .
Which of these parameters is more important to determine responsiveness? Our criterion
for ACs, R1 < 1, can offer new insights into this question. From (3), we have

R1 < 1 ⇐⇒ ȳ <
Kµ3

ν
. (10)
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In this relation, ȳ = µ1
β

(R0 − 1) is the equilibrium level of proviral load in the absence of

CTL response. The ratio Kµ3
ν

is only related to the CTL response. Relation (10) establishes
Kµ3

ν
as the threshold level of proviral load the body will tolerate without mounting any

CTL response. This can also be seen from the z equation in (1)

z′ = ν

K

(
y

z/K + 1
− Kµ3

ν

)
z.

If the proviral load y(t) is less than the threshold Kµ3/ν, we have

z′ ≤ ν

K

(
y − Kµ3

ν

)
z ≤ 0,

and z(t) will decrease exponentially. If, on the other hand, y(t) > Kµ3/ν and z(t) is
small, then we have

z′ ≈ ν

K

(
y − Kµ3

ν

)
z,

and z(t) will increase exponentially. Accordingly, whether an individual is a good re-
sponder depends on the relationship between the ability of viral production represented
by ȳ = µ1

β
(R0 − 1) and the capacity of the CTL response represented by Kµ3/ν.

The analysis above may explain a key difference between ACs and HAM/TSP patients,
and offer a plausible mechanism for HAM/TSP development among HTLV-I infected
people (R0 > 1): if R1 > 1, then ȳ > Kµ3/ν. The body will mount a persistent CTL
response to HTLV-I, and a positive equilibrium (x∗, y∗, z∗) will be reached. If R1 < 1,
then ȳ < Kµ3/ν. The equilibrium level of proviral load is below the tolerated threshold.
The body will not mount a CTL response. In this case, even if the proviral is transiently
above the threshold Kµ3/ν, either due to new infection or stochastic fluctuations, the
body can mount a short-term CTL response to bring the proviral load below the threshold
and then shut down the CTL response. A key difference between ACs and HAM/TSP
patients may be the intermittent or persistent presence of CTL cytotoxicity in the body.
This difference will be further investigated in our future studies.

5. Summary

CD8+ cytotoxic T lymphocytes eliminate infected cells by releasing pore-forming pro-
teins and inflammatory cytokines such as IFN-γ and TNF-α. In HTLV-I infection, CD8+

T cells target primarily the Tax proteins expressed on the surface of infected CD4+ T cells
(Parker et al., 1992; Yamano et al., 2002). It has been observed that HAM/TSP patients
harbor abundant numbers of anti-Tax CTLs. Furthermore, HTLV-I-specific CD8+ T cells
have been found in the cerebrospinal fluid of HAM/TSP patients (Nagai et al., 2001).
These observations suggest that the high level of CD8+ T cells and their cytotoxic effects
contribute to the pathogenesis of HAM/TSP.

A mathematical model for the CD8+ T-cell response to HTLV-I infection is investi-
gated. The model considers that HTLV-I-infected cells are eliminated at rate γ by CTLs.
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Since infected CD4+ T cells stimulate CD8+ to proliferate, a density-dependent prolif-
eration with ν as the average rate of proliferation (also called responsiveness) is consid-
ered (Nowak and Bangham, 1996). The number of equilibria and the global dynamics of
system (1) depends on the basic reproduction number in the absence of CTL response,
R0, and the basic reproduction number in the presence of CTL response, R1. The thresh-
old parameter R0 determines whether the HTLV-I infection is chronic among the CD4+

T-cell pool. On the other hand, the parameter R1 determines whether a long-term CD8+

CTL response can be maintained.
Based on the high levels of CD8+ CTL in HAM/TSP patients, it is likely that those

patients have R1 > 1, whereas asymptomatic carriers (ACs) are likely to have R1 values
below 1. Moreover, when R1 > 1, there exists a positive correlation between the proviral
load and the CD8+ T-cell level at equilibrium. This correlation has been clinically verified
in HAM/TSP patients (Nagai et al., 2001). Therefore, the parameter R1 could be a useful
threshold parameter to distinguish ACs from HAM/TSP patients, and a useful control
parameter to prevent ACs from developing HAM/TSP.

The equilibrium proviral load is the result of a dynamic interaction of HTLV-I infection
and HTLV-I specific CTL response. The threshold parameter R1 captures this interaction:
R1 < 1 is equivalent to ȳ < Kµ3

ν
. The ratio Kµ3

ν
describes the immune system’s tolerance

of proviral load level. Such a relation explains individual differences of HTLV-I proviral
load and why some ACs have a higher proviral load than HAM/TSP patients. It also sug-
gests that the proviral load level of an infected individual should be weighed in relation to
the individual’s CTL response capacity to determine the risk for HAM/TSP development.
On the other hand, the efficiency parameter γ for CTL lysis does not change the values
of R1. If higher values of R1 serves as a determinant for HAM/TSP development, the effi-
ciency of CTL lysis will not separate ACs from HAM/TSP patients. More realistic models
that incorporate HTLV-I induced mitosis as in Wodarz et al. (1999) and Gómez-Acevedo
and Li (2005) need to be investigated to gain a better understanding of the dynamics
interaction of HTLV-I infection and CTL response.
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Appendix

This Appendix contains the proof of Theorem 3.1.

Proof of (a): We assume that R0 ≤ 1 and thus P0 is the only equilibrium in the positively
invariant region Γ . To show that P0 is globally stable in Γ , consider a Lyapunov function
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L = y. We have

L′ = y ′ = σβxy − µ2y − γyz ≤ y(σβx − µ2) ≤ µ2y

(
σβx

µ2
− 1

)
≤ µ2y(R0 − 1) ≤ 0,

if R0 ≤ 1. The maximal compact invariant set in {(x, y, z) ∈ Γ : L′ = 0} is the single-
ton {P0}. The global stability of P0 follows from the LaSalle invariance principle (LaSalle,
1976). !

Proof of (b): We assume that R1 ≤ 1 < R0. In this case, P0 is unstable, P1 exists on the
boundary of Γ , and P2 does not exist in the feasible region. To show that P1 = (x, y,0)

is globally stable in Γ , we consider a Lyapunov function

V = V (x, y, z) = x − x lnx + 1
σ

(y − y lny) + γKz

σν
, (x, y, z) ∈ R3

+,

where x, y are given in (4). It can be verified that V has a global minimum at the equilib-
rium point P1, and thus V − V (P1) ≥ 0 is positive definite with respect to P1. From (1)
and (4), we obtain

dV

dt
= x ′

(
1 − x

x

)
+ y ′

σ

(
1 − y

y

)
+ γKz′

σν

= (λ − µ1x − βxy) +
(

βxy − µ2

σ
y − γ

σ
yz

)
−

(
λ

x

x
− µ1x − βxy

)

−
(

βxy − µ2

σ
y − γ

σ
yz

)
+ γK

σ

yz

z + K
− γµ3K

σν
z.

From (4), it follows that λ = µ1x + βxy. Therefore,

dV

dt
= (µ1x + βxy − µ1x) −

(
µ2

σ
y + γ

σ
yz

)
−

(
µ1

x2

x
+ βx2y

x
− µ1x − βxy

)

−
(

βxy − µ2

σ
y − γ

σ
yz

)
+ γK

σ

yz

z + K
− γµ3K

σν
z

= µ1x

(
2 − x

x
− x

x

)
+ βxy − βx2y

x
+ βxy − βxy + µ2

σ
(y − y)

+ γK

σ

yz

z + K
− γ

σ
yz + γ

σ
yz − γµ3K

σν
z.

Since σβx = µ2, we have

dV

dt
= (µ1x + βxy)

(
2 − x

x
− x

x

)
+ γ

σ
z

(
y − µ3K

ν

)
− γyz2

σ (z + K)
.

Using (3) and (4), we obtain

dV

dt
= (µ1x + βxy)

(
2 − x

x
− x

x

)
+ γ (µ1ν + µ3βK)

σβν
(R1 − 1)z − γyz2

σ (z + K)
≤ 0.
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For the last step, the inequality
√

ab ≤ (a + b)/2, for a, b ≥ 0, is used. This relation and
the positive definiteness of V − V (P1) with respect to P1 prove the stability of P1 and its
global attractivity in the interior of Γ when R1 ≤ 1 < R0. !

Proof of (c): In this case, we assume that 1 < R1. Both P0 and P1 are unstable, using
the Lyapunov functions in the proof of previous two cases. P2 = (x∗, y∗, z∗) exists in the
interior of Γ . We want to show that P2 is globally stable in the interior of Γ . Consider a
Lyapunov function

W(x,y, z) = (x − x∗ lnx) + 1
σ

(y − y∗ lny) + γ (z∗ + K)

σν
(z − z∗ ln z),

for (x, y, z) ∈ R3
+, where x∗, y∗, z∗ are coordinates of the equilibrium P2, and satisfy

equations in (5). Note that W has a global minimum at P2 and W −W(P2) ≥ 0 is positive
definite with respect to P2. Direct calculation and (1) lead to

dW

dt
= x ′

(
1 − x∗

x

)
+ y ′

σ

(
1 − y∗

y

)
+ γ (z∗ + K)

σν
z′

(
1 − z∗

z

)

= (λ − µ1x − βxy) +
(

βxy − µ2

σ
y − γ

σ
yz

)

+
(

γ (z∗ + K)

σ

yz

z + K
− γ (z∗ + K)µ3

σν
z

)
−

(
λ

x∗

x
− µ1x

∗ − βx∗y

)

−
(

βxy∗ − µ2

σ
y∗ − γ

σ
y∗z

)
−

(
γ (z∗ + K)

σ

yz∗

z + K
− γ (z∗ + K)µ3

σν
z∗

)
.

Using λ = µ1x
∗ + βx∗y∗ in (5), we obtain

dW

dt
= (βx∗y∗ + µ1x

∗ − µ1x) −
(

µ2

σ
y + γ

σ
yz

)

+
(

γ (z∗ + K)

σ

yz

z + K
− γ (z∗ + K)µ3

σν
z

)

−
(

β
x∗2y∗

x
+ µ1

x∗2

x
− µ1x

∗ − βx∗y

)
−

(
βxy∗ − µ2

σ
y∗ − γ

σ
y∗z

)

−
(

γ (z∗ + K)

σ

yz∗

z + K
− γ (z∗ + K)µ3

σν
z∗

)

= µ1x
∗
(

2 − x∗

x
− x

x∗

)
+ βx∗y∗ − β

x∗2y∗

x
+ βx∗y − βxy∗ + µ2

σ
(y∗ − y)

+ γ

σ
(y∗z − yz) +

(
γ (z∗ + K)

σ

yz

z + K
− γ (z∗ + K)µ3

σν
z

)

−
(

γ (z∗ + K)

σ

yz∗

z + K
− γ (z∗ + K)µ3

σν
z∗

)
.
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Using Eqs. (5) and (6), we have

dW

dt
= µ1x

∗
(

2 − x∗

x
− x

x∗

)
+ βx∗y∗ − β

x∗2y∗

x
+ βx∗y − βxy∗

+
(

βx∗ − γ

σ
z∗

)
(y∗ − y) + γ

σ
(y∗z − yz)

+
(

γ (z∗ + K)

σ

yz

z + K
− γ

σ
y∗z

)

−
(

γ (z∗ + K)

σ

yz∗

z + K
− γ

σ
y∗z∗

)

= (µ1x
∗ + βx∗y∗)

(
2 − x∗

x
− x

x∗

)
+ γ

σ
(yz∗ − yz)

(
1 − z∗ + K

z + K

)

= (µ1x
∗ + βx∗y∗)

(
2 − x∗

x
− x

x∗

)
− γ

σ

y

z + K
(z − z∗)2 ≤ 0,

for all (x, y, z) in the interior of Γ . Furthermore, in the interior of Γ , dW/dt = 0 only
occurs when x = x∗, y = y∗ and z = z∗. This, together with the positive definiteness of
W − W(P2), proves the global stability of P2 when R1 > 1. !
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