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GLOBAL STABILITY IN A MATHEMATICAL

MODEL OF TUBERCULOSIS

HONGBIN GUO AND MICHAEL Y. LI

ABSTRACT. Mathematical analysis is carried out for a
mathematical model of Tuberculosis (TB) that incorporates
both latent and clinical stages. Our analysis establishes that
the global dynamics of the model are completely determined by
a basic reproduction number R0. If R0 ≤ 1, the TB always dies
out. If R0 > 1, the TB becomes endemic, and a unique endemic
equilibrium is globally asymptotically stable in the interior of
the feasible region.

1 Introduction Tuberculosis (TB) is an ancient disease caused by
the infection of bacterium Mycobacterium tuberculosis. Once thought
under control using antibiotic therapies, TB made a dramatic come back
in the late nineteen eighties and early nineteen nineties, largely due
to the emergence of antibiotic resistant stains and to co-infection with
HIV. Currently, the global per capita incidence rate of TB is growing at
approximately 1.1% per year, and the number of cases at 2.4% per year.
According to the 2004 WHO report “Global Tuberculosis Control” [1],
there were 8.8 million new cases of TB worldwide in 2002, with close
to 2 million TB-related deaths, more than any other infectious diseases.
TB remains as one of the most serious health problems facing the world
today.

Mathematical models have been used to improve our understanding of
the basic transmission dynamics of TB and to evaluate the effectiveness
of various control and prevention strategies [2–11]. The TB bacteria
can spread in the air from a person with active TB disease to others
when they are in close contact. When first infected with TB bacteria, a
person typically goes through a latent, asymptomatic and non-infectious
period during which the body’s immune system fights the TB bacteria.
There are two distinct stages of the latent TB infection. During the first
two years, the risk of developing active disease is much higher, whereas
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during the later stage, the progression to active disease is much slower.
Using a compartmental approach, the total host population can be parti-
tioned into four compartments: susceptible individuals (X), early latent
(E) and late latent (L) individuals, and individuals with active TB dis-
ease (T ). Only individuals in compartment T are infectious, and new
infections result from contacts between a susceptible and an infectious
individual, with an incidence rate βX(t)T (t). Here X(t), E(t), L(t) and
T (t) denote the density of populations in the four corresponding com-
partments at time t. Once infected, individuals progress through the
early latent stage with an average rate ω. A fraction p, 0 < p ≤ 1, of
these individuals progress directly to the active TB stage, and the re-
maining 1 − p fraction progresses to the late latent stage. Once there,
the rate of progression to active disease is at a lower rate ν. The input of
the susceptibles is assumed to be a constant π, and removal rates for the
four compartments are µX , µE , µL and µT , respectively. Here removal
may include natural death, death due to TB, and removal from treat-
ment. The dynamical transfer among the four compartments is depicted
in the following transfer diagram. Here all parameters are assumed to
be positive.

FIGURE 1: The transfer diagram for model (1).

Based on our assumptions and the transfer diagram, the model can
be described by four ordinary differential equations as follow:

(1)

X ′ = π − βXT − µXX,

E′ = βXT − (µE + ω)E,

L′ = (1 − p)ωE − (µL + ν)L,

T ′ = pωE + νL − µT T.

A similar model was first proposed by Ziv, et al. [11] to discuss
effectiveness of treating TB patients at the early latent stage, where
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treatment rates were singled out from removal rates µE , µL and µT . A
basic reproduction number R0 is derived in [11],

(2) R0 =
βπω(ν + pµL)

µX(µE + ω)(µL + ν)µT
,

based on which quantitative analysis was carried out. The parameter
R0 measures the average number of infections caused by one infectious
individual throughout the infectious period, when introduced into an
entirely susceptible population. It is expected that if R0 < 1, then no TB
epidemic can develop in the population, and if R0 > 1, a TB epidemic
can develop and become endemic in the population. In the present
paper, we give a rigorous mathematical analysis of model (1), and prove
that the global dynamics of the model is completely determined by the
parameter R0 in (2). More specifically, we prove that if R0 ≤ 1, then
the disease-free equilibrium P0 = (π/µX , 0, 0, 0) is globally stable in
the feasible region; if R0 > 1, P0 is unstable, and a unique endemic
equilibrium P ∗ = (X∗, E∗, L∗, T ∗) with X∗, E∗, L∗, T ∗ > 0 exists and is
asymptotically stable. Furthermore, all solutions in the interior of the
feasible region converge to P ∗. In particular, our results establish that
the expression of R0 in (2) as derived in [11] represents the true basic
reproduction number.

In the next section, we discuss the feasible region of the model and
its equilibria. The global dynamics when R0 ≤ 1 are established in
Section 3, and the global results when R0 > 1 is given in Section 4.

2 Feasible region and equilibria of the system It can be ver-
ified that if a solution to (1) starts in the nonnegative cone R

4
+ of R

4, it
remains in R

4
+. Furthermore, from (1) we have

X ′ ≤ π − µXX

and thus lim supt→∞
X(t) ≤ π/µX along each solution to (1). Let

N(t) = X(t) + E(t) + L(t) + T (t). Then using (1) we have

N ′ = π − µXX − µEE − µLL − µT T ≤ π − µN,

where µ = min{µX , µE , µL, µT }. This implies that lim supt→∞
N(t) ≤

π/µ. Therefore the model can be studied in the feasible region

(3) Γ =

{

(X, E, L, T ) ∈ R
4
+ : 0 ≤ X ≤ π

µX
, 0 ≤ X+E+L+T ≤ π

µ

}

.
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The closed set Γ is positively invariant with respect to (1). We denote
by Int Γ the interior of Γ in R

4
+.

An equilibrium (X, E, L, T ) of (1) satisfies the following equations

π = βXT + µXX,(4)

βXT = (µE + ω)E,(5)

(1 − p)ωE = (µL + ν)L,(6)

pωE + νL = µT T.(7)

Simplifying these equations we obtain
[

βX − (µE + ω)(µL + ν)µT

ω(ν + pµL)

]

T = 0.

Therefore,

either T = 0 or X =
(µE + ω)(µL + ν)µT

βω(ν + pµL)
.

Correspondingly, system (1) has two possible equilibria: the disease-
free equilibrium P0 = (π/µX , 0, 0, 0) and the endemic equilibrium P ∗ =
(X∗, E∗, L∗, T ∗) where

(8) X∗ =
(µE + ω)(µL + ν)µT

βω(ν + pµL)
.

In [11], the basic reproduction number is defined as

(9) R0 =
βπω(ν + pµL)

µX(µE + ω)(µL + ν)µT
,

which describes the average number of infections produced when one
infectious individual is introduced into a population at the disease-free
equilibrium, namely, R0 satisfies

R0 X∗ =
π

µX
.

Using R0 we have the following expressions for the coordinates of P ∗:

(10)

X∗ =
π

µXR0

, E∗ =
π

(µE + ω)
(1 − 1

R0

),

L∗ =
(1 − p)µXµT

β(ν + pµL)
(R0 − 1), T ∗ =

µX

β
(R0 − 1).

It follows from (10) that P ∗ exists only when R0 > 1. The following
result is immediate.
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Proposition 1. System (1) has two possible equilibria. When R0 ≤ 1,
the disease-free P0 = (π/µX , 0, 0, 0) is the only equilibrium in Γ; when

R0 > 1, both P0 and the unique endemic equilibrium P ∗ = (X∗, E∗, L∗, T ∗)
exist in Γ, where X∗, E∗, L∗, T ∗ are given in (10).

For epidemic models of this type, it is generally expected that the
global dynamics are determined by the basic reproduction number R0:
if R0 ≤ 1, then all solutions converge to the disease-free equilibrium
P0, and the TB dies out from the population irrespective of the initial
incidence; while if R0 > 1, all solutions with positive initial conditions
will be persistent and converge to the unique endemic equilibrium P ∗,
and any initial TB epidemics will become endemic in the population. In
the next two sections, we rigorously establish this threshold behaviour.

3 Stability of the disease-free equilibrium P0. In this section,
we show that the disease-free equilibrium P0 is globally asymptotically
stable with respect to Γ if R0 ≤ 1, and P0 is unstable if R0 > 1.

Theorem 2. If R0 ≤ 1, then the disease-free equilibrium P0 is locally

asymptotically stable and all solutions in Γ converge to P0. If R0 > 1,
then P0 is unstable.

Proof. Consider a Lyapunov function

L = ω(ν + pµL)E + ν(µE + ω)L + (µE + ω)(µL + ν)T.

Direct calculation leads to

L′ = ω(ν + pµL)E′ + ν(µE + ω)L′ + (µE + ω)(µL + ν)T ′

= βω(ν + pµL)XT − (µE + ω)(µL + ν)µT T

= βω(ν + pµL)T

(

X − π

µXR0

)

.

Therefore L′ ≤ 0 in Γ if R0 ≤ 1. Furthermore

L′ = 0 ⇐⇒ T = 0 or R0 = 1 and X =
π

µXR0

.

Therefore, the largest compact invariant set in G = {(X, E, L, T ) ∈
Γ : L′ = 0}, when R0 ≤ 1, is the singleton {P0}. LaSalle’s Invariance
Principle ([12, Chapter 2, Theorem 6.4]) implies that all solutions in Γ



190 HONGBIN GUO AND MICHAEL Y. LI

converges to P0. This global convergence also implies that P0 is locally
stable, since otherwise P0 will have a homoclinic orbit that has to belong
entirely in the set G ⊂ Γ where L′ = 0, and thus contradicting the fact
that the largest compact invariant set in G is the singleton {P0}.

If R0 > 1, then L′ > 0 for X sufficiently close to π/µX except when
E = L = T = 0. Solutions in Γ starting sufficiently close to P0 leave a
neighborhood of P0 except those on the invariant X-axis, on which (1)
reduces to X ′ = π − µXX and thus X(t) → π/µX , as t → ∞. This
establishes the theorem.

By Theorem 2, the infection-free equilibrium point P0 is unstable
when R0 > 1. Moreover, the local dynamics near P0 imply that system
(1) is uniformly persistent if R0 > 1. Namely, there exists constant
c > 0, such that

lim inf
t→∞

X(t) > c, lim inf
t→∞

E(t) > c,

lim inf
t→∞

L(t) > c, lim inf
t→∞

T (t) > c,

provided (X(0), E(0), L(0), T (0)) ∈ IntR
4
+, the positive cone of R

4. Here
constant c is independent of initial data in R

4
+. We thus have the fol-

lowing corollary, whose proof is similar to that of Proposition 3.3 of
[13].

Corollary 3. System (1) is uniformly persistent if and only if R0 > 1.

Theorem 2 completely determines the global dynamics of (1) in Γ
when R0 ≤ 1. It establishes the basic reproduction number R0 in (9)
as a sharp threshold parameter. Namely, if R0 ≤ 1, all solutions in the
feasible region converge to the disease-free equilibrium P0, and the TB
will die out from the population irrespective of the initial conditions. If
R0 > 1, P0 is unstable and the system is uniformly persistent, and a TB
epidemic will always become endemic.

4 Stability of the endemic equilibrium P ∗ when R0 > 1 We
have shown in the previous section that system (1) is uniformly persis-
tent if and only if R0 > 1. In this section, we further establish that all
solutions in the interior of the feasible region Γ converge to the unique
endemic equilibrium P ∗ if R0 > 1. Therefore, the TB will persist at the
endemic equilibrium level. The proof is accomplished by constructing
a global Lyapunov function. Lyapunov functions of similar type have
been used in the literature, see [14–16].
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Theorem 4. Assume R0 > 1. Then the endemic equilibrium P ∗ =
(X∗, E∗, L∗, T ∗) is asymptotically stable. Furthermore, all solutions in

Int Γ converge to P ∗.

Proof. Set x = (X, E, L, T ) ∈ Γ ⊂ R
4
+. Consider a Lyapunov function

V = V (x) =

(

X − X∗ − X∗ ln
X

X∗

)

+

(

E − E∗ − E∗ ln
E

E∗

)

+ A

(

L − L∗ − L∗ ln
L

L∗

)

+ B

(

T − T ∗ − T ∗ ln
T

T ∗

)

,

where x∗ = P ∗ = (X∗, E∗, L∗, T ∗) is the endemic equilibrium and

(11) A =
βνX∗

(µL + ν)µT
, B =

βX∗

µT
.

We note that V (x) ≥ 0, for x ∈ Int Γ, the interior of Γ, and V (x) =
0 ⇐⇒ x = x∗. So function V is positive definite with respect to the
endemic equilibrium x∗ = P ∗. Computing the derivative of V along the
solutions of system (1), we obtain

(12)
dV

dt
=

(

1−X∗

X

)

X ′+

(

1−E∗

E

)

E′+A

(

1−L∗

L

)

L′+B

(

1−T ∗

T

)

T ′.

Using (1) and π = µXX∗ + βX∗T ∗ from (4), we have

(

1 − X∗

X

)

X ′ = π − βXT − µXX − π
X∗

X
+ βX∗T + µXX∗

= 2µXX∗ + βX∗T ∗ − βXT − µXX

− µX
X∗2

X
− βX∗2T ∗

X
+ βX∗T

= βX∗T ∗ + µXX∗

(

2 − X

X∗
− X∗

X

)

− βXT − βX∗2T ∗

X
+ βX∗T.

(13)
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Similarly,

(14)

(

1 − E∗

E

)

E′ = βXT − (µE + ω)E − βXTE∗

E
+ (µE + ω)E∗,

A

(

1 − L∗

L

)

L′ = A(1 − p)ωE − A(µL + ν)L

− A(1 − p)ωEL∗

L
+ A(µL + ν)L∗,

B

(

1 − T ∗

T

)

T ′ = BpωE + BνL − BµT T

− Bp ωET ∗

T
− BνLT ∗

T
+ BµT T ∗.

Notice that

A(1 − p)ω + Bpω = (1 − p)ω
βνX∗

(µL + ν)µT
+ pω

βX∗

µT

=
βωX∗

(µL + ν)µT
[(1 − p)ν + p(µL + ν)]

=
βω(ν + pµL)X∗

(µL + ν)µT
= (µE + ω),

(15)

and from (11)

(16) A(µL + ν) = Bν, βX∗ = BµT .

Using (13)–(16) we can simplify (12) as

dV

dt
= βX∗T ∗ + µXX∗

(

2 − X

X∗
− X∗

X

)

− βX∗2T ∗

X

− βXTE∗

E
− A(1 − p)ωEL∗

L
− BpωET ∗

T
− BνLT ∗

T

+ (µE + ω)E∗ + A(µL + ν)L∗ + BµT T ∗.

(17)

From (5) and (11) we have

(18) (µE + ω)E∗ = βX∗T ∗, BµT T ∗ = βX∗T ∗.
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From (6), (8), (16) and (18), we obtain

A(µL + ν)L∗ =
βνX∗L∗

µT
=

βνX∗

µT
· (1 − p)ωE∗

µL + ν

=
βωX∗

(µE + ω)(µL + ν)µT
(1 − p)νβX∗T ∗

=
(1 − p)ν

ν + pµL
βX∗T ∗.

(19)

Substituting (18) and (19) into (17), we get

dV

dt
=

[

3 +
(1 − p)ν

ν + pµL

]

βX∗T ∗ + µXX∗

(

2 − X

X∗
− X∗

X

)

− βX∗2T ∗

X
− βXTE∗

E
− A(1 − p)ωEL∗

L

− pBωET ∗

T
− BνLT ∗

T
.

(20)

Define

(21) q =
(1 − p)ν

ν + pµL
, r =

p(µL + ν)

ν + pµL
.

Then q + r = 1, q > 0, r > 0, and

3 +
(1 − p)ν

(ν + pµL)
= 3 + q = 4q + 3r.

We can rewrite (20) as

dV

dt
= µXX∗

(

2 − X

X∗
− X∗

X

)

+ (4q + 3r) βX∗T ∗(22)

− βX∗2T ∗

X
− βXTE∗

E
− A(1 − p)ωEL∗

L

− pBωET ∗

T
− BνLT ∗

T

= µXX∗

(

2 − X

X∗
− X∗

X

)

+

(

3rβX∗T ∗ − rβX∗2T ∗

X
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− rβXTE∗

E
− pBωET ∗

T

)

+

(

4qβX∗T ∗ − qβX∗2T ∗

X
− qβXTE∗

E

− A(1 − p)ωEL∗

L
− BνLT ∗

T

)

.
= I1 + I2 + I3.

Applying the inequality

a1 + a2 + · · · + an

n
≥ n

√
a1 · a2 · · · an, for ai ≥ 0, i = 1, · · · , n,

we obtain

(23) I1 = µXX∗

(

2 − X

X∗
− X∗

X

)

≤ 0.

Moreover,

I2 = 3rβX∗T ∗ − rβX∗2T ∗

X
− rβXTE∗

E
− pBωET ∗

T
(24)

≤ 3rβX∗T ∗ − 3
3

√

rβX∗2T ∗ · rβE∗ · pBωT ∗

= 3rβX∗T ∗ − 3 3

√

r2β2X∗2T ∗2 βX∗T ∗

(µE + ω)

pβX∗

µT
ω

= 3rβX∗T ∗ − 3βX∗T ∗ 3

√

pr2
βωX∗

(µE + ω)µT

= 3rβX∗T ∗ − 3βX∗T ∗ 3

√

r2
p(µL + ν)

(ν + pµL)
= 0,

by (18), (11), the expression of X∗ in (8), and the definition of r in (21).
Similarly

I3 = 4qβX∗T ∗ − qβX∗2T ∗

X
− qβXTE∗

E
(25)

− A(1 − p)ωEL∗

L
− BνLT ∗

T
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≤ 4qβX∗T ∗ − 4
(

qβX∗2T ∗ · qβE∗ · A(1 − p)ωL∗ · BνT ∗
)1/4

= 4qβX∗T ∗ − 4

(

q2β2X∗2T ∗2 · βX∗T ∗

(µE + ω)
· (1 − p)ω

× (1 − p)ν

(µL + ν)(ν + pµL)
βX∗T ∗ · βX∗

µT
ν

)1/4

= 4qβX∗T ∗ − 4βX∗T ∗

(

q2 · (1 − p)2ν2

× βωX∗

(µE + ω)(µL + ν)(ν + pµL)µT

)1/4

= 4qβX∗T ∗ − 4βX∗T ∗ 4

√

q2
(1 − p)2ν2

(ν + pµL)2
= 0,

by (18), (19), (8) and (21). Using (23)–(25) we obtain

(26)
dV

dt
= I1 + I2 + I3 ≤ 0, x ∈ Int Γ.

Furthermore, dV/dt = 0 if and only if equalities hold in (23)–(25), and
if and only if x = x∗. Therefore dV/dt is negative definite in Int Γ with
respect to the endemic equilibrium x∗ = P ∗. This implies that the basin
of attraction of P ∗ contains the interior of Γ. The positive definiteness
of V (x) with respect to P ∗ implies that P ∗ is also locally stable. This
completes the proof.

5 Summary In this paper, mathematical analysis is carried out
for a model of latent TB. Global dynamics of the model is shown to be
completely determined by a basic reproduction number R0, first derived
in [11]. More specifically, we proved that if R0 ≤ 1, then the disease-free
equilibrium P0 is asymptotically stable and all solutions in the feasible
region converge to P0. If R0 > 1, then P0 becomes unstable, and a
unique endemic equilibrium P ∗ exists and is asymptotically stable. In
this case, all of the solutions in the interior of the feasible region converge
to P ∗. The proofs of global convergence use the method of Lyapunov
functions. Our results provide a mathematical basis and justification
for the expression of R0 in [11].
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