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GLOBAL STABILITY OF AN EPIDEMIC MODEL

IN A PATCHY ENVIRONMENT

MICHAEL Y. LI AND ZHISHENG SHUAI

ABSTRACT. We investigate an SIR compartmental epi-
demic model in a patchy environment where individuals in each
compartment can travel among n patches. We derive the ba-
sic reproduction number R0 and prove that, if R0 ≤ 1, the
disease-free equilibrium is globally asymptotically stable. In
the case of R0 > 1, we derive sufficient conditions under which
the endemic equilibrium is unique and globally asymptotically
stable.

1 Introduction In the literature of population dynamics, both
continuous reaction-diffusion systems and discrete patchy models are
used to study the spatial heterogeneity [15]. While reaction-diffusion
systems are suitable for random spatial dispersal, patchy models are of-
ten used to describe directed movement among patches. When modeling
the spread of infectious diseases in spatially heterogeneous host popula-
tions, directed movement can be migration among countries and regions
or travel among cities.

Discrete spatial epidemic models in patch environments give rise to
large systems of nonlinear differential equations, and establishing their
global dynamics can be a mathematical challenge. Arino and van den
Driessche [2] formulated n-city epidemic models to investigate the effects
of inter-city travel on the spatial spread of infectious diseases among
cities. The basic reproduction number R0 was derived and numerical
simulations were carried out to show that R0 determines whether the
disease dies out (R0 < 1) or becomes endemic (R0 > 1). Wang and
Zhao [21] studied an n-patch SIS model with bilinear incidence. In the
case that both suspectable and infectious individuals on each patch have
the same dispersal rates, they proved that the disease-free equilibrium is
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globally asymptotically stable if R0 < 1. They also proved that the sys-
tem is uniformly persistent and admits an endemic equilibrium if R0 > 1.
Under the same assumption that the dispersal rates of susceptible and
infectious individuals are the same, Jin and Wang [10] showed that the
n-patch SIS model can be reduced to a monotone system. Using the
theory of monotone dynamical systems, they proved the uniqueness and
global stability of the endemic equilibrium when R0 > 1. Salmani and
van den Driessche [16] studied an SEIRS model with standard incidence
in a patchy environment and proved that, if R0 < 1, the disease-free
equilibrium is globally asymptotically stable, regardless of travel rates.
Uniqueness and global stability of endemic equilibria when R0 > 1 is of-
ten unresolved for many patchy epidemic models. The method of global
Lyapunov functions has seen little success for epidemic models in patchy
environments.

Recently, a graph-theoretical approach is developed in [8, 9, 13] and
that systemizes the construction of global Lyapunov functions for large-
scale coupled systems. The approach has been successfully applied to
resolve global-stability problems for the endemic equilibrium of multi-
group epidemic models [8, 9, 13], and for the positive equilibrium of
predator-prey models in a patchy environment [13]. In this paper, we
utilize this new approach to investigate the global stability of the en-
demic equilibrium of epidemic models with travel among n patches. We
consider the following SIR epidemic model with bilinear incidence in a
patchy environment,

(1.1)

S′
i = Λi − βiSiIi − dS

i Si +

n
∑

j=1

aijSj −

n
∑

j=1

ajiSi,

I ′i = βiSiIi − (dI
i + γi)Ii +

n
∑

j=1

bijIj −

n
∑

j=1

bjiIi,

R′
i = γiIi − dR

i Ri +

n
∑

j=1

cijRj −

n
∑

j=1

cjiRi,

i = 1, 2, . . . , n.

Here, Si, Ii and Ri represent the susceptible, infectious and removed
populations in the i-th patch, respectively, Λi is the influx of individuals
into the i-th patch, βi is the transmission coefficient between susceptible
and infectious individuals in the i-th patch, dS

i , dI
i and dR

i represent
death rates of S, I and R populations in the i-th patch, respectively, and
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γi represents the recovery rate of infectious individuals in the i-th patch.
The travel rates of susceptible, infectious, and removed individuals from
the j-th patch to the i-th patch are given by aij , bij and cij , respectively.
All parameter values are assumed to be nonnegative and Λi, βi, d

S
i , dI

i >
0 for all i. The travel matrices A = (aij), B = (bij) and C = (cij)
are not required to be symmetric, namely, the travel rate from the i-
th patch to the j-th patch may not be the same as that from the j-th
to the i-th. A typical assumption we impose on these matrices is that
they are irreducible. In biological terms, this means individuals in each
compartment can travel between any two patches directly or indirectly.
For detailed discussions of epidemic model with patches, we refer the
reader to articles [3, 20] and references therein. Model (1.1) includes
as special cases several earlier models in the literature. A two-patch
SIS model [19] and a two-patch SIRS model [6] become special cases
of model (1.1) if we assume that the disease has permanent immunity.
An n-patch model similar to (1.1) was proposed in [14] without global-
stability analysis. Model (1.1) differs from those in [16] in that bilinear
incidence are used in (1.1) while standard incidences are assumed in
[16].

Since the variable Ri does not appear in the first two equations of
(1.1), we can first study the reduced system

(1.2)

S′
i = Λi − βiSiIi − dS

i Si +

n
∑

j=1

aijSj −

n
∑

j=1

ajiSi,

I ′i = βiSiIi − (dI
i + γi)Ii +

n
∑

j=1

bijIj −

n
∑

j=1

bjiIi,

i = 1, 2, . . . , n,

with initial conditions Si(0) ≥ 0 and Ii(0) ≥ 0. Behaviors of Ri can then
be determined from the last equation of (1.1). Our results in this paper
will be stated for system (1.2) and can be translated straightforwardly
to system (1.1).

In this paper, we establish the global dynamics of system (1.2) with
any finite number of patches. We prove that, if R0 ≤ 1, the disease-
free equilibrium is globally asymptotically stable. In the case of R0 >
1, we derive sufficient conditions under which, whenever an endemic
equilibrium exists, it is unique and globally asymptotically stable. Our
results can be readily applied to the n-patch epidemic model in [14]
and yield global-stability analysis. When the disease has permanent
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immunity, the global stability of the endemic equilibrium for two-patch
epidemic models in [6, 19] is resolved as special cases of our results.
Our proof demonstrates that the graph-theoretical approach developed
in [13] is applicable to the global-stability problem in patchy models.

The paper is organized as follows. In the next section, we prove some
preliminary results for system (1.2). In Section 3, the global stability
of the disease-free equilibrium is proved. The global stability of the
endemic equilibrium is proved in Section 4. We include in the Appendix
a combinatorial identity that is needed for our proof.

2 Preliminaries

2.1 Disease-free equilibrium To find the disease-free equilibrium of
(1.2), we consider the following linear system

(2.1) Λi − dS
i Si +

n
∑

j=1

aijSj −

n
∑

j=1

ajiSi = 0, i = 1, 2, . . . , n,

or in the form of matrix system

DS = Λ,

where

(2.2) D =











d
S
1 +

P

j 6=1
aj1 −a12 · · · −a1n

−a21 d
S
2 +

P

j 6=2
aj2 · · · −a2n

.

.

.

.

.

.
. . .

.

.

.

−an1 −an2 · · · d
S
n +

P

j 6=n
ajn











,

S = (S1, S2, · · · , Sn)T , and Λ = (Λ1, Λ2, · · · , Λn)T . Since all off-diagonal
entries of D are nonpositive and the sum of the entries in each col-
umn of D is positive, D is a nonsingular M -matrix and D−1 ≥ 0
[4, p. 137]. Hence, linear system (2.1) has a unique positive solution
S0 = (S0

1 , S0
2 , · · · , S0

n)T = D−1Λ, S0
i > 0 for all i. As a consequence,

system (1.2) has a unique disease-free equilibrium

P0 = (S0
1 , 0, S0

2 , 0, · · · , S0
n, 0).

We thus have the following result.

Proposition 2.1. System (1.2) always has a unique disease-free equi-

librium P0.
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2.2 Feasible region Let Λ̄ =
∑n

i=1
Λi, d∗ = min{dS

i , dI
i + γi | i =

1, 2, . . . , n}, and N =
∑n

i=1
(Si + Ii). Adding all equations of (1.2) gives

N ′ ≤ Λ̄ − d∗N , which implies that lim supt→∞ N ≤ Λ̄/d∗. Since all off-
diagonal entries of D are nonpositive, it follows from the first equation
of (1.2) that

S′
i ≤ Λi − dS

i Si +

n
∑

j=1

aijSj −

n
∑

j=1

ajiSi = (DS0 − DS)i ≤ 0,

when Si = S0
i and Sj ≤ S0

j for j 6= i. Thus the feasible region of (1.2)
can be chosen as

Γ =

{

(S1, I1, · · · , Sn, In) ∈ R
2n
+

∣

∣

∣

∣

N =

n
∑

i=1

(Si + Ii) ≤
Λ̄

d∗
,

Si ≤ S0
i , 1 ≤ i ≤ n

}

.

It can be verified that Γ is positively invariant with respect to (1.2). Let
◦

Γ denote the interior of Γ, and ∂Γ the boundary of Γ.

2.3 The basic reproduction number Define

(2.3) F =











β1S
0
1 0 · · · 0

0 β2S
0
2 · · · 0

...
...

. . .
...

0 0 · · · βnS0
n











and

(2.4) V =















dI
1 + γ1 +

P

j 6=i

bj1 −b12 · · · −b1n

−b21 dI
2 + γ2 +

P

j 6=2

bj2 · · · −b2n

...
...

. . .
...

−bn1 −bn2 · · · dI
n + γn +

P

j 6=n

bjn















.

Using the method of van den Driessche and Watmough [18], the basic
reproduction number can be calculated as

R0 = ρ(FV −1),

where ρ represents the spectral radius of the matrix and FV −1 is the
next generation matrix. The following result follows from Theorem 2 of
[18].
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Proposition 2.2. The disease-free equilibrium P0 is locally asymptoti-

cally stable if R0 < 1, and unstable if R0 > 1.

2.4 Other boundary equilibria

Theorem 2.3. Suppose that B = (bij) is irreducible. Then there exist

no other equilibria besides P0 in ∂Γ.

Proof. We show that Ii = 0 for some i implies that Ij = 0 for all j. If
Ii = 0, from the second equation of (1.2) we obtain

∑

j 6=i

bijIj = 0.

As a consequence, we know that Ij = 0 if bij > 0. Namely, for any
1 ≤ i, j ≤ n,

(2.5) Ii = 0 and bij > 0 =⇒ Ij = 0.

Since B is irreducible, there exists a sequence of ordered pairs {(i, r1),
(r1, r2), · · · , (rm, j)} such that bir1

> 0, br1r2
> 0, · · · , brmj > 0,

1 ≤ rk ≤ n, k = 1, 2, . . . , m, and m ≥ 0 [4, p. 30]. Applying (2.5)
to each pair in such a sequence and using Ii = 0, we can see that

Ir1
= 0, Ir2

= 0, · · · , Irm
= 0, Ij = 0.

Hence, we have Ij = 0 for all j. Therefore, by Proposition 2.1, we know
that the only equilibrium that lies on the boundary ∂Γ is P0.

When travel matrix B = (bij) is reducible, system (1.2) can have mul-
tiple boundary equilibria and the dynamics of (1.2) can be complicated.
We refer the readers to [1, 2, 6, 19] for discussions on this issue.

3 Global stability of disease-free equilibrium P0 In this sec-
tion, we prove that the disease-free equilibrium P0 is globally asymptot-
ically stable if R0 ≤ 1. In particular, our result generalizes Theorem 2.1
in [19] from two patches to arbitrary n patches.

Theorem 3.1. Assume R0 ≤ 1. Suppose that B = (bij) is either ir-

reducible or equal to 0. Then the disease-free equilibrium P0 is globally

asymptotically stable in Γ.
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Proof. We prove the result when travel matrix B = (bij) is irreducible.
The case when B = 0 can be proved similarly. Let F, V be as given in
(2.3) and (2.4), respectively. All off-diagonal entries of V are nonpositive
and the sum of the entries in each column of V is positive, and thus V is a
non-singular M -matrix. Suppose that B is irreducible, then V −1 > 0 is
also irreducible. By Perron-Frobenious Theorem [4, p. 27], nonnegative
irreducible matrix V −1F has a positive left eigenvector (w1, w2, · · · , wn)
corresponding to eigenvalue ρ(V −1F ). Since F is a diagonal matrix,
ρ(V −1F ) = ρ(FV −1) = R0. As a consequence, we have

(w1, w2, · · · , wn)V −1F = R0(w1, w2, · · · , wn),

and thus

(3.1)
1

R0

(w1, w2, · · · , wn) = (w1, w2, · · · , wn)F−1V.

Let ci = wi/(βiS
0
i ) > 0, i = 1, 2, . . . , n, and I = (I1, I2, · · · , In)T . Set

L =
∑n

i=1
ciIi. Differentiating L along system (1.2) and using identity

(3.1), we obtain

L′ =

n
∑

i=1

ci

(

βiSiIi − (dI
i + γi)Ii +

n
∑

j=1

bijIj −

n
∑

j=1

bjiIi

)

≤

n
∑

i=1

ci

(

βiS
0
i Ii −

(

dI
i + γi +

∑

j 6=i

bji

)

Ii +
∑

j 6=i

bijIj

)

=

(

w1

β1S0
1

,
w2

β2S0
2

, · · · ,
wn

βnS0
n

)

(F − V )I

= (w1, w2, · · · , wn)(1 − F−1V )I

= (w1, w2, · · · , wn)

(

1 −
1

R0

)

I ≤ 0, if R0 ≤ 1.

(3.2)

Therefore, L is a Lyapunov function for system (1.2). Since ci > 0 for
i = 1, 2, . . . , n, L′ = 0 implies that either Si = S0

i or Ii = 0 for any
1 ≤ i ≤ n. When Si = S0

i , from the first equation of (1.2) we obtain

0 = (S0
i )′ = Λi − βiS

0
i Ii − dS

i S0
i +

n
∑

j=1

aijS
0
j −

n
∑

j=1

ajiS
0
i .
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Comparing this relation with (2.1), we know Ii = 0. Thus, we have
shown that L′ = 0 implies that Ii = 0 for all i. It can be verified
that the only invariant subset of the set {(S1, I1, · · · , Sn, In) ∈ Γ | Ii =
0, i = 1, 2, . . . , n} is the singleton {P0}. Therefore, by LaSalle Invariance
Principle [11], P0 is globally asymptotically stable in Γ.

Suppose that travel matrix B = (bij) is irreducible and R0 > 1. It

follows from (3.2) that L′ > 0 in a neighborhood of P0 in
◦

Γ. Therefore,

P0 is unstable and solutions in
◦

Γ sufficiently close to P0 move away from
P0. Using a uniform persistence result from [7] and a similar argument
as in the proof of Proposition 3.3 of [12], we can show that, when B
is irreducible, the instability of P0 implies the uniform persistence of
(1.2). Uniform persistence of (1.2), together with uniform boundedness

of solutions in
◦

Γ, implies the existence of an equilibrium of (1.2) in
◦

Γ (see
Theorem D.3 in [17] or Theorem 2.8.6 in [5]). Therefore, the following
result holds.

Proposition 3.2. Suppose that B = (bij) is irreducible. If R0 > 1,
then system (1.2) is uniformly persistent and there exists an endemic

equilibrium P ∗ in
◦

Γ.

In Proposition 3.2, the assumption that travel matrix B = (bij) is
irreducible is necessary. If B = 0, system (1.2) can have an asymptoti-
cally stable boundary equilibrium when R0 > 1 and thus is not persistent
[6, 19]. It is also possible that, if B = 0, no endemic equilibrium exists
when R0 > 1 [6].

4 Uniqueness and global stability of endemic equilibria In
this section, under the assumption R0 > 1, we derive sufficient conditions
under which, the endemic equilibrium is unique and globally asymptoti-
cally stable. Our proof utilizes the graph-theoretical approach developed
in [8, 9, 13].

Theorem 4.1. Assume that R0 > 1 and an endemic equilibrium P ∗ =
(S∗

1 , I∗1 , · · · , S∗
n, I∗n) exists. Suppose that one of the following assumptions

is satisfied.

(1) A = 0 and B is irreducible;

(2) B = 0 and A is irreducible;

(3) A and B are irreducible, and there exists λ > 0 such that aijS
∗
j =

λbijI
∗
j for all 1 ≤ i, j ≤ n.
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Then P ∗ is unique and globally asymptotically stable in
◦

Γ.

By Proposition 3.2, the existence of an endemic equilibrium P ∗ is
ensured if the assumption (1) or assumption (3) is satisfied.

Proof. We prove the result when assumption (3) is satisfied. The other
two cases can be proved similarly. We prove that P ∗ is globally asymp-

totically stable in
◦

Γ. In particular, this implies that P ∗ is necessarily
unique. Set

Vi(Si, Ii) = Si − S∗
i − S∗

i ln
Si

S∗
i

+ Ii − I∗i − I∗i ln
Ii

I∗i
.

From equilibrium equations of (1.2), we obtain

dS
i S∗

i = Λi − βiS
∗
i I∗i +

n
∑

j=1

aijS
∗
j −

n
∑

j=1

ajiS
∗
i ,

and

(dI
i + γi)I

∗
i = βiS

∗
i I∗i +

n
∑

j=1

bijI
∗
j −

n
∑

j=1

bjiI
∗
i .

Note that 1 − x + ln x ≤ 0 for x > 0 and equality holds if and only if
x = 1. Differentiating Vi along the solution of system (1.2), we obtain

V ′
i = Λi − dS

i Si +
n

∑

j=1

aijSj −
n

∑

j=1

ajiSi − Λi

S∗
i

Si

(4.1)

+ βiS
∗
i Ii + dS

i S∗
i −

n
∑

j=1

aijSj

S∗
i

Si

+

n
∑

j=1

ajiS
∗
i

− (dI
i + γi)Ii +

n
∑

j=1

bijIj −

n
∑

j=1

bjiIi − βiSiI
∗
i

+ (dI
i + γi)I

∗
i −

n
∑

j=1

bijIj

I∗i
Ii

+

n
∑

j=1

bjiI
∗
i

= Λi

(

1 −
Si

S∗
i

+ ln
Si

S∗
i

+ 1 −
S∗

i

Si

+ ln
S∗

i

Si

)

+

n
∑

j=1

aijS
∗
j

(

1 −
S∗

i Sj

SiS∗
j

+ ln
S∗

i Sj

SiS∗
j

)
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+

n
∑

j=1

aijS
∗
j

(

Sj

S∗
j

+ ln
S∗

j

Sj

−
Si

S∗
i

− ln
S∗

i

Si

)

+
n

∑

j=1

bijI
∗
j

(

1 −
I∗i Ij

IiI∗j
+ ln

I∗i Ij

IiI∗j

)

+

n
∑

j=1

bijI
∗
j

(

Ij

I∗j
+ ln

I∗j
Ij

−
Ii

I∗i
− ln

I∗i
Ii

)

≤

n
∑

j=1

aijS
∗
j

(

Sj

S∗
j

+ ln
S∗

j

Sj

−
Si

S∗
i

− ln
S∗

i

Si

)

+

n
∑

j=1

bijI
∗
j

(

Ij

I∗j
+ ln

I∗j
Ij

−
Ii

I∗i
− ln

I∗i
Ii

)

=

n
∑

j=1

bijI
∗
j

[(

λ
Sj

S∗
j

+ λ ln
S∗

j

Sj

+
Ij

I∗j
+ ln

I∗j
Ij

)

−

(

λ
Si

S∗
i

+ λ ln
S∗

i

Si

+
Ii

I∗i
+ ln

I∗i
Ii

)]

=

n
∑

j=1

bijI
∗
j [Gj(Sj , Ij) − Gi(Si, Ii)],

where

Gi(Si, Ii) = λ
Si

S∗
i

+ λ ln
S∗

i

Si

+
Ii

I∗i
+ ln

I∗i
Ii

.

Consider a weight matrix W = (wij ) with entry wij = bijI
∗
j and denote

the corresponding weighted digraph as (G, W ). Let ci =
∑

T ∈Ti
w(T ) ≥

0 be as given in (A.1) in the Appendix with (G, W ). Then, by (A.2),
the following identity holds

(4.2)

n
∑

i=1

ci

n
∑

j=1

bijI
∗
j (Gj(Sj , Ij) − Gi(Si, Ii)) = 0.

Set

V (S1, I1, S2, I2, · · · , Sn, In) =
n

∑

i=1

ciVi(Si, Ii).
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Using (4.1) and (4.2) we obtain

V ′ =

n
∑

i=1

ciV
′
i ≤

n
∑

i=1

ci

n
∑

j=1

bijI
∗
j (Gj(Sj , Ij) − Gi(Si, Ii)) = 0

for all (S1, I1, · · · , Sn, In) ∈
◦

Γ. Therefore, V is a Lyapunov function for
system (1.2). Since B is irreducible, we know that ci > 0 for all i (see
the Appendix), and thus V ′ = 0 implies that Si = S∗

i for all i. From
the first equation of (1.2), we obtain

0 = (S∗
i )′ = Λi − βiS

∗
i Ii − dS

i S∗
i +

n
∑

j=1

aijS
∗
j −

n
∑

j=1

ajiS
∗
i ,

i = 1, 2, . . . , n,

which implies that Ii = I∗i for all i. The only invariant set on which
V ′ = 0 is the singleton {P ∗}. Therefore, by LaSalle Invariance Principle

[11], P ∗ is globally asymptotically stable in
◦

Γ.
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Appendix: A combinatorial identity Let (G, W ) be a weighted
digraph with n ≥ 2 vertices, where W = (wij) is the weight matrix. A
weight wij > 0 if the directed arc (j, i) from vertex j to vertex i exists,
otherwise wij = 0. Let Ti be the set of all spanning trees of (G, W )
rooted at vertex i. For T ∈ Ti, the weight of T , denoted by w(T ), is
the product of weights on all arcs of T . Let

(A.1) ci =
∑

T ∈Ti

w(T ), i = 1, 2, . . . , n.

Then ci ≥ 0, and for any family of functions {Gi(xi)}
n
i=1, the following

identity holds

(A.2)

n
∑

i,j=1

ci wij Gi(xi) =

n
∑

i,j=1

ci wij Gj(xj).



186 MICHAEL Y. LI AND ZHISHENG SHUAI

If W = (wij ) is irreducible, then ci > 0 for i = 1, 2, . . . , n. We refer the
reader to [13] for the proof of (A.2).
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