
J Dyn Diff Equat (2014) 26:165–179
DOI 10.1007/s10884-014-9349-2

Global Hopf Bifurcation Analysis of a Nicholson’s
Blowflies Equation of Neutral Type

Michael Y. Li · Chuncheng Wang · Junjie Wei

Received: 11 September 2013 / Revised: 3 January 2014 / Published online: 24 January 2014
© Springer Science+Business Media New York 2014

Abstract We investigate Hopf bifurcations in a delayed Nicholson’s blowflies equation of
neutral type, derived from the Gurtin–MacCamy model. A key parameter that determines
the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is
derived. Global extension of local Hopf branches is established by combining a global Hopf
bifurcation theorem with a Bendixson criterion for higher dimensional ordinary differential
equations. We show that a branch of slowly varying periodic solutions and a branch of fast
oscillating periodic solutions coexist for all large delays.

Keywords NFDEs · Nicholson’s blowflies equation · Hopf bifurcations

1 Introduction

Gurney [6] proposed the following delayed Nicholson blowflies equation to model the pop-
ulation N (t) of Australian Sheep blowflies

N ′(t)) = −γ N (t)+ pN (t − τ)e−aN (t−τ). (1.1)

Parameter p is the maximum per capita daily egg production rate, 1/a the size at which
the blowfly population reproduces at its maximum rate, γ the per capita daily adult death
rate and τ the generation time. Nicholson blowflies model (1.1) and its formulations using
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discrete, periodic, and diffusive equations have been extensively studied in the literature, see
[12,14,16,15,20] and references therein.

In [1], Eq. (1.1) is reformulated from a generalized Gurtin–MacCamy model [7] for an
age-structured population

ut + ua + μ(a, ω)u = 0,

u(t, 0) =
∞∫

0

b(a, ω)u(t, a)da,

ω(t) =
∞∫

0

ρ(a)u(t, a)da, (1.2)

with initial condition u(0, a) = u0(a). Here u(t, a) is the age distribution at time t and with
the following properties: u(t, τ ) = u(0, τ − t) = u0(τ − t), and u(t, a) → 0 as a → ∞,
and function ω is a weighted average of the total population with weight function ρ(a) ≥ 0.
Parameters b and μ, depending on the age and the average ω, denote the birth and death
rates, respectively. Let τ be the critical age that separates adults and juveniles. Then the total
population of the mature individuals is

N (t) =
+∞∫

τ

u(t, a)da.

Let ρ(a) = 1 and

b(a, ω) = pe−aωHτ (a)+ cδτ (a),

μ(a, ω) = γ Hτ (a),

where p, a, c, γ are positive numbers, Hτ (a) is the Heaviside function with jump at a = τ

and δτ (a) is the delta function with peak at a = τ . Then, it can be verified that N (t) satisfies

N ′(t)+ γ N (t) = u0(τ − t) (1.3)

for 0 < t < τ , and

N ′(t)− cN ′(t − τ) = −γ N (t)+ cγ N (t − τ)+ pN (t − τ)e−aN (t−τ) (1.4)

for t > τ . In particular, (1.1) can be derived from (1.4) by further assuming c = 0. For
more details on the derivation of (1.3) and (1.4), we refer the readers to [1,4] and references
therein.

Equation (1.4) is a neutral functional differential equations (NFDEs). Under the assump-
tion 0 < c < 1, the theory on the decomposition of the phase space for NFDEs applies
[8], and (1.4) can be written as an abstract ODE in a suitable phase space [9]. The standard
approach for investigating Hopf bifurcations for abstract ODEs can also be applied to (1.4)
by studying the reduced bifurcation equations on the center manifold [2]. Using τ as a bifur-
cation parameter, we prove the occurrence of Hopf bifurcations at the positive equilibrium
N∗ when τ passes through a sequence of bifurcation values τk, k = 1, 2, . . .. Following
the development in [18], we also derive parameters that determine the direction of the Hopf
bifurcations and the stability of bifurcating periodic solutions. Furthermore, we investigate
global extensions of local Hopf branches when τ moves away from the bifurcation value τk .
This is accomplished by combining global Hopf bifurcation theorems for NFDEs [10,24,23]
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with higher dimensional Bendixson-Dulac criteria for ordinary differential equations [13].
We show that a branch of slowly varying periodic solutions and a branch of fast oscillat-
ing periodic solutions coexist for all large delays. For arbitrary large delays, our numerical
simulations show the existence of both stable slowly-varying periodic solutions and unstable
fast-oscillating periodic solutions. Our results generalize the global Hopf bifurcation results
in [20] for the delayed Nicholson blowflies equation (1.1).

Our study is mainly motivated by [19,20], and our analysis follows a general framework
developed in [17,18]. An earlier study on local and global Hopf bifurcations for a transmission
line equation was done in [21]. For NFDEs with symmetry, equivariant Hopf bifurcations
are studied in [5] without using the center manifold reduction, and the global continuation
problem is treated in [11] within this framework.

Our paper is organized as follows. In Sect. 2, we establish a positively invariant region in
the positive cone of the phase space, in which model (1.4) is well defined in the sense that
positive initial conditions give rise to positive solutions. In Sect. 3, we prove the occurrence
of a sequence of local Hopf bifurcations using τ as the bifurcation parameter. In Sect. 4,
the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions
are investigated. In Sect. 5, we investigate global extension of local Hopf bifurcations and
establish the existence of slowly-varying periodic solutions for all large delays.

2 Well-Posedness

For (1.4) to describe the dynamics of blowflies population, it is desirable that positive initial
conditions lead to positive solutions. For neutral delay equations, this is not a trivial matter.
Without loss of generality, we assume the initial time for (1.4) is zero. It is shown in [4]
that, for (1.3) and (1.4), N (t) remains non-negative provided initial values u0(a) for (1.2)
are non-negative. This suggests that initial conditions for (1.4) need to be further restricted
to ensure positivity of solutions.

One such restriction was given in [25]. Consider a subset

�D = {φ ∈ C([−τ, 0],R) | φ(0)− cφ(−τ) ≥ 0, and φ(θ) ≥ 0, θ ∈ [−τ, 0]}.
The following result is a special case of Lemma 3.1 in [25].

Proposition 2.1 The subset �D is positively invariant with respect to (1.4).

In particular, if the initial condition φ ∈ �D , then the solution N (t, φ) is nonnegative for
t > 0.

Motivated by results in [4] and relation (1.3) in particular, we give another set of restrictions
on the initial condition to ensure positivity of solutions. Consider the set

�u = {φ ∈ C([−τ, 0],R) | the left derivativeD−φ(θ) exists,

D−φ(θ)+ γφ(θ) ≥ 0, and φ(θ) ≥ 0, θ ∈ (−τ, 0]}.
We prove the following result.

Proposition 2.2 For (1.4), �u is a positively invariant set.

Proof For any initial condition φ ∈ �u, θ ∈ [−τ, 0], and t ∈ (0, τ ], the solution N (t) of
(1.4) satisfies that D−N (t) exists,

D−N (t)+ γ N (t) = c(D−φ(θ)+ γφ(θ))+ pφ(θ)e−aφ(θ),
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and

D−N (t)+ γ N (t) ≥ 0.

Solving this inequality we obtain N (t) ≥ N (0)e−γ t ≥ 0, t ∈ (0, τ ]. Therefore, N (t, φ) ∈
�u for all t ∈ (0, τ ]. Similarly, for t ∈ (τ, 2τ ],

D−N (t)+ γ N (t) = c(D−N (t − τ)+ γ N (t − τ))+ pN (t − τ)e−aN (t−τ).

We can show that N (t, φ) ∈ �u for t ∈ (τ, 2τ ]. This argument can be continued to all positive
time, which completes the proof. �	

In the remaining of the paper, we investigate the dynamics of (1.4) in a positively invariant
region � with either � = �D or � = �u , and formulate our results accordingly.

3 Local Hopf Bifurcations

Assume that 0 < c < 1. Rewrite Eq. (1.4) as

d

dt
[N (t)− cN (t − τ)] = −γ N (t)+ cγ N (t − τ)+ pN (t − τ)e−aN (t−τ). (3.1)

Note that 1 − c > 0. A unique positive equilibrium N∗ = 1
a log p

(1−c)γ exists if and only if
p > (1 − c)γ . The linearization of (3.1) at N = N∗ is given by

d

dt
[N (t)− cN (t − τ)] = −γ N (t)− γ ((1 − c)aN∗ − 1)N (t − τ),

with its characteristic equation

λ(1 − ce−λτ )+ γ + γ ((1 − c)aN∗ − 1)e−λτ = 0. (3.2)

Suppose that iω0, ω0 > 0, is a root of (3.2), that is

iω0(1 − ce−iω0τ )+ γ + γ ((1 − c)aN∗ − 1)e−iω0τ = 0.

Then, separating the real and imaginary parts, we have

γ − cω0 sinω0τ + γ ((1 − c)aN∗ − 1) cosω0τ = 0,

ω0 − cω0 cosω0τ − γ ((1 − c)aN∗ − 1) sinω0τ = 0. (3.3)

Solving (3.3) we obtain a unique positive solution

ω0 =
√
γ 2[((1 − c)aN∗ − 1)2 − 1]

1 − c2 . (3.4)

In particular, ω0 > 0 exists if and only if (1 − c)aN∗ − 2 > 0, or equivalently, p >

(1 − c)γ e
2

1−c . Furthermore, iω0 is a (simple) imaginary root of (3.2) if and only if τ = τk ,
where

τk = 1

ω0

[
arcsin

(
γω0(c + (1 − c)aN∗ − 1)

c2ω2
0 + γ 2((1 − c)aN∗ − 1)2

)
+ 2kπ

]
, k = 0, 1, . . . . (3.5)

Let λ = α(τ)+iω(τ) denote the root of (3.2) near τ = τk satisfyingα(τk) = 0, ω(τk) = ω0.
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Proposition 3.1
dα

dτ
(τk) > 0.

Proof Differentiating (3.2) with respect to λ we obtain

dτ

dλ

∣∣∣∣
λ=iω0

= −1 − ce−λτ + τcλe−λτ − γ τ((1 − c)aN∗ − 1)e−λτ

cλ2e−λτ − λγ ((1 − c)aN∗ − 1)e−λτ

∣∣∣∣
λ=iω0,τ=τk

= cosω0τk + i sinω0τk − c + icω0τk − γ ((1 − c)aN∗ − 1)τk

cω2
0 + iω0γ ((1 − c)aN∗ − 1)

.

Therefore, using (3.3), we obtain

dα

dτ
(τk) = c2ω4

0 + ω2
0γ

2((1 − c)aN∗ − 1)2

(cosω0τk − c − γ (aN∗ − 1)τk)cω2
0 + (sinω0τk + cω0τk)ω0γ ((1−c)aN∗ − 1)

= c2ω4
0 + ω2

0γ
2((1 − c)aN∗ − 1)2

ω0(1 − c2)
> 0,

which completes the proof. �	
When τ = 0, the only root of (3.2) is λ = −aN∗γ < 0. Since the characteristic roots have

continuous dependence on τ , and purely imaginary roots only occurs at τ = τk, k = 0, 1, . . .,
a continuation argument leads to the following result.

Proposition 3.2 Assume that 0 < c < 1.

(1) If (1 − c)γ < p ≤ (1 − c)γ e
2

1−c and τ > 0 or if p > (1 − c)γ e
2

1−c and τ ∈ [0, τ0),
then all roots of the characteristic equation (3.2) have negative real parts.

(2) If p > (1−c)γ e
2

1−c and τ = τ0, there is a pair of simple imaginary roots ±iω0 of (3.2),
and all the other roots have negative real parts.

(3) If τ ∈ (τk, τk+1), then (3.2) has exactly 2(k + 1) roots with positive real parts, k =
0, 1, . . ..

Based on the distribution of characteristic roots described in Proposition 3.2, and the
transversality condition in Proposition 3.1, we can derive following results on the stability
of N∗ and Hopf bifurcation, using the standard linear NFDEs theory [8].

Theorem 3.3 Assume that 0 < c < 1.

(1) If (1 − c)γ < p ≤ (1 − c)γ e
2

1−c , then N∗ is asymptotically stable for all τ > 0.

(2) If p > (1 − c)γ e
2

1−c , then N∗ is asymptotically stable for τ ∈ [0, τ0) and unstable for
τ > τ0.

(3) For p > (1 − c)γ e
2

1−c , Eq. (3.1) undergoes a Hopf bifurcation at N∗ when τ = τk, k =
0, 1, . . ..

4 Properties of Hopf Bifurcations

A standard approach to study the direction and stability of Hopf bifurcations is to use normal
form techniques. In [3], a method of obtaining normal forms is derived for FDEs without
computing the center manifold. The method in [3] is extended to NFDEs in [17]. Explicit
formula for calculating the normal forms for one dimensional NFDEs are derived in [18]. In
this section, we apply the methods in [17,18] to analyze (3.1).
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First, we formulate (3.1) as an abstract ODE in the Banach space

BC := {φ : [−1, 0] → R | φ is uniformly continuous on [−1, 0)}.
Rescaling the time by t → t/τ so that the delay will be 1, we can rewrite (3.1) as

d

dt
[N (t)− cN (t − 1)] = −τγ N (t)+ τcγ N (t − 1)+ τpN (t − 1)e−aN (t−1). (4.1)

Let N (t) = N∗ + y(t). Then (4.1) becomes

d

dt
[y(t)−cy(t −1)]=−τγ (N∗+y(t))+τγ (N∗+y(t −1))(c+(1−c)e−ay(t−1)). (4.2)

Set

μ(θ) =
{−c, θ = −1

0, θ ∈ (−1, 0], η(τ, θ) =
⎧⎨
⎩

−γ τ, θ = 0
0, θ ∈ (−1, 0)
γ τ((1 − c)aN∗ − 1), θ = −1.

We can define linear functionals D and L on BC

Dφ = φ(0)−
0∫

−1

φ(θ)dμ(θ) = φ(0)− cφ(−1),

L(τ )φ =
0∫

−1

φ(θ)dη(θ) = −γ τφ(0)− γ τ((1 − c)aN∗ − 1)φ(−1).

Introducing a new parameter r = τ − τ0, we rewrite (4.2) as

d

dt
[Dyt ] = L(τ0)yt + F(r, yt ), (4.3)

where

F(r, φ) = −γ rφ(0)− γ r((1 − c)aN∗ − 1)φ(−1)

−γ (τ0 + r)[N∗ − (N∗ + φ(−1)(c + (1 − c)e−aφ(−1))

−((1 − c)aN∗ − 1)φ(−1)]. (4.4)

Consider the linearization of (4.3)

d

dt
Dyt = L(τ0)yt

in the phase space C , and let � = {−iω0τ0,−iω0τ0}. Using the formal adjoint theory for
NFDEs [8], we decompose C as C = P ⊕ Q. A basis of the center space P is given by
� = (φ1, φ2) with φ1 = eiω0τ0θ , φ2 = e−iω0τ0θ . Choose a basis � for the adjoint space P∗,
such that (�,�) = I , where (·, ·) is the bilinear form on C∗ × C defined by

(ψ, φ) = ψ(0)φ(0)−
0∫

−1

d

⎡
⎣

θ∫

0

ψ(θ − α)dμ(α)

⎤
⎦φ(θ)−

0∫

−1

θ∫

0

ψ(θ − τ)dη(τ)φ(θ)dθ.

Thus �(s) = col(ψ1, ψ2) = col(ρe−iω0τ0s, ρ̄eiω0τ0s), where

ρ = 1

1 − ce−iω0τ0 − γ τ0((1 − c)aN∗ − 1)e−iω0τ0
.

Using the same process as in Sect. 2 of [17], we obtain the following result.
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Proposition 4.1 (1) Equation (4.3) can be written in the abstract form

d

dt
yt = Ayt + X0 F(r, yt ), (4.5)

where the operator A : BC → BC is defined by

Aφ(θ) = φ′(θ)+ X0[L(τ0)φ(θ)− Dφ′(θ)],
and the function X0 : [−1, 0] → R is given by X0(θ) = 0 for θ ∈ [−1, 0) and
X0(0) = 1.

(2) Let yt = �x(t)+ z, x(t) ∈ C
2, z ∈ Q. Then (4.5) is decomposed as

ẋ = Bx +�(0)F(r,�x + z),

ż = Az + (I − π)X0 F(r,�x + z), (4.6)

where

B =
(

iω0τ0 0
0 −iω0τ0

)

and π : BC → P is defined as

π(φ + X0ς) = �[(�, φ)+�(0)ς].
Next, we compute the normal forms of Eq. (4.6) up to the third order using formula

provided in [18]. Let F = 1
2 F2 + 1

3! F3 + 1
4! F4 + · · · be the Taylor expansion of F . Using

(4.4) and (4.4), for each n, we can derive

Fn(φ, r) =
∑

|(k,l,m)|=n

ak,l,mφ(0)
kφ(−1)lrm,

where the coefficients are given by

a1,0,1 = −γ, a1,1,0 = 0, a0,1,1 = −γ ((1 − c)aN∗ − 1),

a2,0,0 = 0, a0,2,0 = aγ τ0((1 − c)aN∗ − 2),

a2,0,1 = 0, a0,2,1 = aγ ((1 − c)aN∗ − 2), a3,0,0 = 0,

a0,3,0 = a2γ τ0(−(1 − c)aN∗ + 3), a2,1,0 = 0, a1,2,0 = 0. (4.7)

The characteristic equation associated with the linearization of (4.2) at 0 is

�(λ, τ) = λ(1 − ce−λ)− b(τ )− c(τ )e−λ = 0,

where b(τ ) = −γ τ and c(τ ) = −γ τ((1 − c)aN∗ − 1). In order to simplify the notation, we
define the operator � by

�(cxq1
1 xq2

2 rm) =
[

cxq1
1 xq2

2 rm,

c̄xq2
1 xq1

2 rm

]
, c ∈ C, (q1, q2,m) ∈ N

3, |(q1, q2,m)| = j.

According to [18], the second order term g1
2(x, 0, r) and the third order term g1

3(x, 0, 0) in
the normal form of (4.6) are given by

g1
2(x, 0, r) = 2�(ρ(b′(τ0)+ c′(τ0)e

−iω0τ0)x1r), (4.8)

and
g1

3(x, 0, 0) = �(K2,1,0)x
2
1 x2, (4.9)
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respectively, where

K2,1,0 = ψ1(0)
[

A2,1,0

+ 3A2,0,0

�(2iω0τ0, τ0)
(2a2,0,0 + a1,1,0(e

−2iω0τ0 + eiω0τ0)+ 2a0,2,0e−iω0τ0)

− 3A1,1,0

b(τ0)+ c(τ0)
(2a2,0,0 + a1,1,0(1+e−iω0τ0)+2a0,2,0e−iω0τ0)

]
(4.10)

and

A2,1,0 = 3a3,0,0 + 3a0,3,0e−iω0τ0 + a2,1,0(e
iω0τ0 + 2e−iω0τ0)+ a1,2,0(2 + e−2iω0τ0)

= 3a2γ τ0(−(1 − c)aN∗ + 3)e−iω0τ0 ,

A2,0,0 = a2,0,0 + a1,1,0e−iω0τ0 + a0,2,0e−2iω0τ0 = aγ τ0((1 − c)aN∗ − 2)e−2iω0τ0 ,

A1,1,0 = 2a2,0,0 + a1,1,0(e
iω0τ0 + e−iω0τ0)+ 2a0,2,0 = 2aγ τ0((1 − c)aN∗ − 2). (4.11)

Using (4.7), (4.10) and (4.11), we obtain

K2,1,0 = 3aγ τ0ρ
[
(−(1 − c)aN∗ + 3)e−iω0τ0 + 2aγ τ0((1 − c)aN∗ − 2)e−iω0τ0

(
((1−c)aN∗−2e−2iω0τ0 )

2iω0τ0(1−ce−2iω0τ0 )+γ τ0+γ τ0((1−c)aN∗−1)e−2iω0τ0
− 2((1−c)aN∗−2)

(1−c)aN∗γ τ0

)]
.

(4.12)

In summary, we have the following result.

Proposition 4.2 A normal form of (3.1) on the center manifold of the origin is given by

ẋ = Bx + 1

2
g1

2(x, 0, r)+ 1

3! g1
3(x, 0, r), (4.13)

where g1
2 and g1

3 are given in (4.8), (4.9) and (4.12).

Through the change of variables x1 = w1 − iw2, x2 = w1 + iw2, w1 = ζ cos ξ, w2 =
ζ sin ξ , Eq. (4.13) becomes

ζ̇ = rτ0α
′(τ0)ζ + K ζ 3 + O(r2ζ ),

ξ̇ = −ω0 + O(|(ζ, r)|), (4.14)

where
K = Re(K2,1,0). (4.15)

By the standard Hopf bifurcation theory for ODEs [22], and using α′(τ0) > 0, we arrive at
the following theorem.

Theorem 4.3 In the case (2) of Theorem 3.3, the dynamics of equation (4.1) near the origin
is governed by Eq. (4.14). Moreover, if K < 0 (resp. K > 0), then the Hopf bifurcation
at τ = τ0 is supercritical (resp. subcritical), and the bifurcating periodic solutions are
asymptotically stable (resp. unstable).

We carry out numerical simulations to support our theoretical analysis. Consider (1.4) with
c = 0.1, a = 1, γ = 0.5, p = 5. Using (3.5), (4.12) and (4.15), we have τ0 = 7.29, K =
−3.46 and N∗ = 2.4. By Theorem 3.3, we know that (1.4) undergoes a Hopf bifurcation at
N∗ when τ = τ0. Furthermore, by Theorem 4.3, the Hopf bifurcation is supercritical and the
bifurcating periodic solutions are orbitally asymptotically stable. Two Matlab simulations
of asymptotically stable periodic solutions are shown in Fig. 1, using this set of parameter
values and for different τ .
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Fig. 1 a An asymptotically stable periodic solution bifurcating from the equilibrium N∗ = 2.4 when τ =
7.5 > τ0. b A stable periodic solution when τ = 20

5 Global Hopf Bifurcation

Simulation results in previous section suggest that bifurcating periodic solutions may continue
to exist for very large values of τ . In this section, we will establish that local Hopf branches
can be globally extended to large values of bifurcation parameter τ .

Let x = α be the unique solution of xex = e−1 and assume there exists real number
β > 1 such that

3 + c

1 − c
− βe

1+c
1−c > log

1 − α

β2 (5.1)

and

β <
2(1 + c)√

2 + c
e

−2c
1−c (5.2)

for 0 < c < 1. Denote the set of β satisfying (5.1) and (5.2) by Ic. Then Ic is nonempty.
In fact, it can be verified that there exists β > 1 that satisfies (5.1) and (5.2) when c = 0.
Therefore, the two inequalities continue to hold for such a β for sufficient small c > 0.

Theorem 5.1 Assume 0 < c < 1, β ∈ Ic and γ (1 − c)e
2

1−c < p < βγ (1 − c)e
2

1−c . Then
the following statements hold.

(1) All Hopf branches bifurcating from τk can be globally extended to all τ ≥ τk , for
k = 0, 1, . . ..

(2) The global Hopf branch based at τ0 consists of slowly varying periodic solutions.
(3) Global Hopf branches based at τk, k > 1 consist of fast oscillating periodic solutions.

The proof of Theorem 5.1 requires a series of lemmas.

Lemma 5.2 All periodic solutions of (4.1) are uniformly bounded.

Proof By Proposition 2.2, all periodic solutions of (4.1) in � are bounded below by 0. Let
y(t) be a nonconstant periodic solution to (4.1), and assume that y(t)− cy(t − 1) reaches its
maximum at time t1, that is,

y(t1)− cy(t1) = max
s∈R

(y(s)− cy(s − 1)).
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Then
− γ y(t1)+ cγ y(t1 − 1)+ py(t1 − 1)e−ay(t1−1) = 0, (5.3)

and for any fixed s, we have

y(s) ≤ cy(s − 1)+ y(t1)− cy(t1 − 1).

Replacing s with s − 1 in the above equation, we get

y(s − 1) ≤ cy(s − 2)+ y(t1)− cy(t1 − 1).

Similarly, for any integer m,

y(s) ≤ cm y(s − m)+ 1 − cm

1 − c
(y(t1)− cy(t1 − 1)).

Letting m → ∞ we obtain

y(s) ≤ y(t1)− cy(t1 − 1)

1 − c
. (5.4)

Therefore, by (5.3)

y(s) ≤
p
γ

y(t1 − 1)e−ay(t1−1)

1 − c
≤ pe−1

aγ (1 − c)
:= M. (5.5)

�	

Lemma 5.3 Under the assumptions of Theorem 5.1, (4.1) has no periodic solutions of period
4.

Proof Suppose y(t) is a nonconstant periodic solution of period 4 to (4.1). Set u j (t) =
y(t − j + 1), j = 1, 2, 3, 4. Then u(t) = (u1(t), u2(t), u3(t), u4(t)) is a periodic solution
to the following system of ODEs

d

dt
[ui (t)− cui+1(t)] = −γ τui (t)+ cτγ ui+1(t)+ τpui+1(t)e

−aui+1(t), i = 1, 2, 3, 4,

(5.6)
where u5(t) = y(t − 4) = u1(t). System (5.6) can be rewritten as

u′
i (t) = τ

1 − c4 [−γ ui (t)+ c4γ ui (t)+ c3 pui (t)e
−aui (t) + pui+1(t)e

−aui+1(t)

+cpui+2(t)e
−aui+2(t) + c2 pui+3(t)e

−aui+3(t)], (5.7)

whose orbits belong to G := {u ∈ R
4 | 0 < ui < M, i = 1, 2, 3, 4}. Next, we will employ a

general Bendixson’s criterion in higher dimensions developed in [13] to exclude nonconstant
periodic solutions of (5.7) in region G, which will guarantee that there are no 4-periodic
solutions to (4.1). The Jacobian matrix J (u) of (5.7), for u ∈ R

4, is
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J (u) = (−γ + c4)I4×4 + γ τ

1 − c4

⎛
⎜⎜⎜⎜⎜⎝

c3 p f1 p f2 cp f3 c2 p f4

c2 p f1 c3 p f2 p f3 cp f4

cp f1 c2 p f2 c3 p f3 p f4

p f1 cp f2 c2 p f3 c3 p f4

⎞
⎟⎟⎟⎟⎟⎠
,

where fi := f (ui ) = (1 − aui )e−aui , i = 1, 2, 3, 4. The second additive compound matrix
J [2](u) of J (u) is [13]

J [2](u) = τ

1 − c4 × P,

where P is a 6 × 6 matrix, whose rows Pi are given in the following row vectors

P1 = (−2γ + c3 p( f1 + f2)+ 2c4γ, p f3, cp f4,−cp f3,−c2 p f4, 0),

P2 = (c2 p f2,−2γ + c3 p( f1 + f3)+ 2c4γ, p f4, p f2, 0,−c2 p f4),

P3 = (cp f2, c2 p f3,−2γ + c3 p( f1 + f4)+ 2c4γ, 0, p f2, cp f3),

P4 = (−cp f1, c2 p f1, 0,−2γ + c3 p( f2 + f3)+ 2c4γ, p f4,−cp f4),

P5 = (−p f1, 0, c2 p f1, c2 p f3,−2γ + c3 p( f2 + f4)+ 2c4γ, p f3),

P6 = (0,−p f1, cp f1,−cp f2, c2 p f2,−2γ + c3 p( f3 + f4))+ 2c4γ ).

Choose l∞ norm in R
6, namely, |x | = max1≤i≤6 |xi |. Let A be the diagonal matrix given by

A = diag{√2, 1,
√

2,
√

2, 1,
√

2}. (5.8)

Then the Lozinskiı̌ measure of AJ [2](u)A−1 [13] is

μ(AJ [2](u)A−1) = τγ

1 − c4 max{μ1, μ2, . . . , μ6},
where

μ1 = [−2 + c3 p

γ
( f1 + f2)+ 2c4 + (

√
2 + c)

p

γ
| f3| + (

√
2c2 + c)

p

γ
| f4|],

μ2 = [−2 + c3 p

γ
( f1 + f3)+ 2c4 +

√
2

2
(1 + c2)

p

γ
(| f2| + | f4|)],

μ3 = [−2 + c3 p

γ
( f1 + f4)+ 2c4 + (

√
2 + c)

p

γ
| f2| + (

√
2c2 + c)

p

γ
| f3|],

μ4 = [−2 + c3 p

γ
( f2 + f3)+ 2c4 + (

√
2 + c)

p

γ
| f4| + (

√
2c2 + c)

p

γ
| f1|],

μ5 = [−2 + c3 p

γ
( f1 + f3)+ 2c4 +

√
2

2
(1 + c2)

p

γ
(| f1| + | f3|)],

μ6 = [−2 + c3 p

γ
( f3 + f4)+ 2c4 + (

√
2 + c)

p

γ
| f1| + (

√
2c2 + c)

p

γ
| f2|]. (5.9)

It is shown in [13] that μ(AJ [2](u)A−1) < 0 for u ∈ G is a Bendixson condition that rules
out nonconstant periodic orbits of (5.7) in G. To prove μ(J [2](u)) < 0, we first improve the
lower bound of the periodic solutions of (4.1).

Similar to the proof of Lemma 5.2, letting y(t) be any nonconstant periodic solution to
(4.1) and assuming that y(t)− cy(t − 1) reaches its minimum at t2, we can also derive

y(t2) = p

γ
y(t2 − 1)e−ay(t2−1) + cy(t2 − 1),
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and

y(s) ≥ y(t2)− cy(t2 − 1)

1 − c
=

p
γ

y(t2 − 1)e−ay(t2−1)

1 − c
:= h(y(t2 − 1)) (5.10)

for any s ∈ R. In particular, y(t2) ≤ y(t2 − 1), which lead to y(t2 − 1) > N∗ > 1
a . Since h

is decreasing when y(t2 − 1) > 1
a , combining with (5.1), (5.5) and (5.10), we can get

y(s) ≥
p
γ

Me−aM

1 − c
≥ 1 − α

a
.

Hence,
− e−2 < fi = (1 − au)e−au < αeα−1 < e−2 for i = 1, 2, 3, 4. (5.11)

This allows the following estimates of terms in (5.9)

μ1 = −2 + c3 p

γ
( f1 + f2)+ 2c4 + (

√
2 + c)

p

γ
| f3| + (

√
2c2 + c)

p

γ
| f4|

≤ −2 + 2c4 + (2c3 + √
2c2 + 2c + √

2)
p

γ
e−2

≤ −2 + 2c4 + β(2c3 + √
2c2 + 2c + √

2)(1 − c)e
2c

1−c

and

μ2 = −2 + c3 p

γ
( f1 + f3)+ 2c4 +

√
2

2
(1 + c2)

p

γ
(| f2| + | f4|)

≤ −2 + 2c4 + (2c3 + √
2c2 + √

2)
p

γ
e−2

≤ −2 + 2c4 + β(2c3 + √
2c2 + √

2)(1 − c)e
2c

1−c .

By assumption (5.2), we see μ1 < 0 and μ2 < 0. Similarly, we can show that μi < 0 for
i ≥ 3. Therefore, μ(AJ [2](u)A−1) < 0. Applying Theorem 3.4 of [13] with D0 = G and A
as in (5.8), we can conclude that system (5.7) has no nonconstant periodic solutions in G. �	
Lemma 5.4 Under the assumptions of Theorem 5.1, Eq. (4.1) has no periodic solutions of
period 1 or 2.

Proof Using phase-line analysis, it is obvious that

(1 − c)u′(t) = −(1 − c)γ u(t)+ pu(t)e−au(t)

has no nonconstant periodic solutions. Therefore, equation (4.1) has no 1-periodic solutions.
As shown in Lemma 5.3, if (4.1) has a 2-periodic solution, then u(t) = (u1(t), u2(t)) :=

(y(t), y(t − 1)) is a periodic solution of the following system

d

dt
[u1(t)− cu2(t)] = −τγ u1(t)+ cτγ u2(t)+ pτu2(t)e

−au2(t),

d

dt
[u2(t)− cu1(t)] = −τγ u2(t)+ cτγ u1(t)+ pτu1(t)e

−au1(t),

or equivalently,

u′
1(t) = τ

1 − c2 [−(1 − c2)γ u1(t)+ pu2(t)e
−au2(t) + cpu1(t)e

−au1(t)] := P(u1, u2),

u′
2(t) = τ

1 − c2 [−(1 − c2)γ u2(t)+ pu1(t)e
−au1(t) + cpu2(t)e

−au2(t)] := Q(u1, u2).

(5.12)
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By (5.11) and (5.2), we have

∂P

∂u1
+ ∂Q

∂u2
= τ

(1 − c2)γ
[−2(1 − c2)+ c

p

γ
( f1 + f2)]

<
2τ

γ (1 + c)
(−(1 + c)+ cβe

2c
1−c ) < 0.

The classical Bendixson’s negative criterion implies that system (5.12) has no nonconstant
periodic solutions, and thus (4.1) has no nonconstant 2-periodic solutions. �	

We will apply a global Hopf bifurcation result, Theorem 5.14, in [10] to prove our Theorem
5.1.

Proof of Theorem 5.1 Let

F(yt , τ, 1) := −γ τ y(t)+ cγ τ y(t − 1)+ pτ y(t − 1)e−ay(t−1).

Then F(yt , τ, 1) satisfies the assumptions of Theorem 5.14 in [10] with

(ŷ0, α0, p0) = (N∗, τk,
2π

τkω0
),

�(N∗,τk ,
2π
τkω0

)(z) = zτ(1 − ce−z)+ τγ + τγ ((1 − c)aN∗ − 1)e−z .

Lemma 3.1 implies that there exist ε, δ > 0 and a smooth curve z : (τk − δ, τk + δ) → C

such that �(z(τ )) = 0, z(τk) = iτkω0, and |z(τ )− iτkω0| < ε. Denote Tk = 2π

τkω0
and let

�ε = {(v, T ) : 0 < v < ε, |T − Tk | < ε}.
Then, on (τk − δ, τk + δ)× ∂�ε, det�(N∗,τ,T )(v + 2π i

T ) = 0 if and only if τ = τk, v = 0
and T = Tk . Let

H±(N∗, τk,
2π

τkω0
)(v, T ) = �(N∗,τk±δ,T )(v + 2π i

T
).

Then the crossing number

γ1(N
∗, τk,

2π

τkω0
) = degB(H

−(N∗, τk,
2π

τkω0
),�ε)

− degB(H
+(N∗, τk,

2π

τkω0
),�ε) = −1,

and

�(ŷ,τ,T )∈C(N∗,τk ,
2π
τkω0

)∩N (F)γ1(ŷ, τ, T ) < 0,

where

�(F) : = Cl{(y, τ, T ) : y is a T-periodic solution of 4.1 },
N (F) : = {(ŷ, τ, T ) : F(ŷ, τ, T ) = 0}.

Therefore, the connected component C(N∗, τk,
2π
τkω0

) through (N∗, τk,
2π
τkω0

) in �(F) is
unbounded.
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Fig. 2 a A solution converges to a slowly-varying periodic solution. b A solution first approaches a fast-
oscillating unstable periodic solution before it converges to the slowly-varying periodic solution. The inset in
(b) zooms in on the solution for t ∈ [0, 50]

From (5.2), we have β <
√

2 < e
1
c , which leads to (1 − c)aN∗ < 1 + 1

c . Therefore, by
(3.3) and (3.4), we get sin τkω0 > 0 and

cos τkω0 = −γ 2((1 − c)aN∗ − 1)+ cω2
0

γ 2((1 − c)aN∗ − 1)2 + c2ω2
0

= −(1 − c2)((1 − c)aN∗ − 1)+ c(((1 − c)aN∗ − 1)2 − 1)

(1 − c2)((1 − c)aN∗ − 1)2 + c2(((1 − c)aN∗ − 1)2 − 1)
< 0,

which implies that

π

2
< τ0ω0 < π, and 2π < τkω0 < (2k + 1)π, k ≥ 1.

Hence,

2 <
2π

τ0ω0
< 4, and

1

k + 1
<

2π

τkω0
< 1, k ≥ 1. (5.13)

By Lemmas 5.3 and 5.4, we know that the projection of each C(N∗, τk,
2π
τkω0

) onto T space

is bounded, since 2 < T < 4 if (y, τ, T ) ∈ C(N∗, τ0,
2π
τ0ω0

) and 1
k+1 < T < 1 if (y, τ, T ) ∈

C(N∗, τk,
2π
τkω0

). Meanwhile, by Lemma 5.2, we know that the projection of C(N∗, τk,
2π
τkω0

)

onto the y space is bounded. Moreover, using the phase-line analysis, it can be verified that
(4.1) has no periodic solutions when τ = 0. Consequently, the projection of C(N∗, τk,

2π
τkω0

)

onto the τ space must be unbounded. From (5.13), periodic solutions on the first Hopf branch
based at τ0 have periods bounded between 2 and 4, and thus are slowly varying (note that the
delay τ is scaled to 1 in (4.1)), while periodic solutions on other Hopf branches have periods
smaller than 1, and thus are fast oscillating. Because of the separation of periods between
the first Hopf branch with the remaining ones, and the nonexistence of 2-periodic solutions,
the first Hopf branch will not intersect other branches when globally extended. This shows
that slowly varying periodic solutions and fast oscillating periodic solutions coexist for all
τ ≥ τ1. This completes the proof of Theorem 5.1. �	

We demonstrate the results of Theorem 5.1 using Matlab simulations. In Fig. 2, we show
the coexistence of a slowly-varying periodic solution and a fast-oscillating periodic solution
for τ = 21. Other parameter values are the same as in Fig. 1.
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