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Abstract. The dynamics of an in-host model with general form of target-cell dynamics, nonlin-
ear incidence, and distributed delay are investigated. The model can describe the in vivo infection
dynamics of many viruses such as HIV-I, HCV, and HBV. We derive the basic reproduction number
R0 for the viral infection and establish that the global dynamics are completely determined by the
values of R0: if R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable, and the virus
is cleared; if R0 > 1, then the infection persists, and the chronic-infection equilibrium is globally
asymptotically stable. An implication of our results is that intracellular delays will lead to periodic
oscillations in in-host models only with the right kind of target-cell dynamics.
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1. Introduction.

1.1. Background. Mathematical models have been developed to describe the
in vivo infection process of many viruses such as human immunodeficiency virus type
I (HIV-I), hepatitus C virus (HCV), hepatitus B virus (HBV), and human T-cell lym-
photropic virus I (HTLV-I) [1, 2, 3, 4, 5, 6, 7]. These in-host models are useful for
exploring possible mechanisms and outcomes of the viral infection process [1, 2], and
for estimating key parameter values such as virion clearance rate, life span of infected
cells, and average viral generation time in vivo [3]. Findings from in-host modeling
can be used to guide development of efficient antiviral drug therapies [5]. Time de-
lays are intrinsic to the viral infection and replication processes, and they have been
incorporated into in-host models [8, 9, 10, 11, 12, 13]. Model analysis has shown
that these intracellular delays can cause periodic oscillations through Hopf bifurca-
tions [10, 12, 13]. It is also known that Hopf bifurcations can occur in certain classes
of in-host models without intracellular delays, in which the target-cell dynamics have
a mitosis component given by a logistic term [14]. It is of interest from both mathe-
matical and biological viewpoints to investigate whether Hopf bifurcations in in-host
models are the result of target-cell dynamics, intracellular delays, or a combination
of both. Since time delays are known to cause instability and periodic oscillations in
dynamical systems, it seems natural to expect that target-cell dynamics and intracel-
lular delays are two independent processes that can lead to Hopf bifurcations. In this
paper, using an in-host model with a general form of target-cell dynamics, a general
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form of incidence for the infection, and a general form of intracellular delays, we will
show that the occurrence of Hopf bifurcation in in-host viral models depends critically
on the target-cell dynamics, not on intracellular delays; if no Hopf bifurcation occurs
in an in-host model without delay, incorporating intracellular delays will not produce
periodic oscillations.

1.2. Model derivation. To incorporate intracellular delays into an in-host
model, we briefly summarize the main stages in the infection process of a target
cell by a virus and in the viral replication process, as well as the associated time de-
lays. The processes described here are general enough to include RNA viruses such as
HIV-I and HCV, as well as certain DNA viruses such as HBV that replicate through
reverse transcription.

The first stage of infection is the period between the viral entry of a target cell and
integration of viral DNA into the host genome. During this stage, reverse transcription
takes place and produces viral DNA from the viral RNA by action of the reverse
transcriptase that is part of the viral package. Viral DNAs then need to enter the cell
nucleus in order to integrate into the host genome. A target cell in this stage is said to
be infected. Antiretroviral treatments using reverse transcriptase inhibitors (RTIs) can
block the production of viral DNA during this stage. The second stage is the period
from the integration of viral DNA to the transcription of viral RNA and translation
of viral proteins such as reverse transcriptase, integrase, and protease. This stage
typically requires activation of the target cell and can last a variable length of time
for individual cells. A target cell in this stage is said to be actively infected. Another
crucial event in viral replication occurs during this stage: the viral protease needs to
cut the long polypeptide chain into individual enzyme components for the translation
of viral proteins to be completed. Antiviral treatments using protease inhibitors (PIs)
will block the action of protease and thus disrupt the viral replication. Without a
functioning protease, an infected target cell will not produce mature viruses and is
hence noninfectious. The third stage is the period between the transcription of viral
RNA and the release and maturation of virus. During this stage, the virus needs to
assemble its package of viral proteins and its lipid envelope near the cell membrane,
and then it buds out of the cell. Maturation of viruses can happen inside the target
cell or after release. According to these stages, we consider three compartments in
the infection process,

x : healthy target cells,
y : actively infected target cells,
v : mature viruses,

and denote the number of cells or virus particles at time t in each compartment by
x(t), y(t), v(t), respectively. In the case of HIV-I infection, the target cells are CD4+

helper T cells, while in the case of HBV infection, the target cells are hepatocytes in
the liver.

To model the delay between viral infection of a healthy target cell and the produc-
tion of an actively infected target cell, we let τ be the random variable that describes
the time between viral entry and the transcription of viral RNA (stages 1 and 2)
with a probability distribution f1(τ). We assume that the contacts between viruses
and target cells are given by an incidence function h(x, v), which also contains the
probability of cell entry per contact. Then, newly infected target cells per unit time
is given by h(x(t), v(t)). Since cells infected at time t will be activated and produce
viral materials at time t+ τ , the number of actively infected target cells at time t is
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given by

(1.1)

∫ ∞

0
e−s1τf1(τ)h(x(t − τ), v(t − τ)) dτ.

Here, factor e−s1τ accounts for the loss of target cells during time period [t − τ, t]
due to viral infection. The effect of therapies using RTIs is to reduce the number of
actively infected target cells. This effect can be incorporated into the incidence term
in (1.1) by multiplying a constant 0 ≤ α1 ≤ 1 to h(x(t), v(t)) and only including the
fraction of target cells that are actively infected. We assume that such a fraction has
been absorbed into h(x(t), v(t)).

To model the delay between viral RNA transcription and viral release and mat-
uration, we let τ1 be the random variable that is the time between these two events
with a probability distribution f2(τ1). Then the mature viral particles produced at
time t are given by

(1.2) k

∫ ∞

0
e−s2τf2(τ)y(t − τ) dτ.

Here, we have suppressed the subindex in τ1. Constant k is the average number of
viruses that bud out from an infected target cell, and e−s2τ accounts for the cell loss
during the delay period. PI therapies can render many viruses noninfectious. We can
incorporate this effect into the term in (1.2) by multiplying k by a fraction 0 ≤ α2 ≤ 1
and only considering mature and infectious viruses. Again, we assume that such a
fraction has been absorbed into k.

The dynamics of healthy target cells in the absence of infection is assumed to
satisfy

(1.3) x′(t) = n(x(t)),

where n(x) is a general function that accounts for both production and turnover of
healthy target cells. Typical assumptions on n(x) are the following:

(H1) ∃ x̄ > 0 such that n(x̄) = 0 and [n(x)− n(x̄)](x− x̄) < 0, x $= x̄.

The class of n(x) that satisfy (H1) include both n(x) = λ − dx and n(x) = λ− dx+
rx(1 − x/K), which have been widely used in the literature of population dynamics.
Assumption (H1) implies that x(t) → x̄ as t → ∞ in the absence of the viral infection,
and x̄ can be regarded as the natural level of target cells in the host body.

Let µ1 and µ2 be the death rates for the compartments y and v, respectively.
Then, from preceding discussions, we see that the interactions among x(t), y(t), and
v(t) can be described by the following system of differential and integral equations:

x′(t) = n(x(t)) − h(x(t), v(t)),

y′(t) =

∫ ∞

0
e−s1τf1(τ)h(x(t − τ), v(t − τ)) dτ − µ1y(t),

v′(t) = k

∫ ∞

0
e−s2τf2(τ)y(t− τ) dτ − µ2v(t),

(1.4)

with initial conditions x(0) > 0, y(0) ≥ 0, and v(0) ≥ 0. We assume that all parameter
values are nonnegative and µ1, µ2 > 0. Probability distribution functions f1(τ) and
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f2(τ) are assumed to satisfy fi(τ) ≥ 0 and
∫∞
0 fi(τ)dτ = 1 for i = 1, 2. These

general distribution functions allow us to include special forms of intracellular delays
previously used in the literature. For instance, if f1(τ) = δ(τ − r), then the incidence
term becomes e−s1rh(x(t− r), v(t− r)) with a finite delay r > 0. Similarly, if f2(τ) =
δ(τ−r1), then production of virus will be given by ke−s2r1y(t−r1). If fi(τ) = γie−γiτ ,
i = 1, 2, then system (1.4) becomes

x′(t) = n(x(t)) − h(x(t), v(t)),

y′(t) = γ1

∫ ∞

0
e−(s1+γ1)τh(x(t− τ), v(t − τ)) dτ − µ1y(t),

v′(t) = kγ2

∫ ∞

0
e−(s2+γ2)τy(t− τ) dτ − µ2v(t).

We may introduce new variables

e(t) =

∫ ∞

0
e−(s1+γ1)τh(x(t− τ), v(t − τ)) dτ,

z(t) =

∫ ∞

0
e−(s2+γ2)τy(t− τ) dτ,

so that x, e, y, z, v satisfy the following system of ordinary differential equations:

x′(t) = n(x(t)) − h(x(t), v(t)),

e′(t) = h(x(t), v(t)) − (s1 + γ1)e(t),

y′(t) = γ1e(t) − µ1y(t),

z′(t) = y(t)− (s2 + γ2)z(t),

v′(t) = kγ2z(t) − µ2v(t).

(1.5)

When the delays are neglected, namely, the average delay 1/γi → 0, i = 1, 2, system
(1.5) becomes

x′(t) = n(x(t)) − h(x(t), v(t)),

y′(t) = h(x(t), v(t)) − µ1y(t),

v′(t) = ky(t) − µ2v(t),

(1.6)

which has been well studied in the literature [4, 14, 15, 16] for various forms of n(x)
and h(x, v).

1.3. Earlier results. We summarize previous studies in the literature related
to Hopf bifurcations in in-host models, with specific forms of target-cell dynamics and
incidence functions.

(i) Nowak et al. [4] and Korobeinikov [16] considered n(x) = λ − µx and
h(x, v) = βxv with no intracellular delays. It is shown that no periodic oscillations
occur in the model, and all solutions converge to equilibria.

(ii) Nelson and Perelson [11] and Li and Shu [17] considered n(x) = λ − µx,
h(x, v) = βxv, a general f1(τ), f2(τ) = δ(τ − 0), s2 = 0, and s1 > 0. It is shown
in [17] that no periodic oscillations occur, and all solutions converge to equilibria.

(iii) Smith and De Leenheer [15] and Wang and Li [14] considered n(x) = λ −
µx+ rx(1− x

K ) and h(x, v) = βxv with no intracellular delays. They have shown that
periodic oscillations can occur through Hopf bifurcation.
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(iv) Culshaw and Ruan [10] and Wang et al. [13] considered n(x) = λ − µx +
rx(1 − x

K ), h(x, v) = βxv, f1(τ) = δ(τ − r), f2(τ) = δ(τ − 0), and si = 0. They have
shown that Hopf bifurcation occurs.
In these results, when n(x) contains a mitosis (logistic) term, Hopf bifurcation occurs
with or without intracellular delays; if n(x) contains no mitosis, Hopf bifurcations do
not occur with or without intracellular delays. These studies suggest that occurrence
of Hopf bifurcation depends on target-cell dynamics, not the intracellular delays. The
question remains of whether periodic oscillations can be induced by intracellular delays
alone with more general target-cell dynamics and more general types of delays.

In this paper, for target-cell dynamics described by a general function n(x), a
general incidence function h(x, v), and general delay distributions fi(τ), we rigorously
establish that if Hopf bifurcation does not occur in a model when the delays are absent,
then the introduction of intracellular delays will not cause instability or periodic
oscillations. The key to establishing these results is to prove the global stability of
equilibria, since local stability alone will not rule out existence of periodic solutions.

For model (1.4), we derive the basic reproductive number R0 and show that R0

completely determines the global dynamics. More specifically, we prove that if R0 ≤ 1,
the infection-free equilibrium E0 is globally asymptotically stable, and the virus will
be cleared; if R0 > 1, all positive solutions converge to the unique chronic-infection
equilibrium E∗. Our global stability result for the chronic-infection equilibrium is
new for in-host models with distributed intracellular delays. Our proof utilizes a
global Lyapunov functional that is motivated by the work in [18, 19, 20, 21]. The
global stability of E∗ rules out any possibility for Hopf bifurcations and existence of
sustained oscillations.

Our paper is organized as follows. In the next section, we discuss the feasible
region for system (1.4) and derive the basic reproduction number R0. Our main
results are stated in section 3. In section 4, for special classes of n(x) and h(x, v)
commonly used in the literature, we show that our main results in section 3 produce
sharp threshold results. Mathematical proofs of our main results are given in section 5.
A summary and discussion are given in section 6.

2. Preliminaries. We assume that n(x) satisfies assumption (H1) with a unique
zero x̄ > 0. We make the following assumptions on the incidence function h(x, v).

(H2) h(x, v) is continuous; h(x, v) ≥ 0 and h(x, v) = 0 ⇐⇒ x = 0 or v = 0; and
there exists 0 < c ≤ ∞ such that

(2.1) lim
v→0+

h(x̄, v)

v
= c.

(H3) h(x, v) ≤ h(x̄, v) for 0 < x ≤ x̄, v > 0; h(x, v) = h(x̄, v) ⇐⇒ x = x̄; and

sup
v>0

h(x̄, v)

v
= c.

Classes of h(x, v) that satisfy assumptions (H1) and (H2) include common incidence
functions such as h(x, v) = βxv, h(x, v) = βxpvq, and h(x, v) = β xp

xp+A1
· vq

vq+A2
,

p, q,β, A1, A2 > 0.
We assume that distribution functions fi(r), i = 1, 2, satisfy the following condi-

tion:

(2.2)

∫ ∞

0
fi(r)e

srdr < ∞,
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where s is a positive number. Define the Banach space of fading memory type [22]

(2.3)
C =

{
φ ∈ C((−∞, 0],R) : φ(r)esr is uniformly continuous

for r ∈ (−∞, 0], and sup
r≤0

|φ(r)|esr < ∞
}
,

with norm

||φ||k = sup
r≤0

|φ(r)|esr .

The nonnegative cone of C is defined by C+ = C((−∞, 0],R+). For φ ∈ C, let φt ∈ C
be such that φt(s) = φ(t+s), s ∈ (−∞, 0]. We consider solutions (xt, yt, vt) of system
(1.4) with initial conditions

(2.4) x0 ∈ C+, y0 ∈ C+, v0 ∈ C+.

Standard theory of functional differential equations [23] implies that (xt, yt, vt) ∈
C × C × C for t > 0. We consider system (1.4) in the phase space

(2.5) X = C × C × C.

Proposition 2.1. For initial conditions in (2.4), solutions of system (1.4) are
nonnegative and ultimately uniformly bounded in X.

Proof. First, we prove that x(t) ≥ 0 for all t ≥ 0. Assuming the contrary and
letting t1 > 0 be such that x(t1) < 0, set t2 = inf{0 < t < t1 : x(t) < 0}. Then
x(t2) = 0, and from the first equation of system (1.4) we have x′(t2) = n(0) > 0.
Hence x(t) < 0 for t ∈ (t2 − ε, t2) and ε > 0 sufficiently small. This contradicts
x(t) ≥ 0 for t ∈ (0, t2]. It follows that x(t) ≥ 0 for t ≥ 0. Similar arguments can be
used to show that y(t) ≥ 0, v(t) ≥ 0 for t ≥ 0.

Assumption (H1) and the first equation of (1.4) imply that lim supt→∞ x(t) ≤ x̄.
From the first two equations of (1.4) we get

∫ ∞

0
f1(τ)e

−s1τx′(t−τ)dτ+y′(t) =

∫ ∞

0
f1(τ)e

−s1τn(x(t−τ))dτ−µ1y(t) ≤ λ̄β1−µ1y(t),

where λ̄ = supx∈[0,x̄] n(x) and

(2.6) β1 =

∫ ∞

0
f1(τ)e

−s1τdτ.

Let e(t) =
∫∞
0 f1(τ)e−s1τx(t − τ)dτ . Then e(t) ≤ x̄β1 for t ≥ 0. Choose µ̄ ≤ µ1

sufficiently small such that x̄µ̄ < λ̄. Then

(e(t) + y(t))′ ≤ λ̄β1 − µ1y(t) < 2λ̄β1 − µ̄(e(t) + y(t)),

and thus lim supt→∞(e(t) + y(t)) ≤ 2λ̄β1

µ̄ . Since e(t) ≥ 0, we know lim supt→∞ y(t) ≤
2λ̄β1

µ̄ . This relation and the third equation of (1.4) imply

v′(t) = k

∫ ∞

0
f2(τ)e

−s2τy(t− τ)dτ − µ2v(t) ≤
2kλ̄β1β2

µ̄
− µ2v(t),
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and thus lim supt→∞ v(t) ≤ 2kλ̄β1β2

µ2µ̄
, where

(2.7) β2 =

∫ ∞

0
f2(τ)e

−s2τdτ.

Therefore, x(t), y(t), and v(t) are ultimately uniformly bounded in C × C × C.
Proposition 2.1 implies that omega limit sets of system (1.4) are contained in the

following bounded feasible region:

Γ =

{
(x, y, v) ∈ C+ × C+ × C+ : ‖x‖ ≤ x̄, ‖y‖ ≤ 2λ̄β1

µ̄
, ‖v‖ ≤ 2kλ̄β1β2

µ2µ̄

}
.

It can be verified that the region Γ is positively invariant with respect to model (1.4)
and that the model is well posed.

System (1.4) always has an infection-free equilibrium E0 = (x, 0, 0) on the bound-

ary of Γ. A chronic-infection equilibrium E∗ = (x∗, y∗, v∗) in the interior
◦
Γ of Γ must

satisfy x∗, y∗, v∗ > 0 and

n(x∗)− h(x∗, v∗) = 0,

β1h(x
∗, v∗)− µ1y

∗ = 0,

kβ2y
∗ − µ2v

∗ = 0.

(2.8)

We will show that, under biologically reasonable conditions, the chronic-infection
equilibrium E∗ is unique.

The dynamical outcomes of model (1.4) will be determined by the basic repro-
duction number R0: the average number of actively infected cells that arise from one
infectious cell after it is introduced into a population of uninfected cells. One actively
infected target cell produces on average k

µ1

∫∞
0 f1(τ)e−s1τdτ = kβ1

µ1
mature viruses

during its life span 1
µ1
. Let 0 < c < ∞ be as in (H2). Then each virus will infect

c
µ2

target cells during its life span 1
µ2
. A newly infected target cell will survive the

latent period to become actively infected with a probability β2 =
∫∞
0 f2(τ)e−s2τdτ .

Therefore, the basic reproduction number is given by

(2.9) R0 =
ck

∫∞
0 f2(τ)e−s2τdτ

∫∞
0 f1(τ)e−s1τdτ

µ1µ2
=

ckβ1β2
µ1µ2

.

If c = ∞, we define R0 = ∞. Intuitively, the infection and virus will be cleared
if R0 < 1, and the infection persists if R0 > 1. For special forms of intracellular
delays, target cell dynamics, and incidence functions, our R0 in (2.9) agrees with basic
reproduction numbers in the literature. In particular, if discrete intracellular delays,
bilinear incidence, and linear intrinsic growth functions are used, our R0 reduces to
the basic reproduction number in [17].

3. Main results. In the following, we state our main results concerning the
global dynamics of (1.4). Proofs will be given in section 5.

Theorem 3.1. Assume that assumptions (H1)–(H3) are satisfied.
(i) If R0 ≤ 1, then the infection-free equilibrium E0 of system (1.4) is globally

asymptotically stable in Γ.
(ii) If R0 > 1, then E0 is unstable and system (1.4) is uniformly persistent.

Furthermore, there exists a chronic-infection equilibrium E∗ in the interior
◦
Γ of Γ.
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Theorem 3.2. Assume that assumptions (H1) and (H2) are satisfied and that
R0 > 1. Suppose a chronic-infection equilibrium E∗ = (x∗, y∗, v∗) and functions
n(x), h(x, v) satisfy the following conditions:

(A1) [n(x)− n(x∗)](x − x∗) < 0 for x $= x∗, x ∈ [0, x̄],
(A2) [h(x, v∗)− h(x∗, v∗)](x− x∗) > 0 for x $= x∗, x ∈ [0, x̄],

(A3)
( h(x,v)
h(x,v∗) − 1

)(
v∗

v − h(x,v∗)
h(x,v)

)
≤ 0 for v > 0, x ∈ [0, x̄].

Then E∗ is the unique chronic-infection equilibrium and is globally asymptotically

stable in
◦
Γ.

Theorems 3.1 and 3.2 imply that, if the basic reproduction number R0 ≤ 1, then
the virus is cleared; if R0 > 1, then the infection persists at the unique chronic-
infection equilibrium, irrespective of the initial conditions. These results preclude the
existence of nonconstant periodic solutions.

We remark that the conclusions of Theorems 3.1 and 3.2 also hold when c = ∞
and R0 = ∞. In this case, the infection-free equilibrium E0 is always unstable, and

the unique chronic-infection equilibrium E∗ is always globally stable in
◦
Γ.

Assumptions (H3) and (A1)–(A3) in Theorems 3.1 and 3.2 hold under certain
monotonicity conditions that are biologically motivated. More specifically, we have
the following result.

Theorem 3.3. Assume that
(1) n(x) satisfies (H1) and is strictly monotonically decreasing for x ∈ [0, x̄];
(2) h(x, v) satisfies (H2);
(3) h(x, v) is strictly monotonically increasing with respect to x and v;
(4) h(x, v) is concave downward with respect to v.

Then we have the following:
(i) If R0 ≤ 1, then the infection-free equilibrium E0 of system (1.4) is globally

asymptotically stable in Γ. If R0 > 1, then E0 is unstable.
(ii) If R0 > 1, then there is a unique chronic-infection equilibrium E∗, and it is

globally asymptotically stable in
◦
Γ.

Proof. It is straightforward to verify that conditions in (H3), (A1), and (A2)
follow from monotonicity assumptions of Theorem 3.3. We prove that condition (A3)
or, equivalently, the following relation is also satisfied:

h(x, v∗)

h(x, v)
≥ v∗

v
if h(x, v∗) ≤ h(x, v), and

h(x, v∗)

h(x, v)
≤ v∗

v
if h(x, v∗) ≥ h(x, v).

(3.1)

Since h(x, v) is strictly increasing with respect to v, we know that h(x, v∗) < h(x, v)
if and only if v∗ < v. Therefore, condition (3.1) is equivalent to

(3.2)
h(x, v∗)

h(x, v)
≥ v∗

v
if v∗ ≤ v, and

h(x, v∗)

h(x, v)
≤ v∗

v
if v∗ ≥ v.

It is straightforward to verify that relation (3.2) follows from the concavity of h(x, v)
with respect to v. Therefore, the conclusions of the theorem follows from Theorems
3.1 and 3.2.

4. Special cases. The assumptions in Theorems 3.1–3.3 define a special class
of functions n(x) and h(x, v) for which sharp threshold results hold for system (1.4)
and no periodic oscillations occur. In this section, we show that this class contains
typical n(x) and h(x, v) that have been used in the literature.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2442 MICHAEL Y. LI AND HONGYING SHU

4.1. Special cases for n(x).
Case 1. n(x) = Λ − µx, Λ, µ > 0. In this case, n(x) is strictly decreasing with

respect to x and satisfies condition (1) of Theorem 3.3.
Case 2. n(x) = Λ− µx+ rx(1 − x

K ), Λ, µ, r,K > 0.
(a) If r ≤ µ, then n(x) is strictly decreasing for x ≥ 0 and satisfies condition (1)

of Theorem 3.3; see Figure 1(a).
(b) If r > µ, then assumption (A1) of Theorem 3.2 holds if and only if n(x∗) <

n(0), namely x1 < x∗ < x̄, where x1 > 0 is such that n(x1) = n(0); see Figure
1(b).

In both Cases 1 and 2, when n(x) satisfies the assumptions of our theorems, the target-
cell dynamics are such that no Hopf bifurcations occur when intracellular delays are
not present. In Case 2, if r > µ and n(x∗) > n(0), namely, if x∗ ∈ (0, x1) (Figure
1(b)), assumption (A1) of Theorem 3.2 does not hold. It is known that, in this case,
E∗ can lose stability and undergoes Hopf bifurcation without intracellular delays [14].
This shows that assumptions on n(x) in our main results provide sharp criteria for
target-cell dynamics that do not produce a Hopf bifurcation in the absence of delays.

0
0

n(0)

x
x

n(x) n(x)

                       (a)   r < µ     (b)   r > µ

x-
x-x1

Fig. 1. The graph of n(x) = λ− µx+ rx(1− x
K ).

4.2. Special cases for h(x, v). A common form of incidence functions is

(4.1) h(x, v) = β
xp

xp1 + A1

vq

vq1 +A2
,

β, p, q, p1, q1 > 0 and A1, A2 ≥ 0. It can be verified that h(x, v) is strictly monotoni-
cally increasing for all x and v if one of the following conditions holds:

(B1) p1 ≤ p, q1 ≤ q, and Ai > 0, i = 1, 2;
(B2) p1 < p, q1 < q, and Ai ≥ 0, i = 1, 2.

Furthermore, h(x, v) is concave with respect to v if q1 ≤ q ≤ 1.
For this form of incidence function, the basic reproductive number R0 in (2.9)

satisfies

R0 =

{
+∞ when q < 1,
ckβ1β2

µ1µ2
when q = 1.

Theorem 3.3 leads to the following sharp threshold result.
Theorem 4.1. Assume that n(x) satisfies assumption (H1) and condition (A1).

Let h(x, v) be given in (4.1) and let it satisfy either (B1) or (B2).
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(i) If q < 1, then R0 = ∞, and the infection-free equilibrium E0 is always
unstable. A unique chronic-infection equilibrium E∗ is globally asymptotically stable

in
◦
Γ.

(ii) If q = 1 and R0 ≤ 1, then the infection-free equilibrium E0 is globally
asymptotically stable in Γ.

(iii) If q = 1 and R0 > 1, then the infection-free equilibrium E0 is unstable, and

a unique chronic-infection equilibrium E∗ is globally asymptotically stable in
◦
Γ.

5. Proof of main results.

5.1. Proof of Theorem 3.1.
(i) Assume that R0 ≤ 1. To prove global stability of the infection-free equilibrium

E0, we consider the following Lyapunov functional L : C × C × C → R,

L(xt, yt, vt) = yt(0) +
µ1

kβ2
vt(0) +

µ1

β2

∫ ∞

0
f2(τ)e

−s2τ

∫ 0

−τ
yt(s)dsdτ

+

∫ ∞

0
f1(τ)e

−s1τ

∫ 0

−τ
h(xt(s), vt(s))dsdτ,

(5.1)

with xt(s) = x(t + s), yt(s) = y(t+ s), vt(s) = v(t + s) for s ∈ (−∞, 0]. Calculating
the time derivative of L along a solution of system (1.4), we obtain

L′|(1.4) =
∫ ∞

0
f1(τ)e

−s1τh(x(t− τ), v(t − τ))dτ − µ1y(t) +
µ1

β2

∫ ∞

0
f2(τ)e

−s2τy(t− τ)dτ

− µ1µ2

kβ2
v(t) +

µ1

β2

∫ ∞

0
f2(τ)e

−s2τy(t)dτ − µ1

β2

∫ ∞

0
f2(τ)e

−s2τy(t− τ)dτ

+

∫ ∞

0
f1(τ)e

−s1τh(x(t), v(t))dτ −
∫ ∞

0
f1(τ)e

−s1τh(x(t− τ), v(t − τ))dτ.

From
∫ ∞

0
f1(τ)e

−s1τh(x(t), v(t))dτ = β1h(x(t), v(t)),(5.2)

µ1

β2

∫ ∞

0
f2(τ)e

−s2τy(t)dτ = µ1y(t),(5.3)

we have

(5.4) L′|(1.4) = β1h(x(t), v(t)) −
µ1µ2

kβ2
v(t) =

µ1µ2

kβ2
v(t)

[
kβ1β2
µ1µ2

h(x(t), v(t))

v(t)
− 1

]
.

Using assumptions (H2), (H3), and the expression of R0 in (2.9), we obtain

L′|(1.4) ≤
µ1µ2

kβ2
v(t)

[
kβ1β2
µ1µ2

h(x, v(t))

v(t)
− 1

]

≤ µ1µ2

kβ2
v(t)

[
kβ1β2
µ1µ2

c− 1

]
=

µ1µ2

kβ2
v(t)[R0 − 1] ≤ 0,

and L′|(1.4) = 0 implies that either v = 0 or R0 = 1 and x = x̄. Therefore, the
maximal compact invariant set in {L′|(1.4) = 0} is the singleton {E0}. By the LaSalle
invariance principle for delay systems (see [23, 24, 25]), E0 is globally attractive in
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Γ. Furthermore, it can be verified that E0 is locally stable using the same proof as
that for Corollary 5.3.1 in [23]; see also [26]. Therefore, E0 is globally asymptotically
stable in Γ.

(ii) Assume that

R0 =
ckβ1β2
µ1µ2

=
kβ1β2
µ1µ2

lim
v→0+

h(x, v)

v
> 1.

Then there exists ṽ > 0 such that

(5.5)
h(x, v)

v

kβ1β2
µ1µ2

> 1 for v ∈ (0, ṽ).

From (5.4), (5.5) and the continuity of h(x, v), it follows that L′|(1.4) > 0 in a neigh-
borhood of E0 = (x, 0, 0), expect for the points with v = 0. Thus solutions in Γ that
start in arbitrarily small neighborhoods of E0 move away from E0, except for those
starting in X+ = {(xt, 0, 0) ∈ C × C × C : ‖xt‖ > 0}, which remain in X+ and tend to
E0. Therefore, E0 is unstable. A similar argument as in the proof of Proposition 3.3
of [27] can show that system (1.4) is uniformly persistent.

Uniform persistence of system (1.4), together with uniform boundedness of solu-

tions in
◦
Γ, implies the existence of a chronic-infection equilibrium E∗ of system (1.4)

in
◦
Γ (see Theorem 2.8.6 in [28] or Theorem D.3 in [29]), completing the proof.

5.2. Proof of Theorem 3.2. Assume that R0 > 1. From Theorem 3.1(ii) we
know that a chronic-infection equilibrium E∗ = (x∗, y∗, v∗) exists. We prove that E∗

is globally asymptotically stable in
◦
Γ. In particular, this implies that the chronic-

infection equilibrium is unique.
Let

g(z) = z − 1− ln z.

Then g(z) ≥ 0 for z > 0 and g(z) = 0 if and only if z = 1. Define a Lyapunov
functional V : C × C × C → R,

V (xt, yt, vt) = xt(0)−
∫ xt(0)

x∗

h(x∗, v∗)

h(τ, v∗)
dτ +

y∗

β1
g

(
yt(0)

y∗

)
+

µ1v∗

kβ1β2
g

(
vt(0)

v∗

)

+
µ1y∗

β2
1

∫ ∞

0
f1(τ)e

−s1τ

∫ 0

−τ
g

(
h(xt(s), vt(s))

h(x∗, v∗)

)
dsdτ

+
µ1y∗

β1β2

∫ ∞

0
f2(τ)e

−s2τ

∫ 0

−τ
g

(
yt(s)

y∗

)
dsdτ.

(5.6)

Calculating the time derivative of V along a positive solution of system (1.4), we
obtain

V ′|(1.4) = n(x(t)) − n(x(t))
h(x∗, v∗)

h(x(t), v∗)
+ h(x(t), v(t))

h(x∗, v∗)

h(x(t), v∗)

− y∗

β1y(t)

∫ ∞

0
f1(τ)e

−s1τh(x(t− τ), v(t − τ))dτ +
µ1y∗

β1
− µ1µ2

kβ1β2
v(t)

− µ1v∗

β1β2v(t)

∫ ∞

0
f2(τ)e

−s2τy(t− τ)dτ +
µ1µ2

kβ1β2
v∗
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− µ1y∗

β2
1

∫ ∞

0
f1(τ)e

−s1τ lnh(x(t), v(t))dτ

+
µ1y∗

β2
1

∫ ∞

0
f1(τ)e

−s1τ lnh(x(t − τ), v(t − τ))dτ

− µ1y∗

β1β2

∫ ∞

0
f2(τ)e

−s2τ ln y(t)dτ +
µ1y∗

β1β2

∫ ∞

0
f2(τ)e

−s2τ ln y(t− τ)dτ.

Using µ1y
∗

β1
= µ1µ2

kβ1β2
v∗ = h(x∗, v∗), we obtain

V ′|(1.4) = n(x(t))

[
1− h(x∗, v∗)

h(x(t), v∗)

]
+h(x(t), v(t))

h(x∗, v∗)

h(x(t), v∗)
−h(x∗, v∗)

v∗
v(t)+h(x∗, v∗)S,

where

S =2− 1

µ1y(t)

∫ ∞

0
f1(τ)e

−s1τh(x(t− τ), v(t − τ))dτ

− v∗

y∗β2v(t)

∫ ∞

0
f2(τ)e

−s2τy(t− τ)dτ

− 1

β1

∫ ∞

0
f1(τ)e

−s1τ lnh(x(t), v(t))dτ

+
1

β1

∫ ∞

0
f1(τ)e

−s1τ lnh(x(t − τ), v(t− τ))dτ

− 1

β2

∫ ∞

0
f2(τ)e

−s2τ ln y(t)dτ +
1

β2

∫ ∞

0
f2(τ)e

−s2τ ln y(t− τ)dτ.

Since 1 = 1
β1

∫∞
0 f1(τ)e−s1τdτ = 1

β2

∫∞
0 f2(τ)e−s2τdτ and y∗

v∗ = µ2

kβ2
, we have

S =
1

β1

∫ ∞

0
f1(τ)e

−s1τ

[
1− β1

µ1y(t)
h(x(t− τ), v(t − τ))− lnh(x(t), v(t))

+ lnh(x(t− τ), v(t − τ))

]
dτ(5.7)

+
1

β2

∫ ∞

0
f2(τ)e

−s2τ

[
1− v∗y(t− τ)

y∗v(t)
− ln y(t) + ln y(t− τ)

]
dτ

=
1

β1

∫ ∞

0
f1(τ)e

−s1τ

[
ln

µ1y(t)

β1h(x(t), v(t))
− g

(
β1

µ1y(t)
h(x(t− τ), v(t − τ))

)]
dτ

+
1

β2

∫ ∞

0
f2(τ)e

−s2τ

[
ln

µ2v(t)

kβ2y(t)
− g

(
v∗y(t− τ)

y∗v(t)

)]
dτ

= ln
v(t)h(x∗, v∗)

v∗h(x(t), v(t))
− 1

β2

∫ ∞

0
f2(τ)e

−s2τg

(
v∗y(t− τ)

y∗v(t)

)
dτ

− 1

β1

∫ ∞

0
f1(τ)e

−s1τg

(
β1

µ1y(t)
h(x(t− τ), v(t − τ))

)
dτ.

Using µ1µ2

kβ1β2
= h(x∗,v∗)

v∗ and (5.7), we obtain

V ′|(1.4) = (n(x(t)) − n(x∗))

(
1− h(x∗, v∗)

h(x(t), v∗)

)
+ n(x∗)− n(x∗)

h(x∗, v∗)

h(x(t), v∗)

+ h(x(t), v(t))
h(x∗, v∗)

h(x(t), v∗)
− h(x∗, v∗)

v∗
v(t) + h(x∗, v∗) ln

h(x∗, v∗)v(t)

v∗h(x(t), v(t))
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− h(x∗, v∗)

β1

∫ ∞

0
f1(τ)e

−s1τg

(
y∗h(x(t− τ), v(t − τ))

y(t)h(x∗, v∗)

)
dτ

− h(x∗, v∗)

β2

∫ ∞

0
f2(τ)e

−s2τg

(
v∗y(t− τ)

y∗v(t)

)
dτ.

Since n(x∗) = h(x∗, v∗), we have

n(x∗)− n(x∗)
h(x∗, v∗)

h(x(t), v∗)
+ h(x(t), v(t))

h(x∗, v∗)

h(x(t), v∗)
− h(x∗, v∗)

v∗
v(t)

+ h(x∗, v∗) ln
h(x∗, v∗)v(t)

v∗h(x(t), v(t))

= h(x∗, v∗)

[
1− h(x∗, v∗)

h(x(t), v∗)
+

h(x(t), v(t))

h(x(t), v∗)
− v(t)

v∗
+ ln

h(x∗, v∗)v(t)

v∗h(x(t), v(t))

]

= h(x∗, v∗)

[
v(t)

v∗

(
h(x(t), v(t))

h(x(t), v∗)
− 1

)(
v∗

v(t)
− h(x(t), v∗)

h(x(t), v(t))

)

− g

(
h(x∗, v∗)

h(x(t), v∗)

)
− g

(
v(t)

v∗
h(x(t), v∗)

h(x(t), v(t))

)]
.

Therefore,

V ′|(1.4) = (n(x(t)) − n(x∗))

[
1− h(x∗, v∗)

h(x(t), v∗)

]

+ h(x∗, v∗)
v(t)

v∗

(
h(x(t), v(t))

h(x(t), v∗)
− 1

)(
v∗

v(t)
− h(x(t), v∗)

h(x(t), v(t))

)

− h(x∗, v∗)g

(
h(x∗, v∗)

h(x(t), v∗)

)
− h(x∗, v∗)g

(
v(t)

v∗
h(x(t), v∗)

h(x(t), v(t))

)

− h(x∗, v∗)

β1

∫ ∞

0
f1(τ)e

−s1τg

(
β1

µ1y(t)
h(x(t− τ), v(t − τ))

)
dτ

− h(x∗, v∗)

β2

∫ ∞

0
f2(τ)e

−s2τg

(
v∗y(t− τ)

y∗v(t)

)
dτ.

(5.8)

From the conditions (A1)–(A3) we know that

(n(x(t)) − n(x∗))

[
1− h(x∗, v∗)

h(x(t), v∗)

]
≤ 0,(5.9)

(
h(x(t), v(t))

h(x(t), v∗)
− 1

)(
v∗

v(t)
− h(x(t), v∗)

h(x(t), v(t))

)
≤ 0(5.10)

for t ≥ 0, and the equalities hold only if x(t) ≡ x∗. Furthermore, the positive

definiteness of g(z) implies V ′|(1.4) ≤ 0 for all (x, y, v) ∈
◦
Γ, and thus omega limit sets

of solutions are contained in M , the largest invariant subset of {V ′ = 0}. It can be
verified that V ′ = 0 implies

x = x∗,
h(x, v)

h(x, v∗)
=

v

v∗
,

β1
ay

h(x, v) = 1, and
v∗y

y∗v
= 1.

Along a solution in this set we necessarily have

x(t) = x∗, x′(t) = y′(t) = v′(t) ≡ 0;
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namely, the solution must be an equilibrium with x = x∗. Note that, when x∗ is
given, the equilibrium equation (2.8) has a unique solution y = y∗, v = v∗. Therefore,
M = {E∗}. Using the LaSalle invariance principle and a similar argument as in
the proof of Theorem 3.1, we can show that the chronic-infection equilibrium E∗ is

globally asymptotically stable in
◦
Γ.

6. Summary and discussion. For in-host models of viral infection dynamics
in vivo, it has been observed that both a mitotic term in the target-cell dynamics
and intracellular delays can cause periodic oscillations through Hopf bifurcations. We
have investigated, in this paper, whether these two mechanisms can independently
lead to periodic oscillations, or more specifically, whether intracellular delays can lead
to periodic oscillations without mitosis in the target-cell dynamics.

Using an in-host model with general target-cell dynamics, a general incidence
function, and general distributions for intracellular delays, we have rigorously shown
that if the target-cell dynamics are such that no Hopf bifurcations occur, introduc-
ing intracellular delays into the model will not lead to Hopf bifurcations or periodic
oscillations.

Our model is sufficiently general to be applicable to in vivo infection of RNA
viruses such as HIV-I and HCV, as well as DNA viruses such as HBV that replicate
through reverse transcription. The model can also include effects of antiretroviral
therapies using reverse transcriptase inhibitors and protease inhibitors. An impli-
cation of our results is that the right kind of target-cell dynamics are essential for
sustained oscillations to occur in viral infections. This, however, does not diminish
the importance of intracellular delays that are present in viral infection and replica-
tion processes; while it is mathematically possible to produce periodic solutions in an
in-host model using only a suitable form of target-cell dynamics, intracellular delays
may be important biologically for sustained oscillations to occur in vivo. This is in
agreement with earlier studies in [12, 13] where it was shown that when both mitosis
and intracellular delays are present in an in-host model, Hopf bifurcation occurs in a
biologically relevant parameter range. While many in-host models for viral infections
show possible parameter regimes for periodic oscillations, clinical data for HIV-I infec-
tion rarely show sustained oscillations [10, 30]. Our results imply that the properties
of the target-cell dynamics for HIV-1 may have dictated the nonoscillatory nature of
the HIV-I infection dynamics. We also note that none of the models discussed in the
present paper incorporate immune responses to the viral infection, which should also
play a key role in controlling the viral load and in determining outcomes of the viral
infection.

Mathematically, our Theorem 3.2 is the first complete result on the global stability
of a unique chronic-infection equilibrium for in-host viral models with intracellular
delays. The proof relies on the construction of a global Lyapunov functional that
is motivated by earlier works in [17]. Establishing global stability is crucial for our
study, since local stability cannot rule out periodic solutions far away from equilibria.
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