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1. INTRODUCTION

n n 1 Ž .Let f : R � R be a C function and assume that f 0 � 0. Then u � 0
is an equilibrium solution to the system of ordinary differential equations

du
� f u . 1.1Ž . Ž .

dt

The equilibrium is locally asymptotically stable if the Jacobian matrix
�Ž .A � f 0 is stable; namely, all the eigenvalues of A have negative real
Ž � �. mparts see 7 . Let � � R be a bounded domain with smooth boundary

Ž .and D � diag d , . . . , d with d � 0. Then u � 0 is also a spatially1 n i
homogeneous steady-state solution to the following reaction�diffusion
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system with Neumann boundary condition

u � D �u 	 f u in � � 0, � ,Ž . Ž .t

� u
1.2Ž .� 0 on � � � 0, � ,Ž .

��

u x , 0 � u x in � ,Ž . Ž .0

Ž . nwhere u � u , . . . , u 
 R , � is the Laplacian in the variable x 
 � �1 n
m Ž .R , and � is the unit outward normal to � �. System 1.1 is the kinetic

Ž .system of 1.2 . It is well known that, if the diffusion coefficients d are thei
Ž .same, an asymptotically stable equilibrium u � 0 of 1.1 remains asymp-

Ž . Ž � �.totically stable for the reaction�diffusion system 1.2 see 1, 19 . Turing
� �20 is the first to demonstrate that different diffusion coefficients can

Ž .cause u � 0 to cease to be stable for 1.2 . Turing’s idea has since been
Ž � � .further explored by many authors see 2, 16�18 and references therein ,

and diffusion-driven instability has become an important mechanism for
the emergence of interesting patterns in many model systems.

Ž .The stability of u � 0 for 1.2 is customarily studied by the method of
linear approximation. Let

� � D �� 	 A� in � � 0, � ,Ž .t

� �
1.3Ž .� 0 on � � � 0, � ,Ž .

��

� x , 0 � � x in �Ž . Ž .0

Ž . �Ž .be the linearization of 1.2 at u � 0, where A � f 0 , the Jacobian matrix
Ž .of f at 0. Then u � 0 is asymptotically stable for 1.2 if � � 0 is

Ž . � Ž .� Ž .� Ž .�asymptotically stable for 1.3 ; namely, � x, t � K exp �� t � x for0
some K , � � 0 and all t � 0. u � 0 is unstable if there exists k such that
A � � D has an eigenvalue with positive real part, where 0 � � � � �k 0 1
			 � � � 			 are the eigenvalues of the negative Laplacian in � withk

Ž � �.Neumann boundary condition see 1, 19 . At the core of the stability
Ž .analysis are the following matrix problems. Assume that A is stable. 1

Find necessary and sufficient conditions that A � D is stable for all
Ž . Ž .D � diag d , . . . , d with d � 0. 2 Let such a D be given; find neces-1 n i

Ž .sary and sufficient conditions such that s A � �D � �
 for some 
 � 0
Ž .that is uniform for all � � 0. Here s B denotes the largest real part of all

Ž .eigenvalues of a matrix B. Answers to problem 1 will give rise to
conditions for the diffusion-driven instability to occur, whereas solutions to

Ž .problem 2 will provide a way to prove the stability of constant steady-state
for reaction�diffusion systems.
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In this paper, we derive a set of conditions, which we call the minors
Ž . Ž .condition, that seem to be at the heart of both problems 1 and 2 . We

prove in Theorem 3.1 that, for a stable matrix A, the minors condition is
necessary for A � D to be stable for all non-negative diagonal D. This
allows a systematic way of detecting the occurrence of diffusion-driven

�Ž .instability by checking the signs of principal minors of A � f 0 . For
n � 3 or if A satisfies a stronger stability property, we prove in Theorem

Ž3.8 that the strict minors condition is sufficient and necessary for s A �
.�D � �
 to hold for some 
 � 0 that is uniform for all � � 0 and all

non-negative diagonal D. This in turn implies that u � 0 is asymptotically
Ž .stable for 1.2 with respect to all non-negative diagonal diffusion matrices.

Furthermore, under a similar assumption, we prove in Theorem 3.9 that
the strict minors condition is sufficient and necessary for all the principal
submatrices of A to be stable. From a matrix theoretical viewpoint, this

� �last result is interesting on its own right. Casten and Holland 1 have
considered similar problems. For a positive diagonal matrix D, they prove

Ž .the asymptotical stability of u � 0 for 1.2 under the assumption that
A � �D is stable for all � � 0. For n � 3, they prove that a sufficient
condition for this assumption to hold is that all the principal submatrices
of A, together with A itself, are stable.

Cross-diffusion is not considered in our paper; the diffusion matrix D
will be assumed to be diagonal throughout the paper. It is known that

� �cross-diffusion can induce instability 12, 13, 17 . It is also known that
diffusion and cross-diffusion can induce other types of instability such as

Ž � �. Ž � �.finite time blowup of solutions see 14 or extinction of solutions see 9 .
The paper is organized as follows. In the next section, we provide

necessary preliminary results. In Section 3, we study various matrix proper-
Ž . Ž .ties related to the problems 1 and 2 stated above. Implications of these

matrix properties for the instability and stability of a steady-state u � 0
Ž .of 1.2 are studied in Section 4. The paper ends with an example in Sec-

tion 5.

2. PRELIMINARIES

Ž .Let M R be the linear space of n � n matrices with entries in R, then
Ž . Ž .field of real numbers, and let A � a 
 M R . For 1 � k � n, let Ii j n�n n k

denote the set

I � i , i , . . . , i � 1 � i � i � 			 � i � n .� 4Ž .k 1 2 k 1 2 k
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Ž . Ž .Set I � �. For any J � i , i , . . . , i 
 I , let P A denote the k � k0 1 2 k k J
principal submatrix of A

a a 			 ai i i i i i1 1 1 2 1 k

a a 			 ai i i i i i2 1 2 2 2 k ,. . . .. . . .. . . .
a a 			 ai i i i i ik 1 k 2 k k

Ž .and define P A � 1. If D is a diagonal matrix with non-negative�

diagonal entries d , d , . . . , d , and let d � Ł d for J 
 I and d � 1.1 2 n J j
 J j k �
� � 4 Ž .Let J � 1, 2, . . . , n � J for J 
 I . The determinant det A � D can bek

expressed as a polynomial of d as follows:j

n
k

�det A � D � �1 det P A dŽ . Ž . Ž .Ž .Ý Ý J J
k�0 J
Ik

n�1 n
nk

�� det A 	 �1 det P A d 	 �1 d .Ž . Ž . Ž . Ž .Ž .Ý Ý ŁJ J j
j�1k�1 J
Ik

2.1Ž .

Ž .If D � �I then 2.1 is the characteristic polynomial of A.n�n
Ž . Ž . � Ž .4Let � A be the spectrum of A, and s A � max Re � � � 
 � A . A

Ž . Ž .matrix A is said to be stable if s A � 0 and unstable if s A � 0.
Let ‘‘�’’ denote the exterior product in Rn. With respect to the

canonical basis in the second exterior product space �2 Rn, the second
additi�e compound matrix A�2� of A represents a linear operator on �2 Rn

defined by

A�2� u 
 u � Au 
 u 	 u 
 AuŽ .1 2 1 2 1 2

for decomposable elements u 
 u . Definition over the whole �2 Rn is1 2
�2� n nŽ . Ž .done by linear extension. It is clear that A is an � matrix. The2 2

second additive compound matrices are given in the Appendix for n � 2,
3, and 4. For a detailed discussion on compound matrices, the reader is

� �referred to 4, 15 . Pertinent to the present paper is the following spectral
�2� Ž . � 4 Ž �2�. �property of A : if � A � � � i � 1, . . . , n , then � A � � 	 � � 1i i i1 2
4� i � i � n .1 2

� � nLet 	 denote a vector norm in R and the operator norm it induces in
Ž . Ž . � �M R . The Lozinskiı measure 
 on M R with respect to 	 is defined by˘n n

Ž � �.see 3, p. 41

� �I 	 hA � 1

 A � lim ,Ž .

	 hh�0
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Ž .for A 
 M R . Lozinskiı measures satisfy the standard properties of a˘n
Ž . Ž . Ž .measure. In particular, 
 A 	 B � 
 A 	 
 B . The Lozinskiı mea-˘

Ž . � � � �sures of A � a with respect to the three common norms x � sup x ,�i j i i
� � � � � � Ž � � 2 .1�2x � Ý x , and x � Ý x are, respectively,1 2i i i i

� �
 A � sup Re a 	 a , 2.2Ž . Ž .Ý� i i i kž /
i k , k�i

� �
 A � sup Re a 	 a , and 2.3Ž . Ž .Ý1 k k ikž /
k i , i�k

A 	 A	


 A � s . 2.4Ž . Ž .2 ž /2

Ž . Ž .A Lozinskiı measure 
 A dominates s A as the following lemma states;˘
� �see 3 for a proof.

Ž . Ž . � �LEMMA 2.1. Let 
 be a Lozinskiı measure. Then s A � 
 A � A .˘
Ž . � � nLet P 
 M R be invertible and let 	 be a given norm in R . Define an

� � n � � � �new norm 	 in R by x � Px and denote the Lozinskiı measures˘P P
� � � �with respect to 	 and 	 by 
 and 
 , respectively. The following resultP P

Ž � �.is standard see 3 .

Ž .LEMMA 2.2. Let P 
 M R be in�ertible. Thenn


 A � 
 PAP�1 .Ž . Ž .P

� �The following stability criterion is proved in 10, Theorem 3.2 .

THEOREM 2.3. For A to be stable, it is sufficient and necessary that
Ž .n Ž . Ž �2�. Ž .�1 det A � 0 and 
 A � 0 for some Lozinskiı measure 
 on M R ,˘ N

nŽ .N � .2

The proof for the sufficiency in Theorem 2.3 is an easy application of
�2� Ž �2�.the spectral properties of A . In fact, 
 A � 0 implies that the

eigenvalues of A satisfy Re � 	 Re � � 0, i � j, and thus can have ati j
Ž .n Ž .most one non-negative real part. The condition �1 det A � 0 then

� �implies that all the real parts are negative and hence A is stable. See 10
for the proof of necessity and for an application in epidemic models.

3. STABILITY AND INSTABILITY RESULTS FOR MATRICES

Ž .Let D � diag d , . . . , d . We say D � 0 if d � 0 for all 1 � i � n, and1 n i
D � 0 if d � 0 for all 1 � i � n. In this and the remaining sections, Di
always denotes a diagonal matrix.
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THEOREM 3.1. Assume that A is stable and that A satisfies
Ž .k Ž Ž ..�1 det P A � 0 for some 1 � k � n and J 
 I . Then there existsJ k
D � 0 such that A � D is unstable.

Proof. It suffices to show the existence of D � 0 such that

n�1 det A � D � 0.Ž . Ž .

Choose D such that d � 0 for i 
 J and d � d � 0 for i 
 J �. Theni i
Ž .n Ž . Ž .n Ž . Ž .k Ž Ž .. n�k Ž .�1 det A � D � �1 det A 	 �1 det P A d by 2.1 .J

Ž .k Ž Ž .. Ž .n Ž .Since �1 det P A � 0, �1 det A � D � 0 if d is sufficientlyJ
large.

In the light of Theorem 3.1, the following question is natural. Suppose
Ž .k Ž Ž ..�1 det P A � 0 for all J 
 I and 1 � k � n. Does the stability ofJ k
A imply that of A � D for all D � 0? If A is symmetric or if A is an

� �M-matrix 5, 6 , it is easy to see that the answer to the question is
affirmative. For a general matrix A, we provide an answer in the next two
theorems.

Ž .k Ž Ž ..A matrix A is said to satisfy the minors condition if �1 det P A � 0J
for all J 
 I and 1 � k � n. The minors condition is said to be strict ifk
the inequalities in the above definition are strict.

THEOREM 3.2. Assume that n � 3 and A is stable. Then A � D is stable
for all D � 0 if and only if A satisfies the minors condition.

Proof. The necessity follows from Theorem 3.1. To show the suffi-
ciency, we use the Routh�Hurwitz conditions for the stability of matrices
� �3 . In the cases n � 1 or n � 2, the proof is straightforward. For n � 3,

Ž .let A � a . The Routh�Hurwitz conditions state that A is stable ifi j 3�3
and only if

tr A � 0, det A � 0, and tr A a � det A , 3.1Ž . Ž . Ž . Ž . Ž .2

where a is the sum of all 2 � 2 principal minors of A. Assume that A2
satisfies the minors condition. We want to show that A � D also satisfies

Ž .the Routh�Hurwitz conditions for an arbitrary D � 0. First, tr A � D �
Ž . Ž . Ž . Ž .tr A � tr D � 0 since tr A � 0 and D � 0. It follows from 2.1 and

Ž .the minors condition that det A � D � 0. It remains to verify the condi-
Ž . Ž .tion tr A � D a � det A � D , where a is the sum of all 2 � 2 princi-2 2

pal minors of A � D. More specifically,

a � d a a11 1 12 13

a a � d aA � D � 21 22 2 23

a a a � d31 32 33 3
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and

a � d a a � d a a � d a11 1 12 11 1 13 22 2 23a � 	 	2 a a � d a a � d a a � d21 22 2 31 33 3 32 33 3

a a11 12� � a d � a d 	 d d11 2 22 1 1 2a a21 22

a a11 13	 � a d � a d 	 d d11 3 33 1 1 3a a31 33

a a22 23	 � a d � a d 	 d d . 3.2Ž .22 3 33 2 2 3a a32 33

Thus

tr A � D a � a 	 a 	 a � d � d � d aŽ . Ž .2 11 22 33 1 2 3 2

� tr A � d � d � d a � a d � a d 	 d dŽ . ŽŽ .1 2 3 2 11 2 22 1 1 2

�a d � a d 	 d d � a d � a d 	 d d 3.3. Ž .11 3 33 1 1 3 22 3 33 2 2 3

and

a a a a a a22 23 11 13 11 12det A � D � det A � d 	 d 	 dŽ . Ž . 1 2 3a a a a a až /32 33 31 33 21 22

	 a d d 	 a d d 	 a d d � d d d . 3.4Ž .33 1 2 22 1 3 11 2 3 1 2 3

Ž . Ž . Ž .Note that det A dominates tr A a by 3.1 , and that all the remaining2
Ž . Ž .terms in 3.4 appear in 3.3 . It can be verified, using the minors condition,

Ž . Ž .that all the terms in 3.3 are non-positive. Therefore tr A � D a �2
Ž .det A � D , and thus A � D is stable, completing the proof.

� �For n � 3, Casten and Holland 1 prove that A � D is stable for all
D � 0 if A and all its principal submatrices are stable. This result now
follows from Theorem 3.2. Furthermore, our minors condition is both
sufficient and necessary. For a general n � n matrix A, Theorem 3.1
shows that the minors condition is necessary for A � D to be stable for all
D � 0. We conjecture that it is also sufficient.

Conjecture. Assume that A is stable. Then A � D is stable for all
D � 0 if and only if A satisfies the minors condition.

Ž .A Lozinskiı measure 
 is said to be admissible if 
 �D � 0 for all˘
diagonal D � 0. It is easy to verify that 
 , 
 , and 
 are admissible. Let� 1 2

1 2� � Ž .P � and D � diag 1, 2 . Then 
 is not admissible since, by LemmaP1 3

Ž . Ž �1 .2.2, 
 �D � 
 �PDP � 3 � 0.P �
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DEFINITION. An n � n matrix is said to be strongly stable if

n �2��1 det A � 0 and 
 A � 0Ž . Ž . Ž .

nŽ . Ž .for some admissible Lozinskiı measure 
 on M R , N � .˘ N 2

It follows from Theorem 2.3 that every strongly stable matrix is stable.

THEOREM 3.3. Assume that A is strongly stable. Then A � D is strongly
stable for all D � 0 if and only if A satisfies the minors condition.

Proof. The necessity follows from Theorem 3.1. For the sufficiency,
Ž .n Ž . Ž .n Ž .�1 det A � 0 and the minors condition imply �1 det A � D � 0

Ž . ŽŽ .�2�. Ž �2� �2�. Ž �2�. Ž �2�.by 2.1 . Also, 
 A � D � 
 A � D � 
 A 	 
 �D �
Ž �2�.
 A � 0, by the admissibility of 
. Therefore A � D is also strongly

stable.

Ž .A matrix B � b is said to be diagonally dominant in rows or ini j
� � � � � � � �columns if b � Ý b or b � Ý b for all i, respectively. If, ini i j� i i j i i j� i ji

addition, b � 0 for 1 � i � n, we say B is negati�ely diagonally dominant.i i
Ž . Ž . Ž .By 2.2 and 2.3 , B is negatively diagonally dominant in rows if 
 B � 0�

Ž .and in columns if 
 B � 0. Choosing the 
 in Theorem 3.3 as 
 , 
 , or1 � 1

 , we arrive at the following corollaries.2

Ž .n Ž . �2�COROLLARY 3.4. Assume that �1 det A � 0 and that A is nega-
ti�ely diagonally dominant in rows or in columns. Then A � D is strongly
stable for all D � 0 if and only if A satisfies the minors condition.

ŽCOROLLARY 3.5. Let � � � � 			 � � be the eigen�alues of A 	1 2 n
	 . Ž .n Ž .A �2. Assume that � 	 � � 0 and �1 det A � 0. Then A � D is1 2

strongly stable for all D � 0 if and only if A satisfies the minors condition.

Next, for a given diagonal D � 0, we study conditions that ensure
Ž .s A � �D � �
 � 0 for some 
 � 0 that is uniform for all � � 0. When

� �D � 0, as shown in Casten and Holland 1 , this property is equivalent to
A � �D being stable for all � � 0.

Ž .THEOREM 3.6. Let D � 0 be gi�en. Then s A � �D � �
 � 0 for all
� � 0 if and only if A � �D is stable for all � � 0.

� �Proof. See 1, proof of Theorem 1 .

The assumption D � 0 is crucial in Theorem 3.6. The uniform upper
bound �
 may not exist if D is only non-negative as the following

�4 2� �example shows. Let A � . It has eigenvalue �2 with multiplicity 2,�2 0

so A is stable. Furthermore, by Theorem 3.2, A � D is stable for all
Ž .D � 0 since A satisfies the minors condition. Let D � diag 1, 0 . Simple
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2'Ž . Ž .calculation gives s A � �D � �2 	 � 	 8� � � �2 � 0 for all � �
Ž .0. However, s A � �D � 0 as � � �.

Let D � 0 be given; without loss of generality, assume that

D 0D � , 3.5Ž .
0 0

where D is diagonal with positive entries. Write A in the corresponding
block-form

A A1 2A � , 3.6Ž .A A3 4

where A has the same dimensions as D. The following is a generalization1
of Theorem 3.6.

Ž . Ž .THEOREM 3.7. Let D � 0 be gi�en as in 3.5 . Then s A � �D � �

� 0 for all � � 0 if and only if A � �D is stable for all � � 0 and A is4
stable.

� �Proof. The sufficiency is proved in 1 . To show the necessity, we need
only to verify that A is stable. Observe that, if � � 0,4

A � �D � A1 2A � �D A1 2A � �D � � A3A A A3 4 4�

0 0
A � �D � A1 2 A� 	 , 3.73 Ž .00 A4 �

where ‘‘� ’’ denotes similarity of matrices. Since the eigenvalues of a
Ž . Žmatrix depend continuously on its entries, the relations 3.7 and s A �

.�D � �
 � 0 imply the stability of

A � �D � A1 2

0 A4

when � is sufficiently large, and hence that of A .4

Remark. Even under the conditions of Theorem 3.7, the relation
Ž . Ž .s A � �D � s A may not hold for all � � 0. For example, let A �
�4 2� � Ž . Ž . Ž .and D � diag 1, 0 . Then s A � �3 and s A � �D � �3 	�2 �1

2'Ž . Ž .� 	 8� � � �2 � �1 � s A as � � �.
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THEOREM 3.8. Assume that one of the following conditions holds.

Ž .a n � 3 and A is stable.
Ž .b A is strongly stable.

Ž .Then s A � �D � �
 for some 
 � 0 that is uniform for all D � 0, � � 0
if and only if A satisfies the strict minors condition.

Proof. Assume that A satisfies the strict minors condition. Then, by
continuity, A 	 
 I also satisfies the strict minors condition for suffi-n�n

Ž �2�.ciently small 
 � 0. If A is strongly stable, then 
 A � 0 for an
ŽŽ .�2�. Ž �2� �2� . Ž �2�.admissible 
, and thus 
 A 	 
 I � 
 A 	 
 I � 
 A 	n�n n�n

2
 � 0 if 
 is sufficiently small; namely, A 	 
 I is also strongly stable.n�n
Ž . Ž .Therefore, under either assumption a or b of Theorem 3.8, and by

Theorem 3.2 or Theorem 3.3, respectively, A 	 
 I � D is stable for alln�n
Ž .D � 0. Hence s A � �D � �
 for some 
 � 0 that is uniform for all

D � 0 and � � 0.

Ž . Ž .Suppose that either condition a or b in Theorem 3.8 holds. If in
addition A satisfies the strict minors condition, then there exists 
 � 0

Ž .such that s A � �D � �
 for all D � 0, � � 0 by Theorem 3.8. Fur-
thermore, by Theorem 3.7, all the principal submatrices of A must be
stable. On the other hand, if A and all its principal submatrices are stable,
then A satisfies the strict minors conditions. We thus have the following
result.

Ž . Ž .THEOREM 3.9. Suppose that either condition a or b of Theorem 3.8
holds. Then all the principal submatrices of A are stable if and only if A
satisfies the strict minors condition.

4. STABILITY AND INSTABILITY IN
REACTION�DIFFUSION SYSTEMS

� � Ž n.Let 	 denote the supreme norm in the space C � � R of continu-
Ž .ous functions. A steady-state solution u x to the reaction�diffusion

Ž .system 1.2 is stable if, for any � � 0, there exists 
 � 0 such that
� Ž . Ž .� � Ž . Ž .�u 0, x � u x � 
 implies u t, x � u x � � for all t � 0. The solu-

Ž .tion u x is said to be asymptotically stable if it is stable and there exists
� Ž . Ž .� � Ž . Ž .�
 � 0 such that u 0, x � u x � 
 implies u t, x � u x � 0 as t �
Ž . Ž � �.�. We say that u x is unstable if it is not stable see 1, 19 . Suppose the

�Ž .Jacobian matrix A � f 0 is stable. Then u � 0 is a locally asymptotically
Ž .stable equilibrium for the kinetic system 1.1 . We study the stability of the

Ž .constant steady-state u � 0 of the diffusive system 1.2 via the linearized
Ž .system 1.3 .
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� Ž .4 Ž .Let � x be the orthonormal basis of C � � R formed by all thek
eigenfunctions of

��w � �w in � ,
� w 4.1Ž .� 0 on � � ,
��

ŽLet 0 � � � � � 			 � � � 			 be the corresponding eigenvalues see0 1 k
� �. Ž n.19 . A function � 
 C � � R has the Fourier expansion0

�

� x � � � x , 4.2Ž . Ž . Ž .Ý0 k k
k�0

n Ž .where � 
 R are the Fourier coefficients. Let T t be the solution tok k
the initial value problem of the linear system of ordinary differential
equations in Rn,

T � t � A � � D T t t � 0,Ž . Ž . Ž .k k k 4.3Ž .
T 0 � � .Ž .k k

Ž . Ž .Then the solution � t, x to the linear diffusive system 1.3 can be
expressed as

�

� t , x � T t � x . 4.4Ž . Ž . Ž . Ž .Ý k k
k�0

Ž .Using 4.4 and Theorem 3.1, we first prove the following instability result.
�Ž .THEOREM 4.1. Suppose that A � f 0 is stable. Then the steady-state

Ž .u � 0 of 1.2 is unstable for some diffusion matrix D � 0 if A does not
satisfy the minors condition.

Proof. Suppose that A does not satisfy the minors condition. Then
Ž .A � � D is unstable for some D � 0 and eigenvalue � � 0 of 4.1 , byk k

Ž . Ž .Theorem 3.1. Let � x � � � x , where � and � are given as in0 k k k k

Ž . Ž . Ž . Ž . Ž .4.1 � 4.4 . Then � t, x � T t � x is a solution to the linearized systemk k
Ž .1.3 and it blows up exponentially as t � �. Therefore, u � 0 is unstable

Ž � �.by linear approximation see 1, 19 .

From an application viewpoint, Theorem 4.1 provides a simple and
systematic way of detecting the occurrence of diffusion-driven instability in

Ž .a general diffusive system 1.2 . The regions for diffusion matrices that give
rise to instability can be so found that A � � D, for some � , has ank k
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� �eigenvalue with positive real part. We refer the readers to 8, 16 for
discussions on instability regions.

Ž .Expansion 4.4 and results derived in Section 3 can also be used to
prove the stability of a steady-state. Let D � 0 be given. Assume that D is

Ž . �Ž . Ž .written as in 3.5 . Also decompose A � f 0 as in 3.6 .

THEOREM 4.2. Assume that

Ž . �Ž .a n � 3 and A � f 0 is stable, or

Ž .b A is strongly stable.

Ž .Then the steady-state solution u � 0 to 1.2 is asymptotically stable if A
Ž .satisfies the minors condition and A is stable, where A is gi�en in 3.6 .4 4

Ž . Ž .Proof. Assume that either assumption a or b holds. Then by Theo-
rem 3.2 or Theorem 3.3, respectively, A � �D is stable for all � � 0. This,

Ž .together with the stability of A , implies that s A � � D � �
 � 0 for4 k
Ž . � Ž .�all the eigenvalues � of 4.1 by Theorem 3.7. Therefore, � t, x �k

Ž .� Ž .�K exp �
 t � 0, x for some K , 
 � 0 and for all t � 0. This implies
Ž .the asymptotic stability of the zero solution to 1.3 , and thus that of the

Ž .steady-state u � 0 of 1.2 .

In many applications, it is necessary to investigate whether u � 0
remains stable with respect to all diagonal diffusion matrices D. Suppose
that only positive D are considered. Then, by Theorem 4.2, u � 0 is
asymptotically stable with respect to all D � 0 if A satisfies the minors
condition. On the other hand, if non-negative D are allowed, a stronger
condition is required to ensure the stability of u � 0. We have the
following result.

Ž . Ž .THEOREM 4.3. Suppose that either assumption a or b of Theorem 4.2
holds.

Ž .1 If A satisfies the minors condition, then the steady-state u � 0 of
Ž .1.2 is asymptotically stable for all diffusion matrices D � 0.

Ž .2 If A satisfies the strict minors condition, then u � 0 is asymptoti-
cally stable for all D � 0.

Ž .Proof. The claim 1 follows directly from Theorem 4.2. From the proof
of Theorem 4.2, u � 0 is asymptotically stable if A � �D � �
 for some

 � 0 that is uniform for all � � 0. By Theorem 3.8, such a 
 can be
chosen independent of D � 0 if the strict minors condition holds. This

Ž .proves the claim 2 , and hence Theorem 4.3.
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�Ž .COROLLARY 4.4. Let A � f 0 . Then the conclusions of Theorem 4.3
hold if any of the following is satisfied.

Ž . �2�a A is negati�ely diagonally dominant in rows.
Ž . �2�b A is negati�ely diagonally dominant in columns.
Ž . Žc � 	 � � 0, where � � � � 			 � � are eigen�alues of A 	1 2 1 2 n

	 .A �2.

5. AN EXAMPLE FROM EPIDEMIOLOGY

Consider a mathematical model in epidemiology,

S� � b � bS � �IS 	 � IS ,

E� � �IS � � 	 b E 	 � IE ,Ž .

I � � �E � � 	 � 	 b I 	 � I 2 ,Ž .
5.1Ž .

R� � � I � bR 	 � IR ,

Žwhere S, E, I, and R denote the fractions of susceptible, exposed infected
.but not yet infectious , infectious, and recovered individuals in a popula-

tion and S 	 E 	 I 	 R � 1. The model describes the population dynam-
ics for an infectious disease that spreads in the host population through
direct contact of hosts. The parameter b is the birth rate, � the disease-
caused death rate, � the recovery rate, and � the rate at which the
exposed individuals become infectious. The parameter � is the effective
per capita contact rate among individuals. For the derivation and a

� �detailed analysis of the model, we refer the reader to 11 . Note that R
does not appear in the first three equations; this allows us to study the
system

S� � b � bS � �IS 	 � IS ,

E� � �IS � � 	 b E 	 � IE ,Ž . 5.2Ž .
I � � �E � � 	 � 	 b I 	 � I 2 ,Ž .

and determine R from R � 1 � S � E � I.
� � Ž .It is shown in 11 that the global dynamics of 5.2 is controlled by the

basic reproduction number

��
� � .

� 	 b � 	 � 	 bŽ . Ž .
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Ž .More specifically, if � � 1, the disease-free equilibrium P � 1, 0, 0 is0
globally asymptotically stable in the feasible region. If � � 1, the disease

	 Ž 	 	 	 .becomes endemic and a unique endemic equilibrium P � S , E , I
	 	 	 Ž � �.with S � 0, E � 0, I � 0 is globally asymptotically stable see 11 .

Ž .The population in model 5.2 is assumed to be spatially homogeneous.
It is important to investigate whether and how the spatial heterogeneity

Ž .will affect the disease dynamics in 5.2 . If the movement of individual
hosts is approximated by diffusion, one arrives at the diffusive model

S� � d �S 	 b � bS � �IS 	 � IS ,1

E� � d � E 	 �IS � � 	 b E 	 � IE ,Ž .2 5.3Ž .

I � � d � I 	 �E � � 	 � 	 b I 	 � I 2 ,Ž .3

with the homogeneous Neumann boundary condition on a bounded do-
2 Ž Ž . Ž . Ž .. Ž 	 	 	 .main in R . The constant solution S t, x , E t, x , I t, x � S , E , I

Ž .is a constant steady-state solution to 5.3 . A question of both biological
and mathematical interest is whether this steady-state, also denoted by P	 ,

Ž .remains asymptotically stable with respect to the diffusive system 5.3 for
all possible diffusion coefficients, d � 0. Note that the Jacobian matrixi
Ž 	 . Ž . 	J P of 5.2 at P is

	 	 	 	�b � �I 	 � I 0 ��S 	 �S
	 	 	 		 �I � � 	 b 	 � I �S 	 �EŽ .J P � ,Ž .

	0 � � � 	 � 	 b 	 2� IŽ .
5.4Ž .

and that S	 , E	 , and I	 satisfy

b � bS	 � �I	S	 	 � I	S	 � 0,

�I	S	 � � 	 b E	 	 � I	E	 � 0,Ž . 5.5Ž .
�E	 � � 	 � 	 � I	 	 � I	 2 � 0.Ž .

Applying the theory developed in the previous sections, we prove that
diffusion-driven instability will not occur when the disease-caused death
rate � � 0, and it can occur if � � 0.

	 Ž .THEOREM 5.1. Assume � � 0. Then the endemic steady-state P of 5.3
is locally asymptotically stable for all diffusion coefficients d � 0, i � 1, 2, 3.i

Ž .Proof. By Theorem 4.3 1 , it suffices to show that the Jacobian matrix
Ž 	 . Ž . 	 Ž .J P of 5.2 at P in 5.4 satisfies the minors condition when � � 0. In

Ž .fact, using 5.5 , it is straightforward to verify that all the diagonal entries
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Ž 	 .of J P are negative, and all the 2 � 2 principal minors are non-negative.
Ž Ž 	 .. 	The relation det J P � 0 follows from the local stability of P with

Ž .respect to 5.2 .
	 Ž .THEOREM 5.2. Assume � � 0. Then the endemic steady-state P of 5.3

is unstable for some d � 0, i � 1, 2, 3.i

Proof. By Theorem 4.1, it suffices to show that the Jacobian matrix
Ž 	 . Ž . 	 Ž .J P of 5.2 at P in 5.4 does not satisfy the minors condition when

Ž .� � 0. In fact, using 5.5 , we can show that the 2 � 2 principal minor

	 	 	� � 	 b 	 � I �S 	 �EŽ .
	� � � 	 � 	 b 	 2� IŽ .

	 	�I S
	 	

2� �S 	 �E 	 		 �� I SŽ .E 	� � � � ��E � 0.	 	�E E	� � 	 � I	I

APPENDIX

For n � 2, 3, and 4, the second additive compound matrix of an n � n
Ž .matrix A � a is, respectively,i j

n � 2: a 	 a11 22

a 	 a a �a11 22 23 13

n � 3: a a 	 a a32 11 33 12
�a a a 	 a31 21 22 33

n � 4:

a 	 a a a �a �a 011 22 23 24 13 14

a a 	 a a a 0 �a32 11 33 34 12 14

a a a 	 a 0 a a42 43 11 44 12 13 .�a a 0 a 	 a a �a31 21 22 33 34 24

�a 0 a a a 	 a a41 21 43 22 44 23

0 �a a �a a a 	 a41 31 42 32 33 44
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