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a b s t r a c t

Anti-retroviral treatments (ART) such asHAARThave been used to control the replication of
HIV virus in HIV-positive patients. In this paper, we study an in-hostmodel of HIV infection
with ART and carry out mathematical analysis of the global dynamics and bifurcations of
the model in different parameter regimes. Among our discoveries is a parameter region for
which backward bifurcation can occur. Biologically, the catastrophic behaviors associated
with backward bifurcations may explain the sudden rebound of HIV viral load when ART
is stopped, and possibly provide an explanation for the viral blips during ART suppression
of HIV.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Human immunodeficiency virus (HIV) type I is an RNA virus that preferentially targets the CD4+ helper T cells. After
entry into a target cell, the viral RNA is reverse transcribed into viral DNA using host genetic materials and viral reverse
transcriptase. The viral DNA is transported to the cell nucleus and integrated into the host genome through the action of
viral integrase and stays latent. Upon antigenic stimulation, the viral DNA can be transcribed into new viral RNA and viral
proteins such as reverse transcriptase, integrase and protease. The viral protease is needed in this stage to cut the long
polypeptide chain into individual enzyme components to complete the translation of viral proteins. At this stage, the target
cell is called productively infected. The viral RNA genome and viral proteins will be assembled and enveloped to become
mature virus near the cell membrane. Mature viruses bud out of the host cell and get released into the plasma to infect
new target cells. Viral budding will terminate an infected CD4+ T cells. In addition, HIV infection can lead to increased rate
of apoptosis of a target cell, and an infected target cell can be recognized and lysed by the CD8 cytotoxic T cells. These
factors combine to progressively reduce the number of CD4+ T cells in the body and leave the body increasingly susceptible
to opportunistic infections. Anti-retroviral drugs are designed to block the action of various HIV viral proteins and hence
interrupt the viral replication cycle. Reverse transcriptase inhibitor (RTI) based drugs can block the reverse transcription of
viral DNA and prevent the host cell from becoming productively infected. Protease inhibitor (PI) based drugs aim to block
the action of protease and thus prevent the production of mature viruses. Due to the extremely high rate of mutation of
HIV, standard ART regimens combine several drugs from both RTI and PI family to avoid emergence of drug resistance.
Mathematical models have been developed to describe the HIV infection dynamics and effects of ART [1–13]. These in-host
models are useful for exploring possible mechanisms and outcomes of the viral infection process [1,5,3], and for estimating
key parameter values such as virion clearance rate, life span of infected cells, and average viral generation time in vivo [2].
Findings from in-host modeling can be used to guide development of efficient antiviral drug therapies [4].
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Tomodel theHIV infection process, target cell (CD4+ T cells) population is partitioned into uninfected T andproductively-
infected T ∗ compartment, with T (t) and T ∗(t) representing their concentrations at time t , respectively. A compartment V
of free HIV viruses is consideredwith concentration V (t) at time t . The infection is customarily assumed to be through entry
of a target cell by free viruses, though recent evidences show that HIV viruses can be transmitted through direct cell-to-cell
contact [14]. A typical model for the HIV infection is described by the following system of differential equations:

Ṫ = s − αT − kVT + f (T , T ∗),

Ṫ ∗
= kVT − βT ∗

+ g(T , T ∗), (1)
V̇ = NβT ∗

− ϵV .

In themodel, target cells are assumed to be produced from precursors at a constant rate s. Turn-over rates for the uninfected
target cells, productively-infected target cells, and viruses are denoted by α, β , and ϵ, respectively. It is biologically plausible
to assume that infected target cells have a higher turn-over rate than uninfected cells, namely, β ≥ α. The incidence of
infection through contact between viruses and healthy target cells is assumed to follow a simple mass-action term kVT ,
where constant k > 0 is the transmission coefficient. Infected T cells are assumed to produce on average N mature viruses
during its lifetime. The model parameters are assumed to be positive.

Functions f and g describe target-cell dynamics, including cell turn-over and proliferation through mitosis. An earlier
model of Nowak and May [7] assumed that T cells do not proliferate (f = 0, g = 0). Perelson and Nelson [5] and Leenheer
and Smith [9] incorporated proliferation in uninfected target cells with a simplified logistic form f = rT (1 − T/Tm) and
g = 0, where r is the proliferation rate and Tm is the capacity of target cell population at which proliferation stops. With
this simplified logistic form, system (1) is competitive, and complete mathematical analysis is carried out by Leenheer
and Smith [9] using the theory for three dimensional competitive systems. Wang and Li [10] incorporated a full logistic
proliferation term for uninfected target cells with f = rT (1 − (T + T ∗)/Tm) and g = 0. Wang and Ellermeyer [11]
incorporated a full logistic form in both uninfected and infected cell populations with f = g = rT (1 − (T + T ∗)/Tm).
Mathematical analysis of the global dynamics depends on the forms of f and g . With f = g = 0, simple threshold dynamics
can be established using global Lyapunov functions as in [15]. With a simplified logistic f and g = 0, global dynamics of
system (1) are established in [9] using the theory of monotone dynamical systems.With full logistic f and g , system (1) is no
longer monotone, and global Lyapunov functions used in the literature are not effective because of the logistic terms. Global
dynamics are analyzed using the Li–Muldowney approach developed by Li and Muldowney [16].

ART therapies using RTI and PI based drugs have been incorporated into HIV infectionmodels with either no proliferation
terms or a simplified logistic proliferation (e.g. [2,4,7,12,13]). In this paper, we investigate a class of HIV infection models
with full logistic proliferation and incorporating RTI-based ART. The model takes the following form:

Ṫ = s − αT + r1T

1 −

T + T ∗

Tm


− kVT ,

Ṫ ∗ = σkVT − βT ∗
+ r2T ∗


1 −

T + T ∗

Tm


, (2)

V̇ = NβT ∗
− ϵV ,

where 0 ≤ 1−σ ≤ 1 is the rate of reduction in numbers of productively-infected target cells due to interruption of reverse
transcription by the RTI-based drugs. Parameter 1 − σ is a measure of the efficiency of the ART; if σ = 0, HIV infection
produces no productively-infected target cells, and ART is 100% effective, and if σ = 1, then ART has no effect. The effect of
PI-based drugs is to reduce the number N of mature virus released from a single infected target cell. We will focus on the
effects of RTI-based ART in this study. We assume that uninfected and productively-infected T cells proliferate at different
rates r1 and r2, respectively. It is biologically plausible to expect that uninfected T cells have a greater growth rate than
infected T cells, namely, r1 ≥ r2. When σ = 1 and r1 = r2 = r , system (2) reduces to that studied in [11]. When σ = 1 and
r2 = 0, system (2) reduces to earlier models considered in [5,9,10].

The main objective of the paper is to establish that the combination of ART and proliferation among infected target cells
provides a mathematically sound and biologically plausible mechanism for backward bifurcation, and that ART may bring
unexpected effects such as bi-stability and hysteresis that are typically associatedwith backward bifurcations. It is known in
theHIV/AIDS literature that, amongmostHIVpatients, successful ART therapies can suppressHIV replication to undetectable
levels. It is also known that failure or stoppage of ART can lead to prompt (within 2–3 weeks) viral rebound to significant
levels after long-term suppression [17–20], even when viral reservoir is extremely low among resting CD4+ T cells [19].
The hysteresis property associated with the backward bifurcation that is shown to exist in model (2) (Theorem 7) implies
that prompt viral rebound is possible without the existence of viral reservoir. The bi-stability property due to the backward
bifurcation may also help explain transient viral blips observed among patients under ART treatment, when the stochastic
effect may shift the viral load between the basin of attractions of the stable infection-free steady state and a stable chronic
infection steady state.

To establish our results, we carry out mathematical analysis on the existence and number of steady states, local stability
of infection-free and chronic-infection steady states. We identify parameter regimes in which backward bifurcation occurs
and derive related threshold parameters. To completely describe the global dynamics, we have also established the global
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stability of the infection-free steady state when it is the only steady state, and that of the chronic steady state when it
is unique. Our proof of the infection-free steady state is new and is developed to handle the logistic terms. Our proof of
global stability of the unique chronic-infection steady state uses the geometric approach of Li–Muldowney. To relate our
mathematical results to the biological context, we have derived the basic reproduction number R0, as a function of σ , and
interpreted our mathematical results in terms of R0. Numerical simulations using biologically plausible parameter values
are used to demonstrate our theoretical results and show their biological implications.

Backward bifurcations have beenwidely studied in the literature of epidemicmodels, and several mechanisms including
imperfect immunity, leaky vaccines and behavioral responses to perceived disease risk have been identified to lead to
backward bifurcations [21–31]. Backward bifurcation is shown to occur by Gomez and Li [29] in a simple in-host model
of viral infection through direct cell-to-cell transmission. The mechanism for backward bifurcation is the combination of
partial immune protection and target-cell proliferation. This mechanism is very similar to what we establish in the present
paper for viral infections through free virus, since ART only provides partial protection from viral infection. HIV infection
is recently known to occur through both virus-to-cell and cell-to-cell transmissions, results in [29] and the present paper
together show that backward bifurcation may be intrinsic to the viral dynamics of HIV in the present ART environment.
Our model (2) has ignored many factors that have been considered in the HIV modeling literature, such as intra-cellular
delays, latently infected cells and CTL response. Nonetheless, model (2) represents a simple mathematical model for the
viral dynamics of HIV with a virologically plausible mechanism for backward bifurcation and the associated bi-stability.

2. Feasible region and steady states

It can be verified that the nonnegative orthant R3
+

= {(T , T ∗, V ) : T ≥ 0, T ∗
≥ 0, V ≥ 0} is positively invariant with

respect to system (2) and the model is well posed. In the absence of HIV infection, the target-cell dynamics are described by

Ṫ = s − αT + r1T

1 −

T
Tm


.

Simple phase-line analysis shows that the target-cell concentration regulates at a positive level T0, with

T0 =
Tm
2r1


(r1 − α) +


(r1 − α)2 +

4sr1
Tm


. (3)

We assume that target cells stop growing at T = Tm. This requires a compatibility condition Tm > s/α. Under this condition
and (3) we have the relation T0 ≤ Tm.

The first two equations of system (2) lead to inequality

Ṫ + Ṫ ∗
≤ s − αT − βT ∗

+ r1T

1 −

T + T ∗

Tm


+ r2T ∗


1 −

T + T ∗

Tm


≤ s − α(T + T ∗) + r1(T + T ∗)


1 −

T + T ∗

Tm


,

since α ≤ β and r1 ≥ r2. Therefore, lim supt→∞(T (t) + T ∗(t)) ≤ T0 for all solutions in R3
+
, and T (t) + T ∗(t) ≤ T0 for t ≥ 0

if T (0)+ T ∗(0) ≤ T0. Boundedness of T ∗(t) and the equation of V imply that lim supt→∞ V is bounded by a constantM > 0
independent of initial conditions. It can then be verified that the bounded set

Γ = {(T , T ∗, V ) ∈ R3
+

: T + T ∗
≤ T0, V ≤ M}

is positively invariant with respect to system (2) and is globally attracting in R3
+
. It suffices to study the global dynamics of

(2) in region Γ .
Steady states (T , T ∗, V ) of (2) satisfy the following system of equations.

s − αT + r1T

1 −

T + T ∗

Tm


− kVT = 0, (4)

σkVT − βT ∗
+ r2T ∗


1 −

T + T ∗

Tm


= 0, (5)

NβT ∗
− ϵV = 0. (6)

An infection-free steady state P0 = (T0, 0, 0) exists for all positive parameter values. A chronic-infection steady state
P∗

= (T , T ∗, V ) satisfies T , T ∗, V > 0. From Eq. (6), we get

T ∗
=

ϵ

Nβ
V . (7)
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(a) Intersections of graph of F and the horizontal line at s. (b) Bifurcation diagram showing forward bifurcation when
β ≥ r2 .

Fig. 1. Existence and uniqueness of infected steady state and the bifurcation diagramwhen β ≥ r2 . We have shown in (a) three graphs of F corresponding
to σ < σ̄ (F(0) > s), σ = σ̄ (F(0) = s) and σ > σ̄ (F(0) < s). The bifurcation diagram in (b) shows a forward bifurcation common to in-host models.

Substituting this relation into (5) we obtain
σk −

r2ϵ
NβTm


T =

ϵ

N
+

r2ϵ2

N2β2Tm
V −

r2ϵ
Nβ

. (8)

If σ ≠
r2ϵ

kNβTm
, we have

T =
ϵTm(β − r2)

σkNβTm − r2ϵ
+

r2ϵ2

Nβ(σkNβTm − r2ϵ)
V . (9)

Using (7) and (9) to eliminate T and T ∗ from Eq. (4), we obtain a single equation for V in the form

s = (A + BV )(C + DV ), (10)

where

A =
ϵTm(β − r2)

σkNβTm − r2ϵ
, B =

r2ϵ2

Nβ(σkNβTm − r2ϵ)
,

C = (α − r1) +
r1ϵ(β − r2)

σkNβTm − r2ϵ
, D = k

σ(r1ϵ + kNβTm) − r2ϵ
σkNβTm − r2ϵ

.

Define

σ1 =
r2ϵ

kNβTm + r1ϵ
and σ2 =

r2ϵ
kNβTm

. (11)

Then we have σ1 < σ2. We assume that σ2 < 1. Let

F(V ) = (A + BV )(C + DV ), (12)

and define

σ̄ =
r2ϵ

kNβTm
+

ϵ(β − r2)
kNβT0

=
ϵ

kNβT0


sr2
r1T0

+
βr1 − αr2

r1


. (13)

Then σ̄ > 0 since s − αT0 + r1T0(1 − T0/Tm) = 0 and β ≥ α, r1 ≥ r2.

Proposition 1. Assume that β ≥ r2. Then

• if σ ≤ σ̄ , system (2) has no chronic-infection steady states;
• if σ > σ̄ , system (2) has a unique chronic-infection steady state P∗.

Proof. Assume that β ≥ r2. If σ < σ2 ≤ σ̄ , then A ≤ 0 and B < 0, and T = A + BV ≤ 0. There is no infected steady
state P∗ in this case. If σ = σ2, then Eq. (8) implies that V = NβTm(r2 − β)/r2ϵ ≤ 0, and P∗ does not exist. If β = r2,
then σ2 = σ̄ , A = 0, and C = α − r1 ≤ α − β ≤ 0. In this case, equation F(V ) = s has a positive solution if and only if
σ > σ2 = σ̄ .

Suppose that β > r2 and σ > σ2. Then σ2 < σ̄ , A > 0, B > 0, and D > 0. The function F(V ) is concave up with at least
one negative root. If C > 0, then both roots of F(v) are negative, see Fig. 1(a). The graph of F(V ) has exactly one intersection
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with the horizontal line at s if and only if F(0) < s. The equality F(0) = s will define the threshold value for σ . In this case,
V = 0 and T ∗

= 0, and thus T = T0. Using Eq. (8) we obtain

F(0) = s ⇐⇒ σ = σ̄

and using F(0) = AC we get

F(0) < s ⇐⇒ σ > σ̄ .

If C < 0, then the expression of C implies that r1 > α and

σ >
ϵ

kNβT0


r2T0
Tm

+
r1T0

(r1 − α)Tm
(β − r2)



>
ϵ

kNβT0


r2T0
Tm

+ β − r2


= σ̄ ,

since, from Eq. (3)

r1T0
(r1 − α)Tm

> 1.

In this case, F(V )has one positive root and one negative root, and its graph intersects the horizontal line at s exactly once. �

The bifurcation diagram illustrating results in Proposition 1 is shown in Fig. 1(b).
We now discuss the existence of P∗ when β < r2. Suppose that 0 ≤ σ < σ1. Then A > 0, B < 0, and D > 0. Without

loss of generality, we assume that C > 0. Then F is concave down and has two zeros −A/B > 0 and −C/D < 0. Again, using
F(0) = AC we can show that, in this case, F(0) < s if and only if σ < σ̄ . Function F has its maximum value

Fmax(σ ) = −
(AD − BC)2

4BD
= −

[kNβTm(r2 − β) + ϵ(r2α − r1β)]2

4kNβr2(σkNβTm + σ r1ϵ − r2ϵ)
> 0

achieved at

V∗ = −
1
2


A
B

+
C
D


. (14)

We assume that V∗ > 0. It is easy to see that Fmax(σ ) is increasing with σ in the interval [0, σ1). Solving the equation

Fmax = −
[kNβTm(r2 − β) + ϵ(r2α − r1β)]2

4kNβr2(σkNβTm + σ r1ϵ − r2ϵ)
= s

for σ , we get

σ ∗
=

r2ϵ
kNβTm + r1ϵ

−
[kNβTm(r2 − β) + ϵ(r2α − r1β)]2

4kNβr2s(kNβTm + r1ϵ)
. (15)

We assume that

Fmax(0) =
[kNβTm(r2 − β) + ϵ(r2α − r1β)]2

4kNβr22ϵ
< s. (16)

The following relationship then holds:

0 < σ ∗ < σ̄ < σ1 < σ2. (17)

Proposition 2. Assume that β < r2 and V∗ > 0. Then

(i) if 0 ≤ σ < σ ∗, system (2) has no chronic-infection steady states;
(ii) if σ = σ ∗, system (2) has a unique chronic-infection steady state P∗;
(iii) if σ ∗ < σ < σ̄ , system (2) has exactly two chronic-infection steady states P∗ and P∗;
(iv) if σ ≥ σ̄ , system (2) has a unique chronic-infection steady state P∗.

Proof. If σ < σ1, then F is concave down and its maximum value increases with σ . When σ < σ ∗, the maximum F is
less than s, and its graph has no intersections with the horizontal line l at s. When σ = σ ∗, the graph of F is tangent to
the horizontal line l, resulting in a unique chronic-infection steady state P∗. As σ increases through σ ∗ the graph of F will
intersect l at two points, resulting in two chronic-infection steady states P∗ = (T1, T ∗

1 , V1) and P∗
= (T2, T ∗

2 , V2) with
V1 < V2 and T1 > T2. When σ further increases beyond σ̄ , we have F(0) > s, and the graph of F has only one intersection
with l in the first quadrant. See Fig. 2 for an illustration. �
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(a) Intersection of graphs of F and the horizontal line at s
when β < r2 .

(b) Bifurcation diagram showing a backward bifurcation
when β < r2 .

Fig. 2. Existence and number of chronic-infection steady states and the bifurcation diagram when β < r2 . We have shown in (a) five graphs of F
corresponding to σ < σ ∗, σ = σ ∗, σ ∗ < σ < σ̄ , σ = σ̄ , and σ > σ̄ . The bifurcation diagram in (b) shows a backward bifurcation at σ = σ̄ .

3. Local stability analysis

3.1. Stability of the infection-free steady state P0

The Jacobian matrix of system (2) at P0 = (T0, 0, 0) is

J(P0) =


−α + r1 −

2r1T0
Tm

−
r1T0
Tm

−kT0

0 −β + r2 −
r2T0
Tm

σkT0

0 Nβ −ϵ

 .

One eigenvalue of J(P0) is

−α + r1


1 −

2T0
Tm


= −

s
T0

−
r1T0
Tm

< 0,

by Eq. (4). The remaining two eigenvalues are solutions of the quadratic equation

λ2
+


β − r2 +

r2T0
Tm

+ ϵ


λ + βϵ − r2ϵ


1 −

T0
Tm


− σkNβT0 = 0,

and they have negative real part if and only if βϵ − r2ϵ

1 −

T0
Tm


− σkNβT0 > 0, which is equivalent to σ < σ̄ . We have

the following result.

Theorem 3. If σ < σ̄ , then P0 is locally asymptotically stable. If σ > σ̄ , then P0 is unstable.

3.2. Stability of chronic-infection steady states P∗ and P∗

The Jacobian matrix at P = (T , T ∗, V ) (P = P∗ or P = P∗) is

J(P) =


−α + r1


1 −

T + T ∗

Tm


−

r1T
Tm

− kV −
r1T
Tm

−kT

σkV −
r2T ∗

Tm
−β + r2


1 −

T + T ∗

Tm


−

r2T ∗

Tm
σkT

0 Nβ −ϵ

 ,

where T , T ∗, V > 0. From the equilibrium equations we obtain

α − r1


1 −

T + T ∗

Tm


+ kV =

s
T

, β − r2


1 −

T + T ∗

Tm


=

σkVT
T ∗

, ϵ =
NβT ∗

V
.

The characteristic polynomial of J(P) can be written as

P(λ) = λ3
+ a1 λ2

+ a2 λ + a3,
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Table 1
Existence, number and stability of steady states of model (2) where LAS means locally asymptotically stable, US means unstable and GAS means globally
asymptotically stable in the feasible region.

Parameter regions Equilibria Local stability Global stability

β ≥ r2
σ ≤ σ̄ P0 P0 LAS P0 GAS
σ > σ̄ P0, P∗ P0 US, P∗ LAS P∗ GASb

β < r2 and V ∗ > 0
0 ≤ σ < σ ∗ P0 P0 LAS
σ ∗ < σ < σ̄ P0, P∗, P∗ P0, P∗ LASa , P∗ US
σ > σ̄ P0, P∗ P0 US, P∗ LASa

a LAS under condition (19).
b GAS under condition (26).

with

a1 =
s
T

+
r1T
Tm

+
σkVT
T ∗

+
r2T ∗

Tm
+ ϵ > 0,

a2 =
s
T


σkVT
T ∗

+
r2T ∗

Tm
+ ϵ


+

ϵ

Tm


r1T + r2T ∗


+

σ r1kTV
TmT ∗

(T + T ∗) > 0,

a3 =
σk2ϵTV 2

T ∗
+

sr2ϵT ∗

TTm
+ (σ r1 − r2)

kϵTV
Tm

=
1
Tm

(σkNβTm − r2ϵ)VF ′(V ),

(18)

where F(V ) is defined in (12). Assume that

a1a2 − a3 > 0. (19)

Then the Routh–Hurwitz stability conditions imply that all eigenvalues of J(P) have negative real parts if and only if a3 > 0
at P . We arrive at the following result.

Theorem 4. Assume that a1a2 > a3. Then,when it exists, a chronic-infection steady state P = (T , T ∗, V ) is locally asymptotically
stable if and only if (σ − σ2) F ′(V ) > 0. In particular,

(a) if β ≥ r2, then P∗ is unique and locally asymptotically stable when it exists; and
(b) if β < r2 and V∗ > 0, then P∗ is unstable and P∗ is stable when they exist.

We have summarized our results on the existence and local stability of steady states in Table 1. Global stability results
will be established in the next section.

Using (19), we can derive sufficient conditions for our assumption ab > c. One of them is

α − r1 + r1
T + T ∗

Tm
> 0.

We can see that if r1 is sufficiently small P∗ is locally asymptotically stable. We also note that relation ab > c may not
always hold and P∗ may not be stable in certain parameter ranges. In Fig. 3, we show a case when P∗ is unstable and a stable
periodic solution exists for system (2). The parameter values used for the simulation are: s = 0.1, k = 0.0027, ϵ = 2.4, α =

0.2, β = 1, r1 = 0.55, r2 = 0.5, Tm = 1500,N = 10 and σ = 0.7. Periodic solutions have been discovered in other viral
dynamicsmodels (e.g. [10–12]). Though they are shown to exist mathematically, sustained oscillations in viral load and CD4
count have not been observed among HIV patients. A likely reason is that the parameter values for which periodic solutions
exist may not be biologically relevant.

4. Global stability analysis when β > r2

4.1. Global stability of P0

Theorem 5. Assume that β > r2. Then the infection-free steady state P0 is globally asymptotically stable in the feasible region
Γ if σ < σ̄ .

Proof. Relation

σ < σ̄ =
r2ϵ

kNβTm
+

ϵ(β − r2)
kNβT0

is equivalent to

− (β − r2) +


σNβk

ϵ
Tm − r2


T0
Tm

< 0. (20)
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Fig. 3. Numerical simulations showing the existence of a stable periodic solution of model (2).

Since P0 is shown to be locally asymptotically stable in Theorem 4, it suffices to show that P0 globally attracts in the feasible
region Γ . A solution (T (t), T ∗(t), V (t)) to model (2) in Γ satisfies

Ṫ ∗

cV̇


= A(t)


T ∗

cV


, (21)

where c > 0 is a constant to be specified, with

A(t) =

−β + r2


1 −

T (t) + T ∗(t)
Tm


σkT (t)

c
cNβ −ϵ

 .

Let | · | denote the l∞ norm in R2 and µ∞ the Lozinskiı̆ measure with respect to | · |, see Appendix. From the discussion in
the Appendix we obtain the following relations:

d+

dt
max{T ∗(t), cV (t)} ≤ µ∞(A(t)) max{T ∗(t), cV (t)},

where d+

dt denotes the right derivative, and

µ∞(A(t)) = max

−β + r2[1 − (T + T ∗)/Tm] +

σkT
c

, cNβ − ϵ


. (22)

We want to show that µ∞(A(t)) ≤ −η < 0 for all t ≥ 0, which then implies that max{T ∗(t), dV (t)} → 0 as t → ∞, and
hence that P0 globally attracts.

Set c =
βN+δ

ϵ
. Using relations (20) and β > r2, we can choose δ, η > 0 sufficiently small that

cNβ − ϵ < −η, −β + r2 +
σkT0

ϵ
δ < −η, (23)

and

− β + r2 +


σNβk

ϵ
Tm − r2


T0
Tm

+
σkT0

ϵ
δ < −η. (24)

Therefore,

− β + r2


1 −

T + T ∗

Tm


+

σkT
c

≤ −β + r2 +


σNβk

ϵ
Tm − r2


T
Tm

+
δσkT0

ϵ
. (25)
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If σ < σ2 =
r2ϵ

kNβTm
, then σNβkTm

ϵ
< r2, and it follows from (22), (23) and (25) that

µ∞(A(t)) < −η, for all t ≥ 0.

If σ ≥ σ2 =
r2ϵ

kNβTm
, then σNβkTm

ϵ
≥ r2, and thus

−β + r2 +


σNβk

ϵ
Tm − r2


T
Tm

≤ −β + r2 +


σNβk

ϵ
Tm − r2


T0
Tm

.

This relation, together with (22)–(24), implies µ∞(A(t)) < −η for all t ≥ 0, completing the proof. �

4.2. Global stability of the unique chronic-infection equilibrium P∗

Wewill apply the Li–Muldowney global-stability criterion as summarized in the Appendix to show the global stability of
P∗. To verify the basic assumptions of Theorem 8, we note that the interior of the feasible region Γ̊ is simply connected, and
there exists a unique chronic-infection steady state P∗ in Γ̊ when σ > σ̄ . Instability of the boundary steady state P0 when
σ > σ̄ implies that system (2) is uniformly persistent [32,33]. Uniform persistence, together with ultimate boundedness of
solutions, implies the existence of a compact absorbing set K ⊂ Γ̊ [34].

Theorem 6. Assume that β > r2 and α > r1. Then, when σ > σ̄ , the unique chronic-infection steady state P∗ is globally
asymptotically stable in Γ̊ , provided the following condition holds:

ν = max

−α + r1 +

r2T0
σTm

, − β + r2 +
σ r1T0
Tm


< 0. (26)

Proof. To apply Theorem 8, we need to show the existence of a function Q and a Lozinskiı̆ measure µ such that q̄2 defined
in (34) in the Appendix satisfies q̄2 < 0.

The Jacobian matrix J associated with the general solution (T (t), T ∗(t), V (t)) to (2) is

J =


−p −

r1T
Tm

−kT

σkV −
r2T ∗

Tm
−q σkT

0 Nβ −ϵ

 ,

where p = α − r1

1 −

T+T∗

Tm


+

r1T
Tm

+ kV and q = β − r2

1 −

T+T∗

Tm


+

r2T∗

Tm
, and its second additive compound matrix J [2]

is, by (33) in the Appendix,

J [2] =


−p − q σkT kT

Nβ −p − ϵ −
r1T
Tm

0 σkV −
r2T ∗

Tm
−q − ϵ

 .

Set the function Q (x) = Q (T , T ∗, V ) = diag{1, T ∗/V , T ∗/(σV )}. Then QfQ−1
= diag{0, Ṫ ∗/T ∗

− V̇/V , Ṫ ∗/T ∗
− V̇/V }, and

X = QfQ−1
+ QJ [2]Q−1

=


−p − q

σkTV
T ∗

σkTV
T ∗

NβT ∗

V
Ṫ ∗

T ∗
−

V̇
V

− p − ϵ −
σ r1T
Tm

0 kV −
r2T ∗

σTm

Ṫ ∗

T ∗
−

V̇
V

− q − ϵ

 =


X11 X12
X21 X22


,

where X11 = −p − q, X12 = [σkTV/T ∗, σkTV/σT ∗
], X21 = [NβT ∗/V , 0]T , and

X22 =


Ṫ ∗

T ∗
−

V̇
V

− p − ϵ −
σ r1T
Tm

kV −
r2T ∗

σTm

Ṫ ∗

T ∗
−

V̇
V

− q − ϵ

 .
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Consider the norm |(u, v, w)| = max{|u|, |v| + |w|} in R3. Let µ be the Lozinskiı̆ measure with respect to this norm. Then
we have the following estimate, see [32,35],

µ(X) ≤ max{g1, g2} (27)

with

g1 = µ1(X11) + |X12|, and g2 = |X21| + µ1(X22),

and |X12|, |X21| are the matrix norm induced from the l1 vector norm of R2, and µ1 is the Lozinskiı̆ measure with respect to
the l1 norm. More specifically, µ1(X11) = −p − q, |X12| = kTV/T ∗, |X21| = NβT ∗/V , and µ1(X22) can be evaluated by the
following [36],

µ1(X22) = max

Ṫ ∗

T ∗
−

V̇
V

− p − ϵ +

kV −
r2T ∗

σTm

 , Ṫ ∗

T ∗
−

V̇
V

− q − ϵ +
σ r1T
Tm


=

Ṫ ∗

T ∗
−

V̇
V

− ϵ + max


−α + r1 −

r1(T + T ∗)

Tm
−

r1T
Tm

− kV + kV +
r2T ∗

σTm
,

−β + r2 −
r2(T + T ∗)

Tm
−

r2T ∗

Tm
+

σ r1T
Tm



≤
Ṫ ∗

T ∗
−

V̇
V

− ϵ + max


−α + r1 +

r2T0
σTm

, − β + r2 +
σ r1T0
Tm



≤
Ṫ ∗

T ∗
−

V̇
V

− ϵ + ν.

Using the fact that Ṫ ∗/T ∗
= σkVT/T ∗

− β + r2(1 − (T + T ∗)/Tmax) and V̇/V = NβT ∗/V − ϵ, we obtain

g1 = −p − q +
σkTV
T ∗

≤
Ṫ ∗

T ∗
− α + r1 ≤

Ṫ ∗

T ∗
+ ν,

g2 ≤
NβT ∗

V
+

Ṫ ∗

T ∗
−

V̇
V

− ϵ + ν =
Ṫ ∗

T ∗
+ ν. (28)

Therefore µ(X) ≤
Ṫ∗

T∗ + ν. Let (T (t), T ∗(t), V (t)) be any solution initiating in K and let t̄ be the uniform time such that
(T (t), T ∗(t), V (t)) ∈ K for all t ≥ t̄ . Then for t > t̄ we have

1
t

 t

0
µ(X)ds ≤

1
t

 t̄

0
µ(X)ds +

1
t
ln

T ∗(t)
T ∗(t̄)

+
t − t̄
t

ν.

The boundedness of T ∗ then implies that q̄2 ≤ ν < 0, completing the proof. �

5. The basic reproduction number and backward bifurcation

In this section, using the method of next generation matrix as in [26], we derive the basic reproduction number R0(σ ) of
model (2), as a function of parameter σ , and study the impact of ART treatment on R0(σ ).

Using the notations of [26], we can calculate

F =

r2


1 −

T0
Tm


σkT0

0 0

 and V =


−β 0
Nβ −ϵ


,

and the next generation matrix is

FV−1
=

1
βϵ

−ϵr2


1 −

T0
Tm


− σkNβT0 −βσkT0

0 0

 .

As the spectral radius of FV−1, the basic reproduction number is given by

R0(σ ) =
σkN
ϵ

T0 +
r2
β


1 −

T0
Tm


. (29)
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Biologically, the basic reproduction number represents the average secondary productive infections caused by one
productively infected target cell in an entirely susceptible target cell population (T0). As we can see in (29), secondary
infections comes from both horizontal virus-to-cell transmission, as described by the first term, and vertical transmission
through mitosis of infected target cells, as given in the second term.

Parameters σ and N only appear in the first term, implying that both RTI-based and PI-based ART therapies only directly
reduce secondary infections from horizontal transmission; they have no effects on secondary infections from vertical
transmission through mitosis of infected target cells. Using (13) and (29) we can derive the following relation

R0(σ ) = 1 ⇐⇒ σ = σ̄ and R0(σ ) < 1 ⇐⇒ σ < σ̄ .

Reinterpreting results in Section 3 in terms of R0(σ ), we have the following result.

Theorem 7. (a) The infection-free steady state P0 is asymptotically stable if R0(σ ) < 1, and unstable if R0(σ ) > 1.
(b) Assume that a1a2 > a3. Then

• the unique infected steady state P∗ exists and is asymptotically stable if R0(σ ) > 1;
• if β < r2 and V∗ > 0, then two chronic-infection steady states P∗ = (T1, T ∗

1 , V1) and P∗
= (T2, T ∗

2 , V2) with V1 < V2 and
T1 > T2 exist when R0(σ

∗) < R0(σ ) < 1. Steady state P∗ is unstable and P∗ is asymptotically stable.

In the parameter regime where β < r2 and V∗ > 0, if σ is in the range σ ∗ < σ < σ̄ , we have R0(σ ) < 1 and two sub-
threshold chronic-infection steady states P∗ and P∗ exist, togetherwith the infection-free equilibrium P0. This is the situation
known as backward bifurcation, see Fig. 2. Mathematically, this creates co-existence of two attractors P0 and P∗ with their
own basins of attraction. In Fig. 4, we have shown numerically computed connecting orbits from the unstable steady state
P∗ to the stable ones P0 and P∗, as well as depiction of basins of attraction of P0 and P∗, in the 3-dimensional phase space.
In Fig. 5, we show numerical solutions of model (2) in this parameter regime. We see that solutions may converge to P0 or
P∗ depending on their initial conditions. The parameter values used for these simulations are s = 20, k = 0.00018, ϵ =

0.02, α = 0.02, β = 0.021, r1 = 0.03, r2 = 0.024, Tm = 1200 and N = 10, with σ ∗
= 0.00513438, σ̄ = 0.00916025.

Biologically, bi-stability may lead to unexpected adverse consequences for ART. We also believe that the backward
bifurcation and the accompanying hysteresis behaviors that are intrinsic to viral dynamics under ART can provide an
explanation for several well observed clinical phenomena among HIV patients.

Dependence of outcome on initial conditions. Mathematically, the bi-stability represented by the co-existence of a stable
infection-free steady state P0 and a stable chronic-infection steady state P∗ implies that the feasible region Γ is partitioned
into two basins of attraction. Biologically, in the basin of attraction of P0, ART will achieve suppression of HIV virus, whereas
in the basin of attraction of P∗, the virus will persist and ART is not effective. The outcome of ART critically depends onwhich
basin of attraction the viral load and CD4 count fall into. Using numerical simulations, we demonstrate the bi-stability of P0
and P∗ in this parameter regime in Figs. 4 and 5. Our results imply that it is essential to continue monitoring a patient’s viral
load and CD4 count during the course of ART treatment, to ensure they remain in the basin of attraction of P0.

Sudden jump of viral load. As it is shown in the bifurcation diagram in Fig. 2(b), when σ increases beyond σ̄ , the viral load
V will jump from the low V1 branch to the high V2 branch. Biologically, this explains the sudden jump in viral load among
patients with viral suppression under ART when ART is stopped or has failed. A common explanation for the sudden viral
rebound is the existence of a viral reservoir in resting CD4+ T cells, in which virus can hide from the drug or the immune
surveillance. It is also known, however, that sudden viral rebound from total suppression is possible even viral reservoir
is extremely low among resting CD4+ T cells [19]. Our results show that the hysteresis property associated with backward
bifurcationmakes it theoretically possible for viral load to experience sudden rebound from total suppression (with stoppage
of ART) without a viable viral reservoir.

Timing of ART treatment. We can also observe from the bifurcation diagram in Fig. 2(b) that, when σ decreases to σ̄ , or
equivalently, when R0 decreases to 1, the viral load V will decrease along the stable V2 branch while remaining very
high. Biologically, this means that if ART is initiated when the viral load is high, it is much more difficult to achieve viral
suppression within the parameter range of backward bifurcation. Our results imply that it is important to test patient’s viral
load in addition to CD4 count before initiation of ART. This agrees with cohort studies of HIV/AIDS patients undergoing ART
treatments [37], and supports the early initiation of ART among asymptomatic HIV positive patients [38].

Viral blips. It has been clinically observed among patients under full viral suppression to experience transient jumps in
viral load, a phenomenon called ‘‘viral blips’’ [39]. Several modeling studies have attempted to explain the mechanisms
responsible for the viral blips [40,41]. The bi-stability phenomenon accompanying backward bifurcation that is shown to
exist in our basic viral dynamicsmodelwith ART (Theorem7)may explainwhy viral blips occur. It is plausible that stochastic
fluctuations of viral load or of CD4+ population due to opportunistic infections may switch the trajectory back and forth
between the basin of attraction of P0 (suppression) and that of P∗ (detectable viral load). This will be further investigated in
a subsequent study.
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(a) Connecting orbits from P∗ to P0 and P∗ . (b) Basins of attraction of P0 and P∗ .

Fig. 4. Bi-stability of sub-threshold steady states P0 and P∗ when β < r2 . Numerically computed connecting orbits from the unstable steady state P∗ to
the stable steady states P0 and P∗ are shown in (a). Trajectories are shown to converge to either P0 or P∗ depending on their initial positions.

Fig. 5. Numerical solutions are shown to converge either to the infection-free steady state P0 or to the chronic-infection steady state P∗ depending on
their initial conditions.

6. Summary

In this paper, we have studied a mathematical model that describes the viral dynamics of HIV with ART treatment. Our
model generalizes earlier HIV models in the literature (e.g. [5,9,10]) in that it uses a full logistic term to describe the target-
cell dynamics. We have analyzed the system in two different scenarios: (1) when β ≥ r2, i.e. when the death rate β of
the infected target cells is greater than its proliferation rate r2, we have shown that the model exhibits standard threshold
dynamics: if the basic reproduction number R0 < 1 the infection-free steady state is globally asymptotically stable and the
virus is cleared; and if R0 > 1 a unique infected steady state P∗ is globally asymptotically stable in the interior of the feasible
region, and the virus persists in the target cell population. (2) When β < r2, we show that the viral dynamics are very
different. We identify an open region of biologically relevant parameter values in which backward bifurcation occurs. We
have discussed some potential adverse biological effects associated with the backward bifurcation and their implications to
ART treatment. Together with the result in [29], our study shows that the combination of proliferation among HIV infected
cells and partial protection against HIV infection from the ART drugs is a cause for backward bifurcation and hysteresis
behaviors.
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For in-host models or epidemic models with logistic terms, the global stability of the infection-free or disease-free equi-
librium P0 is of considerable challenge due to nonlinearity in the logistic terms. Our proof of the global stability of P0 for
model (2) is new and may be applicable to other models of this type.
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Appendix

A.1. Lozinskiı̆ measures

We summarize the definition of the Lozinskiı̆ measure of matrices and its applications to differential equations. For
detailed discussions we refer the reader to [36].

Let | · | denote a vector norm in Rn and also denote the induced matrix norm in Rn×n, the space of all n × nmatrices. For
matrix A in Rn×n, the Lozinskiı̆ measure or the logarithmic norm of A with respect to | · | is defined as (see [36, p. 41])

µ(A) = lim
h→0+

|I + hA| − 1
h

. (30)

Let y(t) be a solution to the system of linear differential equations
y′(t) = A(t)y(t),

where A(t) is an m × m matrix-valued continuous function. Then the following relation holds for the norm |y(t)| and the
corresponding Lozinskiı̆ measure:

|y(t)| ≤ |y(t0)|e
 t
t0

µ(A(t)) dt
, for t ≥ t0. (31)

A.2. Li–Muldowney global-stability criterion

We summarize a global-stability criterion of Li and Muldowney [16], which is used in our proof in Section 4.
Let D be an open set in Rn, and f : x ∈ D → f (x) ∈ Rn be a C1 function. Consider the differential equation

x′
= f (x). (32)

Denote by x(t, x0) the solution to (32) such that x(0, x0) = x0. A set K is said to be absorbing in D for system (32) if
x(t, K1) ⊂ K for each compact set K1 ⊂ D and sufficiently large t . Assume that the following assumptions hold:
(H1) System (32) has a unique equilibrium point x̄ in D.
(H2) System (32) has a compact absorbing set K ⊂ D.

Let B be an n × n matrix in Rn×n. The second additive compound matrix of B, denoted by B[2], is an
 n
2


×
 n
2


matrix. For

instance, if B = (bij) is a 3 × 3 matrix, then

B[2]
=

b11 + b22 b23 −b13
b32 b11 + b33 b12

−b31 b21 b22 + b33


. (33)

For detailed discussions of compound matrices and their applications in differential equations, we refer the readers to
[42,43].

Let Q : D −→ Q (x) be an
 n
2


×
 n
2


matrix-valued function that is C1 on D, together with its inverse Q−1(x), and let µ

be a Lozinskiı̆ measure on RN×N , where N =
 n
2


. Define a quantity q̄2 as

q̄2 = lim sup
t→∞

sup
x0∈K

1
t

 t

0
µ(X(x(s, x0)))ds, (34)

where
X = QfQ−1

+ QJ [2]Q−1,

matrixQf is obtained by replacing each entry qij ofQ by its derivative in the direction of f , (qij)f , and J [2] is the second additive
compound matrix of the Jacobian matrix J of system (32). The following result is proved by Li and Muldowney in [16].

Theorem 8 (Li and Muldowney). For system (32), assume that D is simply connected and that assumptions (H1) and (H2) hold.
Then the unique equilibrium x̄ is globally asymptotically stable in D if there exist a function Q and a Lozinskiı̆ measureµ such that
q̄2 < 0.
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