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We analyze the global dynamics of a mathematical model for infectious diseases that progress through
distinct stages within infected hosts with possibility of amelioration. An example of such diseases is
HIV/AIDS that progresses through several stages with varying degrees of infectivity; amelioration can
result from a host’s immune action or more commonly from antiretroviral therapies, such as highly active
antiretroviral therapy. For a general n-stage model with constant recruitment and bilinear incidence that
incorporates amelioration, we prove that the global dynamics are completely determined by the basic
reproduction number R0. If R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically stable,
and the disease always dies out. If R0 > 1, P0 is unstable, a unique endemic equilibrium P ∗ is globally
asymptotically stable, and the disease persists at the endemic equilibrium. Impacts of amelioration on the
basic reproduction number are also investigated.

Keywords: staged disease progression; disease amelioration; HIV/AIDS; basic reproduction number;
global stability; Lyapunov functions

1. Introduction

For infectious diseases that progress through a long infectious period, infectivity or infectious-
ness can vary greatly in time. The progression of a typical HIV infection can take 8–10 years
before the clinical syndrome (AIDS) occurs, and the progression goes through several distinct
stages, marked by drastically different CD4+ T-cell counts and viral RNA levels. HIV-infected
individuals are highly infectious in the first few weeks after infection, then remain in an asymp-
totic stage of low infectiousness for many years, and become gradually more infectious as their
immune system becomes compromised and they progress to AIDS. With antiretroviral drug
treatment such as highly active antiretroviral therapy (HARRT), progression of HIV infection
can be reverted so that a patient may ameliorate to higher CD4+ counts. Although antiretovi-
ral therapies have greatly improved the survival rates of HIV patients, there is a concern that
ameliorated patients may resume to be active in sexual or drug activities while being infectious,

*Corresponding author. Email: mli@math.cealberat.ca
†Dedicated to Professor Hal Smith on the occasion of his 60th birthday.

ISSN 1751-3758 print/ISSN 1751-3766 online
© 2008 Taylor & Francis
DOI: 10.1080/17513750802120877
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
3
:
4
3
 
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



Journal of Biological Dynamics 155

especially after an incomplete course of treatment. Such patients may have a much greater degree
of infectivity because of risky behaviours and pose a greater threat to the general public. To fully
evaluate the effectiveness of the antiretroviral therapies in the global war against HIV/AIDS, it
is important to investigate the effects of amelioration on the population dynamics of the HIV
transmission.

Staged-progression (SP) models have been formulated in the literature to investigate variabil-
ity of infectivity during the progression of HIV infection [1,4,6,8,9,11,12,18,19,20,21]. In [11],
SP models using ordinary differential equations were derived. In [4], SP models with general
distribution functions were formulated, and the models are described by systems of differential–
integral equations. In [20], amelioration was first incorporated into an SP model for HIV/AIDS
with standard incidence and exponential recruitment. The basic reproduction number in the pres-
ence of amelioration was derived in [20], and global analysis was carried out for the special case
of three infectious stages. In [6], effects of vaccine and amelioration on the progression of HIV
were investigated using an SP model.

In this paper, we consider a general n-stage SP model that incorporates disease amelioration,
with constant recruitment and density-dependent incidence. Our goals are to establish the global
dynamics of the general n-stage model and to investigate the effects of amelioration on the global
dynamics. Our results show that amelioration does not alter the qualitative behaviours of the SP
model; its impacts are quantitative and achieved by changing the basic reproduction number.
More specifically, we prove that, for a general class of density-dependent incidence forms, the
dynamics of the model are completely determined by the basic reproduction number R0: if R0 ≤ 1,
the disease-free equilibrium P0 is globally asymptotically stable; if R0 > 1, then P0 is unstable and
a unique endemic equilibrium exists. For the case of bilinear incidence, we established the global
stability of the endemic equilibrium when R0 > 1. A similar threshold result has been established
for an SP model without amelioration in [7]. Our global stability result also generalizes those
in [20].

With regard to the effects of amelioration on the basic reproduction number R0, our results show
that introducing amelioration at stage k may change R0 in both directions; whether it increases
or decreases R0 is determined by a quantity,

�k = R0,(k−1) − R0,k,

where R0,k represents the average number of secondary infections produced by a single infec-
tive from stage k and onwards, when amelioration is not present (see Section 5). This direct
relation allows us to conclude that amelioration tends to increase R0 in the following situations:
(1) if the overall death rates are small; (2) if the amelioration is from a stage of high fatality rate
to one with a much smaller fatality rate; and (3) if amelioration is from a stage of low infec-
tivity to one with much higher infectivity. These findings have important implications on the
HIV-infection dynamics. Since amelioration due to antiretroviral therapies usually comes with a
reduction in fatality rates in HIV patients, if it is also accompanied by higher average infectiv-
ity because of risky behaviours, then the overall impact on the population level of antiretroviral
therapies can be a net increase of the basic reproduction number, making the disease control
in the whole population more difficult to achieve. Thus, it is crucial that antiretroviral thera-
pies be administered with an education campaign to increase the awareness on danger of risky
behaviours.

In the next section, we derive our model and present some preliminary analysis. Existence and
uniqueness of the endemic equilibrium when R0 > 1 are proved in Section 3. Global stability of the
disease-free equilibrium is given in Section 4. Impacts of amelioration on the basic reproduction
number R0 are investigated in Section 5. In Section 6, we prove the global stability of the endemic
equilibrium for the case of bilinear incidence using a global Lyapunov function. We end the paper
with a brief summary in Section 6.
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2. An SP model with amelioration

To formulate an n-stage model with both disease progression and amelioration, the total host
population is partitioned into the following compartments: the susceptible compartment S, the
infectious compartment Ii for individuals in the ith stage, where i = 1, 2, . . . , n, and the removed
compartment R for individuals in the terminal stage of the disease who are removed from the
infection process. For 1 ≤ i ≤ n − 1, let δi denote the mean progression rate from the ith stage
to the (i + 1)th stage, γi+1 the mean amelioration rate from the (i + 1)th stage to the ith stage,
and δn the mean progression rate from the nth stage to the terminal stage of the disease. It is also
assumed that there is no recovery from the disease, and thus the only exit from the compartment R
is death. Let λi ≥ 0 be the transmission coefficient for the infection of a susceptible individual by
an individual in the compartment Ii . Then the total incidence is given by

∑n
i=1 λiIiSf (N), where

N = S + I1 + · · · + In is the total number of individuals who are active in the infection process.
Here, we assume that the density dependence of the incidence is described by a function f (N),
which will be specified later. A function class of special interest is f (N) = N−α, 0 ≤ α ≤ 1,

as the resulting incidence term includes two of the most common forms: the standard incidence
(α = 1) and the bilinear incidence (α = 0). The mean death rate for compartment S is d0, for the
compartment Ii is di , which may include death due to infection, and for compartment R is dR . We
assume the inflow of susceptibles is a constant �. The population transfer among compartments
are schematically depicted in the transfer diagram in Figure 1. All parameters in the model are
assumed to be non-negative. We remark that if λi = 0 for some i, then the compartment Ii will
be regarded as a latent compartment. Thus, our model includes, as a special case, models of
SE1 · · · EmI1 · · · InR type, for any finite m and n. When all the amelioration rates are zero, our
model reduces to the staged progression model in [7].

Based on our assumptions and the transfer diagram, the following system of differential
equations can be derived for the n-stage model,

S
′ = � − d0S − λ S,

I
′
1 = λ S − (d1 + δ1)I1 + γ2I2,

I
′
i = δi−1Ii−1 − (di + δi + γi)Ii + γi+1Ii+1, i = 2, . . . , n − 1,

I
′
n = δn−1In−1 − (dn + δn + γn)In,

(1)

and R
′ = δnIn − dRR. The incidence term is λ S, where the force of infection,

λ = f (N)

n∑
i=1

λiIi, (2)

is density-dependent.We assume that the function f (N) is C1 for N > 0 and satisfies the following
assumptions.

(H)f (N) > 0, f
′
(N) ≤ 0, and |Nf ′(N)| ≤ f (N), for N > 0.

Figure 1. The transfer diagram for model (1).
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The assumptions that f (N) > 0 and f ′(N) ≤ 0 are biologically motivated; as the total population
N increases, the probability of a contact with a susceptible decreases, and thus the force of
infection is expected to be a decreasing function of N . The third condition is imposed to ensure
uniqueness of the endemic equilibrium when R0 > 1 and global stability of the disease-free
equilibrium when R0 ≤ 1. These conditions imply that Nf (N) is monotonically non-decreasing,
as (Nf (N))′ = f (N) + Nf ′(N) ≥ 0. It can be verified that the class f (N) = N−α, 0 ≤ α ≤ 1,
satisfies (H), including the standard incidence (α = 1) and the bilinear incidence (α = 0).

Adding the Equations in (1), we obtain

N
′ = � − d0S − d1I1 − · · · − dnIn − δnIn ≤ � − dN,

where d = min{d0, d1, . . . , dn}. It follows that limt→∞ sup N(t) ≤ �/d. Here, we assume that
d > 0 so that the total active population N remains bounded. Similarly, from the first part of
Equation (1), we obtain S

′ ≤ � − d0S, and thus limt→∞ sup S(t) ≤ �/d0. The global attractor
of system (1) in R

n+1
+ is contained in the bounded closed set,

� =
{
(S, I1, . . . , In) ∈ R

n+1
+ : 0 ≤ S ≤ �

d0
, 0 ≤ S + I1 + · · · + In ≤ �

d

}
.

It can be verified that � is positively invariant.

3. Existence and uniqueness of the endemic equilibrium

An equilibrium (S, I1, . . . , In) of Equation (1) satisfies,

0 = � − d0S − λ S,

0 = λ S − (d1 + δ1)I1 + γ2I2,

0 = δi−1Ii−1 − (di + δi + γi)Ii + γi+1Ii+1, i = 2, . . . , n − 1,

0 = δn−1In−1 − (dn + δn + γn)In.

(3)

The disease-free equilibrium P0 = (�/d0, 0, . . . , 0) exists for all non-negative parameter values.
An endemic equilibrium P ∗ = (S∗, I ∗

1 , . . . , I ∗
n ) satisfies S∗ > 0, I ∗

i > 0, i = 1, . . . , n. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−d1 − δ1 γ2

δ1 −d2 − δ2 − γ2 γ3

δ2 −d3 − δ3 − γ3
. . .

. . .
. . . γn

δn−1 −dn − δn − γn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

Then −A is an M-matrix. As a consequence, −A−1 exists and is non-negative. Furthermore, there
exists α > 0 such that −A−1x ≥ α x for x ≥ 0 (see Appendix). It follows that

β = −(λ1, . . . , λn)A
−1(1, 0, . . . , 0)t > 0, (5)

and that

p = −(1, . . . , 1)A−1(1, 0, . . . , 0)t > 0, (6)
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158 H. Guo and M.Y. Li

where the superscript t denotes the transposition. The basic reproduction number of equation (1) is

R0 = β
�

d0
f

(
�

d0

)
. (7)

It can be derived using the method of next generation matrix as given in [16]. In Section 4, we
derive expressions of R0 in terms of model parameter for some special cases.

THEOREM 3.1 Assume that f satisfies (H). If R0 ≤ 1, then P0 is the only equilibrium in �. If
R0 > 1, then a unique endemic equilibrium P ∗ exists in the interior of �.

Proof It suffices to prove that the unique endemic equilibrium P ∗ exists if and only if R0 > 1.

To show this, we write the last n equations of Equation (3) in the form,

(I1, . . . , In)
t = −λSA−1(1, 0, . . . , 0)t. (8)

Multiplying the row vector (λ1, . . . , λn) with Equation (8) and using Equations (2) and (5), we
obtain,

n∑
i=1

λiIi = (λ1, . . . , λn)(I1, . . . , In)
t = −(λ1, . . . , λn)A

−1(1, 0, . . . , 0)tλS

= βλS = βf (N)S

n∑
i=1

λiIi .

Since
∑n

i=1 λiIi 	= 0, it follows that

β S f (N) = 1. (9)

Similarly, multiplying row vector (1, . . . , 1) with Equation (8), and applying Equation (2), we
have,

n∑
i=1

Ii = (1, . . . , 1)(I1, . . . , In)
t = pf (N)S

n∑
i=1

λiIi, (10)

where p > 0 is defined in Equation (6). From the first equation of Equation (3), we get
f (N)S

∑n
i=1 λiIi = � − d0S, which, together with Equation (10), implies

∑n
i=1 Ii = p(� −

d0S), and thus

N = S +
n∑

i=1

Ii = S + p(� − d0S) = p� + (1 − pd0)S. (11)

Substituting Equation (11) into Equation (9), we obtain the following equation for endemic
equilibria

Sf (p� + (1 − pd0)S) = 1

β
. (12)

We will show that Equation (12) has a unique positive solution in the interval (0, �/d0) when
R0 > 1 using the standard graphical method. Let,

g(S) = S f (p� + (1 − pd0)S).
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Then g(0) = 0, and g(�/d0) = �/d0f (p� + (1 − pd0)�/d0) = �/d0f (�/d0) = R0/β.
Furthermore, by our assumption (H),

g′(S) = f (p� + (1 − pd0)S) + (1 − pd0)Sf
′(p� + (1 − pd0)S)

= f (N) + N f ′(N) − p � f ′(N) > 0,

where N = p� + (1 − pd0)S. It follows that y = g(S) is strictly monotonically increasing, and
its graph has at most one intersection with the line y = 1/β. Such an intersection exists for
S ∈ (0, �/d0) if and only if g(�/d0) > 1/β, namely, R0 > 1. Using Equation (8), we know that
(I1, . . . , In) is uniquely determined from S. This completes the proof of Theorem 3.1. �

4. Global stability of the disease-free equilibrium

THEOREM 4.1 Assume that f satisfies (H). If R0 ≤ 1, then P0 is globally asymptotically stable
in �. If R0 > 1, then P0 is unstable, and system (1) is uniformly persistent.

Proof Define a Lyapunov function L = ∑n
k=1 ckIk, with

(c1, c2, . . . , cn) = −(λ1, λ2, . . . , λn)A
−1.

Note that ck ≥ 0, k = 1, . . . , n, since −A−1 is non-negative. In particular,

c1 = −(λ1, λ2, . . . , λn)A
−1(1, 0, . . . , 0)t = β > 0.

Rewriting the last n equations in Equation (1) as (I ′
1, . . . , I

′
n)

t = (λS, 0, . . . , 0)t + A (I1, . . . , In)
t ,

and using assumption (H) and the fact that Nf (N) is non-decreasing, we obtain that, along a
solution of Equation (1),

L′ = c1f (N)S

n∑
i=1

λiIi −
n∑

i=1

λiIi = (βf (N)S − 1)

n∑
i=1

λiIi ≤ (βf (S)S − 1)

n∑
i=1

λiIi

≤
[
βf

( �

d0

) �

d0
− 1

] n∑
i=1

λiIi = (R0 − 1)

n∑
i=1

λiIi ≤ 0, if R0 ≤ 1.

Furthermore, L′ = 0 only if
∑n

i=1 λiIi = 0 or S = �/d0. It can be verified that the largest compact
invariant subset of the set G = {(S, I1, . . . , In) ∈ � : L′ = 0} is the singleton {P0}. Therefore, all
solutions in � converge to P0, by the LaSalle Invariance Principle [16]. The global attractivity of
P0 and the Lyapunov function L imply that P0 is also locally stable, since otherwise P0 will have
a homoclinic orbit that is entirely contained in G, contradicting that the largest compact invariant
set in G is {P0}. This establishes the global stability of P0 when R0 ≤ 1.

If R0 > 1, then L′ > 0 for
∑n

i=1 λiIi > 0 and S sufficiently close to �/d0. Solutions in R
n+1
+

sufficiently close to P0 move away from P0, except those on the invariant S-axis, along which
solutions converge to P0. Therefore, this implies that P0 is unstable. The maximal invariant set
on the boundary of R

n+1
+ is the singleton {P0} and is isolated. By a uniform persistence result

(Theorem 4.3) in [5], the instability of P0 implies that system (1) is uniformly persistent [3]. This
completes the proof of Theorem 4.1. �
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5. Impacts of amelioration on the basic reproduction number

Theorems 3.1 and 4.1 establish R0 as a sharp threshold parameter. If R0 ≤ 1, the disease dies
out irrespective of the initial number of cases. If R0 > 1, then the disease persists in the feasible
region, and there is a unique endemic equilibrium.

For the special case of bilinear incidence (f (N) = 1) and when all death rates are the same
as �, namely, di = �, i = 1, . . . , n, the R0 in Equation (7) gives the basic reproduction number
in [20] for the system of fractional variables. For the special case when there is no amelioration,
explicit expressions of β in Equation (5) and R0 in Equation (7) can be derived. In this case, the
matrix A in Equation (4) is lower triangular, and

−A−1 =

⎡
⎢⎢⎢⎣

c11 0
c21 c22
...

...
. . .

cn1 cn2 · · · cnn

⎤
⎥⎥⎥⎦, (13)

where cij ’s are determined by the following iterative relations

cii = 1

di + δi

, cki = δk−1

dk + δk

c(k−1)i , i = 1, . . . , n, k = 2, . . . , n, k 	= i.

Therefore, when γi = 0, i = 1, . . . , n,

R0 =
[

λ1

d1 + δ1
+ λ2

d2 + δ2

δ1

d1 + δ1
+ . . . + λn

dn + δn

δ1

d1 + δ1
. . .

δn−1

dn−1 + δn−1

]
�

d0
f

(
�

d0

)
.

(14)
If f (N) = N−1, then R0 gives the basic reproduction number for the standard incidence as in
[11,20,22], while if α = 0, R0 gives the basic reproduction number for the bilinear incidence.
We note that the basic reproduction number for a class of finite-stage SP models with a general
distribution function for the infectious periods was derived in [4].

To investigate the impacts of amelioration on the basic reproduction number, we introduce, for
k = 1, . . . , n,

R0,k =
[

λk

dk + δk

+ λk+1

dk+1 + δk+1

δk

dk + δk

+ · · · + λn

dn + δn

δk

dk + δk

· · · δn−1

dn−1 + δn−1

]
�

d0
f

(
�

d0

)
,

(15)
which represents the average number of secondary infections produced by an infective from the
kth stage of the disease progression onwards when no amelioration is present. If k = 1, then R0,1

gives the basic reproduction number R0 in Equation (14). The following relation is immediate
from Equation (15).

R0,(k−1) = λk−1

dk−1 + δk−1

�

d0
f

(
�

d0

)
+ R0,k

δk−1

dk−1 + δk−1
, k = 2, . . . , n. (16)

Recall that γk is the rate of amelioration from stage k to stage k − 1. Let γ = (γ2, γ3, . . . , γn).

THEOREM 5.1 Let R0,k be defined in Equation (15). Then

∂R0

∂γk

∣∣∣
γ=0

> 0 ⇐⇒ �k = R0,(k−1) − R0,k > 0. (17)
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Proof Using relation (5) and expression (7) for R0 and differentiating the identity AA−1 = I

with respect to γk , we obtain,

∂R0

∂γk

= (λ1, . . . , λn)(−A−1)
∂A

∂γk

(−A−1)(1, 0, . . . , 0)t �

d0
f

(
�

d0

)
.

Using the definition of A in Equation (4) to calculate the partial derivative ∂A/∂γk in the rela-
tion above, then setting γ = 0 and using the expression for −A−1 in Equation (13), we obtain
relation (17). �

Intuitively, Theorem 5.1 describes the effects on the basic reproduction number in a forward
progression model when amelioration is introduced at the kth stage of the disease. In this case,
when an infective ameliorates from stage k to stage k − 1, the average number of secondary
infections is increased by R0,(k−1) and is decreased by R0,k , with the net gain �k = R0,(k−1) − R0,k.

Therefore, amelioration at stage k increases R0 if �k > 0, and it decreases R0 if �k < 0.

Several conclusions can be drawn based on Theorem 5.1. We first observe from Equation (15)
that if the overall death rate dk−1, including the disease-caused death and natural death, is small,
then

R0,(k−1) ≈ λk−1

dk−1 + δk−1

�

d0
f

( �

d0

)
+ R0,k > R0,k,

and amelioration at stage k increases R0. We thus have the following conclusions.

(1) Amelioration tends to increase R0 for non-fatal diseases. This is also the case if amelioration
is from a stage with high fatality rate to a stage with much lower fatality rate.

We also observe from Equation (16) that �k > 0 if λk−1/(dk−1 + δk−1) is sufficiently large.
This can happen if either λk−1 is large or dk−1 + δk−1 is small. We thus arrive at the following
conclusion.

(2) Amelioration increases R0 if it is into a disease stage with much higher infectivity or of much
longer duration.

Observation (2) has important implications for antiviral therapy of HIV/AIDS. It is known
that HIV infection has several distinctive stages according to the level of CD4+ count. HIV-
infected individuals are highly infectious in the first few weeks after infection, then remain in an
asymptotic stage of low infectiousness for many years, and become gradually more infectious
as they progress to AIDS. However, HIV-positive patients may be sexually much more active
during the long asymptotic stage than during the later stage when they become more aware of
the infection or when they are more limited by their physical conditions. As a consequence, the
transmission coefficient λk may be greater during the asymptotic phase because of more sexual
contacts or more needle sharing, the so-called risky behaviours, than during the later stages. If
antiviral therapies only lead to partial amelioration to the asymptotic phase, then a net effect can
be an increase of the basic reproduction number R0, making the infection control at the population
level more difficult to achieve. It is important that antiviral therapies are administered with an
education campaign to reduce risky behaviours.

If a treatment measure only results in partial amelioration, then it is most effective at a population
level if applied at the disease stage with the highest infectivity, namely the largest transmission
coefficient, λk. We thus have the following conclusion.

(3) Treatment of the disease is best applied at a stage of the highest infectivity.
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6. Global stability of the endemic equilibrium for the bilinear incidence

THEOREM 6.1 Assume that f (N) ≡ 1 and R0 > 1. Then the endemic equilibrium P ∗ is globally
asymptotically stable in the interior of �.

The equilibrium Equations (3) for P ∗ = (S∗, I ∗
1 , . . . , I ∗

n ) are

� = d0S
∗ +

n∑
i=1

λiI
∗
i S∗,

n∑
i=1

λiI
∗
i S∗ + γ2I

∗
2 = (d1 + δ1)I

∗
1 ,

δi−1I
∗
i−1 + γi+1I

∗
i+1 = (di + δi + γi)I

∗
i , i = 2, . . . , n − 1,

δn−1I
∗
n−1 = (dn + δn + γn)I

∗
n .

(18)

Set x = (S, I1, I2, . . . , In) ∈ � ⊂ R
n+1
+ . The proof of Theorem 6.1 utilizes a global Lyapunov

function

W(x) =
(

S − S∗ − S∗ ln
S

S∗

)
+

n∑
i=1

Bi

(
Ii − I ∗

i − I ∗
i ln

Ii

I ∗
i

)
, (19)

where x∗ = P ∗ = (S∗, I ∗
1 , . . . , I ∗

n ), and constants Bi are defined inductively as follows:

B1 = 1, B2 = B1(d1 + δ1) − λ1S
∗

δ1
,

Bi+1 = Bi(di + δi + γi) − (λiS
∗ + Bi−1γi)

δi

, i = 2, . . . , n − 1.

(20)

It follows from these definitions that Bi satisfies a linear system,

λ1S
∗ + B2δ1 − B1(d1 + δ1) = 0,

λiS
∗ + Bi+1δi + Bi−1γi − Bi(di + δi + γi) = 0, i = 2, . . . , n − 1,

λnS
∗ + Bn−1γn − Bn(dn + δn + γn) = 0.

(21)

Solving this system, we obtain,

(B1, . . . , Bn) = (λ1S
∗, . . . , λnS

∗)(−A)−1 ≥ 0,

where matrix A is given in Equation (4). We first establish the following properties of Bi.

PROPOSITION 6.2 The constants Bi, as defined in Equation (20), satisfy the following relations.

(a) Bk(dk + δk + γk)I
∗
k =

n∑
i=k

λiI
∗
i S∗ + Bk−1γkI

∗
k + Bkγk+1I

∗
k+1, 2 ≤ k ≤ n − 1.

(b) Biδi−1I
∗
i−1 =

n∑
k=i

λkI
∗
k S∗ + Bi−1γiI

∗
i , 2 ≤ i ≤ n − 1.
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Proof To see the relations in Equation (1), we multiply the ith equation in Equation (21) by I ∗
i

and obtain

B1(d1 + δ1)I
∗
1 = λ1I

∗
1 S∗ + B2δ1I

∗
1 ,

Bi(di + δi + γi)I
∗
i = λiI

∗
i S∗ + Bi+1δiI

∗
i + Bi−1γiI

∗
i , i = 2, . . . , n − 1,

Bn(dn + δn + γn)I
∗
n = λnI

∗
n S∗ + Bn−1γnI

∗
n .

(22)

For i = 2, . . . , n, multiplying the ith equation in (18) by Bi , we get,

B1(d1 + δ1)I
∗
1 =

n∑
i=1

λiI
∗
i S∗ + B1γ2I

∗
2 ,

Bi(di + δi + γi)I
∗
i = Biδi−1I

∗
i−1 + Biγi+1I

∗
i+1, i = 2, . . . , n − 1,

Bn(dn + δn + γn)I
∗
n = Bnδn−1I

∗
n−1.

(23)

For 2 ≤ k ≤ n − 1, adding the last (n − k + 1) equations in (22), we obtain,

n∑
i=k

Bi(di + δi + γi)I
∗
i =

n∑
i=k

λiI
∗
i S∗ +

n−1∑
i=k

Bi+1δiI
∗
i +

n−1∑
i=k−1

Biγi+1I
∗
i+1. (24)

Similarly, adding the last (n − k) equations in (23), we arrive at

n∑
i=k+1

Bi(di + δi + γi)I
∗
i =

n−1∑
i=k

Bi+1δiI
∗
i +

n−1∑
i=k+1

Biγi+1I
∗
i+1. (25)

The identities in (a) follow from relations (24) and (25).
To derive the relations in (b), we equate the left-hand sides of the ith equations in Equations (22)

and (23), for i = 1, . . . , n, and obtain

n∑
i=1

λiI
∗
i S∗ + B1γ2I

∗
2 = λ1I

∗
1 S∗ + B2δ1I

∗
1 ,

Biδi−1I
∗
i−1 + Biγi+1I

∗
i+1 = λiI

∗
i S∗ + Bi+1δiI

∗
i + Bi−1γiI

∗
i , i = 2, . . . , n − 1,

Bnδn−1I
∗
n−1 = λnI

∗
n S∗ + Bn−1γnI

∗
n .

(26)

From the first identity in Equation (26), we have B2δ1I
∗
1 = ∑n

i=2 λiI
∗
i S∗ + B1γ2I

∗
2 . For 2 ≤ i ≤

n − 1, adding the first (i − 1) equations in Equation (26) and cancelling common terms, we arrive
at the relations in (b). This completes the proof of Proposition 6.2. �

Relations in (b) of Proposition 6.2 imply the following result.

COROLLARY 6.3 For each 2 ≤ i ≤ n, let

a
(i)
k = λk+1I

∗
k+1S

∗

Biδi−1I
∗
i−1

, i − 1 ≤ k ≤ n − 1, and a(i)
n = Bi−1γiI

∗
i

Biδi−1I
∗
i−1

. (27)

Then a
(i)
k > 0, and

∑n
k=i−1 a

(i)
k = 1.
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Continuing the proof of Theorem 6.1, we compute the derivative of the Lyapunov function W

and obtain,

dW

dt
=

(
1 − S∗

S

)
S

′ +
n∑

i=1

Bi

(
1 − I ∗

i

Ii

)
I

′
i . (28)

Using system (1) we have,

(
1 − S∗

S

)
S

′ = � − d0S −
n∑

i=1

λiIiS − �S∗

S
+ d0S

∗ +
n∑

i=1

λiIiS
∗

= d0S
∗ +

n∑
i=1

λiI
∗
i S∗ − d0S −

n∑
i=1

λiIiS − d0S
∗2

S
−

n∑
i=1

λiI
∗
i

S∗2

S
+ d0S

∗

+
n∑

i=1

λiIiS
∗ =

(
2d0S

∗ − d0S − d0S
∗2

S

)
−

n∑
i=1

λiIiS +
n∑

i=1

λiIiS
∗ +

n∑
i=1

λiI
∗
i S∗

−
n∑

i=1

λiI
∗
i

S∗2

S
≤ −

n∑
i=1

λiIiS +
n∑

i=1

λiIiS
∗ +

n∑
i=1

λiI
∗
i S∗ −

n∑
i=1

λiI
∗
i

S∗2

S
,

(29)

since (
2d0S

∗ − d0S − d0S
∗2

S

)
= d0S

∗
(

2 − S

S∗ − S∗

S

)
≤ 0. (30)

In the second step of the above derivation, we substituted � by the right-hand side of the first part
of Equation (18). Similarly, using Equations (1) and (18), we obtain,

(
1 − I ∗

1

I1

)
I

′
1 =

n∑
i=1

λiIiS − (d1 + δ1)I1 + γ2I2 −
n∑

i=1

λiIiS
I ∗

1

I1
+ (d1 + δ1)I

∗
1 − γ2I2I

∗
1

I1
. (31)

For i = 2, . . . , n − 1, using Equation (1), we have,(
1 − I ∗

i

Ii

)
I

′
i = δi−1Ii−1 − (di + δi + γi)Ii + γi+1Ii+1 − δi−1Ii−1I

∗
i

Ii

+

(di + δi + γi)I
∗
i − γi+1Ii+1I

∗
i

Ii

, (32)

and (
1 − I ∗

n

In

)
I

′
n = δn−1In−1 − (dn + δn + γn)In − δn−1In−1I

∗
n

In

+ (dn + δn + γn)I
∗
n . (33)

Substituting Equations (29)–(33) into Equation (28), using B1 = 1 and rearranging terms, we
obtain,

dW

dt
≤

{
[λ1S

∗ + B2δ2 − B1(d1 + δ1]I1 +
n−1∑
i=2

[λiS
∗ + Bi+1δi + Bi−1γi

−Bi(di + δi + γi)]Ii + [λnS
∗ + Bn−1γn − Bn(dn + δn + γn)]In

}
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+
{

n∑
i=1

λiI
∗
i S∗ + B1(d1 + δ1)I

∗
1 +

n∑
i=2

Bi(di + δi + γi)I
∗
i

}
(34)

−
{

n∑
i=1

λiI
∗
i

S∗2

S
+

n∑
i=1

λiIiS
I ∗

1

I1
+

n−1∑
i=1

Bi

γi+1Ii+1I
∗
i

Ii

+
n∑

i=2

Bi

δi−1Ii−1I
∗
i

Ii

}

.= W1 + W2 + W3.

From relations (21), we see that W1 ≡ 0 for all I1, I2, . . . , In. Substituting the first equilibrium
equation in (23) into W2, we have,

W2 = 2
n∑

i=1

λiI
∗
i S∗ + B1γ2I

∗
2 +

n∑
i=2

Bi(di + δi + γi)I
∗
i .

Substituting the identities in (a) of Proposition 6.2 into the above relation, we obtain,

W2 =
[

2
n∑

i=1

λiI
∗
i S∗ +

n∑
k=2

n∑
i=k

λiI
∗
i S∗

]
+ 2

n−1∑
i=1

Biγi+1I
∗
i+1

=
n∑

i=1

(i + 1)λiI
∗
i S∗ + 2

n−1∑
i=1

Biγi+1I
∗
i+1.

(35)

For each i = 2, . . . , n, we have the following relation from Corollary 6.3,

Bi = Bi

n−1∑
k=i−1

a
(i)
k + Bia

(i)
n =

n−1∑
k=i−1

λk+1I
∗
k+1S

∗

δi−1I
∗
i−1

+ Bi−1γiI
∗
i

δi−1I
∗
i−1

.

Therefore,

n∑
i=2

Bi

δi−1Ii−1I
∗
i

Ii

=
n∑

i=2

(
n−1∑

k=i−1

λk+1I
∗
k+1S

∗

δi−1I
∗
i−1

+ Bi−1γiI
∗
i

δi−1I
∗
i−1

)
δi−1Ii−1I

∗
i

Ii

=
n∑

i=2

λiI
∗
i S∗

i−1∑
k=1

IkI
∗
k+1

I ∗
k Ik+1

+
n−1∑
i=1

Biγi+1I
∗
i+1 · IiI

∗
i+1

I ∗
i Ii+1

.

(36)

Substituting Equation (36) into W3, we get,

W3 = −
[

n∑
i=1

λiI
∗
i

S∗2

S
+

n∑
i=1

λiIiS
I ∗

1

I1
+

n∑
i=2

λiI
∗
i S∗

i−1∑
k=1

· IkI
∗
k+1

I ∗
k Ik+1

]

−
[

n−1∑
i=1

Biγi+1I
∗
i+1

IiI
∗
i+1

I ∗
i Ii+1

+
n−1∑
i=1

Biγi+1I
∗
i+1 · Ii+1I

∗
i

I ∗
i+1Ii

]
(37)

=
n∑

i=1

λiI
∗
i S∗

(
−S∗

S
− IiSI ∗

1

I ∗
i S∗I1

−
i−1∑
k=1

IkI
∗
k+1

I ∗
k Ik+1

)
+

n−1∑
i=1

Biγi+1I
∗
i+1

(
− IiI

∗
i+1

I ∗
i Ii+1

− Ii+1I
∗
i

I ∗
i+1Ii

)
.
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From Equations (34), (35), and (37), we obtain,

dW

dt
≤

n∑
i=1

λiI
∗
i S∗

[
(i + 1) − S∗

S
− IiSI ∗

1

I ∗
i S∗I1

−
i−1∑
k=1

IkI
∗
k+1

I ∗
k Ik+1

]

+
n−1∑
i=1

Biγi+1I
∗
i+1

[
2 − IiI

∗
i+1

I ∗
i Ii+1

− Ii+1I
∗
i

I ∗
i+1Ii

]
≤ 0,

for all (S, I1, . . . , In) ∈ ◦
�, since, for 1 ≤ i ≤ n,

S∗

S
+ IiSI ∗

1

I ∗
i S∗I1

+
i−1∑
k=1

IkI
∗
k+1

I ∗
k Ik+1

≥ i + 1 and
IiI

∗
i+1

I ∗
i Ii+1

+ Ii+1I
∗
i

I ∗
i+1Ii

≥ 2, (38)

by the inequality

a1 + a2 + · · · + am

m
≥ m

√
a1 · a2 · · · am, for ai ≥ 0, i = 1, . . . , m.

Furthermore, from inequalities (30) and (38), we know that dW/dt = 0 if and only if S = S∗ and
Ii = qI ∗

i , i = 1, 2, . . . , n, for some constant q > 0. Substituting S = S∗ and Ii = qI ∗
i into the

first equation of system (1), we obtain,

0 = � − d0S
∗ − q

n∑
i=1

λiI
∗
i S∗. (39)

Since the right-hand side of Equation 39 is strictly decreasing in q, we know by Equation (18)
that Equation (39) holds if and only if q = 1, namely at P ∗. Therefore, the only compact invariant
subset of the set where dW/dt = 0 is the singleton {P ∗}. By the LaSalle Invariance Principle, P ∗
is globally asymptotically stable in the interior of �. This completes the proof of Theorem 6.1.

When a transmission coefficient λi = 0, the compartment Ii can be regarded as a latent com-
partment. Theorem 6.1 thus contains earlier global stability results for SEIR (Succeptible Exposed
Infectious Recovered) models with bilinear incidence form [13,17]. In the case of no ameliora-
tion, namely, γi = 0 for all i, Theorem 6.1 gives Theorem 5.1 of [7], in which a similar global
Lyapunov function to W(x) in Equation (19) is used. We remark that this form of global Lyapunov
function has been previously applied to epidemic models [2,13–15].

7. Summary

Antiretroviral therapies such as HARRT have been successful in suppressing the viral activities
in HIV patients and reverting the progression of HIV, albeit temporarily, so that patients may
ameliorate to a stage with low infectiousness. If some ameliorated HIV patients resume risky
behaviours in sexual contacts or drug activities, their infectivity may be greater after amelioration
because of a larger number of contacts, and hence pose a greater threat to the general public. As
drug treatments allow more and more people with HIV to live longer, the trade-off between benefits
to personal health brought by drug treatments and potential threat to the general population of
risky behaviours accompanying amelioration needs to be carefully evaluated.

In this paper, we address this issue by investigating the impacts of amelioration on the global
dynamics in a general SP model with constant recruitment and bilinear incidence. We prove in
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Theorems 4.1 and 6.1 that the global dynamics of the model is completely determined by the basic
reproduction number R0: if R0 ≤ 1, then the disease-free equilibrium is globally asymptotically
stable and the disease dies out; if R0 > 1, then the unique endemic equilibrium P ∗ is globally
asymptotically stable and the disease persists at the level of P ∗. Our global stability result for P ∗
generalizes earlier results in [7,20]. The proof utilizes a global Lyapunov function motivated by
the work in [13–15].

We have shown that introducing amelioration at stage k of the disease progression indeed may
increase the basic reproduction number, and hence may have a negative effect on the disease
control in the population. We have introduced in Equation (15) a quantity R0,k that measures
the average number of secondary infections produced by an infective from the kth stage of the
disease progression onwards when no amelioration is present. We show in Theorem 5.1 that the
introduction of amelioration at stage k will increase R0 if and only if R0,(k−1) > R0,k. Based on
this result and relation (16), we conclude that amelioration tends to increase R0 if it is into a stage
that has either (1) a much lower fatality rate, or (2) much higher infectivity, or (3) a much longer
duration. In the case of HIV, this implies that if risky behaviours result in higher infectivity on
average after antiretroviral therapies, then the basic reproduction number may increase.
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Appendix

The following definition and properties of M-matrices are used in our analysis. They can be found in most of the texts on
matrix theory, see e.g. [10].

DEFINITION Bn×n is a M-matrix if

(1) Off-diagonal entries of B are non-positive, and
(2) B is positively stable, namely, all eigenvalues of B have positive real parts.

PROPOSITION Properties of M-matrices

(1) B = αI − P, P ≥ 0, α > ρ(P ), the spectral radius of P .
(2) B is non-singular and B−1 ≥ 0.

(3) There exists β > 0 such that B−1x ≥ β x for x ≥ 0.
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