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A B S T R A C T

We investigate an SIR epidemic model with discrete age groups to understand the transmission dynamics of an
infectious disease in a host population with an age structure. We derive the basic reproduction number 0 and
show that it is a sharp threshold parameter. If 1,0 the disease-free equilibrium E0 is globally stable. If > 1,0
E0 is unstable, the model is uniformly persistent, and an endemic equilibrium exists. The global stability of the
endemic equilibrium when > 10 is established under a sufficient condition. The model is then used to analyze
the measles data in India and evaluate the effectiveness of several vaccination strategies for the control of
measles epidemics in India.

1. Introduction

Age distribution is one of the most important factors that contribute
to the heterogeneity of populations and thus greatly influences the time
course and outcomes of the transmission and spread of infectious dis-
eases. Most importantly, patterns and frequencies of individual inter-
actions can be drastically different among and across age groups and
these differences produce a great degree of heterogeneity in transmis-
sion rates. Individuals at different age can also have different levels of
immunity against infectious diseases. These differences can impact the
age-specific mortality rates and recovery rates from an infection.
Modeling the impact of age structure in a population on the transmis-
sion of an infectious disease is crucial for understanding the complexity
of the disease dynamics and for effective disease control and preven-
tion.

Age-structure in epidemic models has been studied using both dis-
crete and continuous approaches in the literature. These studies include
partial differential equation (PDE) models with continuous age struc-
ture (see a recent book [22] for references), and ordinary differential
equation (ODE) models with discrete age groups (see e.g. [2,7,13]). For
both approaches, the derivation of the basic reproduction number, the
existence, uniqueness, and stability of equilibria are important issues.

For PDE models, well-posedness of models and properties of the asso-
ciated semigroups have stimulated much of the recent theoretic de-
velopment. For ODE models, while the mathematical framework is re-
latively simple due to its finite dimensional phase space, the challenge
in their mathematical analysis lies in the high dimensionality and large-
scale of the ODE system. In both approaches, it is highly nontrivial to
establish the global dynamics of age-structured epidemic models. In
particular, the uniqueness and global stability of the endemic equili-
brium when the basic reproduction number exceeds one are very dif-
ficult mathematical problems.

Epidemic models with a discrete age structure can be regarded as
coupled systems of nonlinear differential equations on transmission
networks. In this setting, each age group can be considered as a node,
and connections among nodes are defined by inter-group transmissions
and the aging process. The graph-theoretic approach to the construction
of Lyapunov functions for coupled systems on networks developed in
[11,21] can be applied to models with discrete age groups. Such an
approach was used in [18] to establish the global stability of the en-
demic equilibrium of an SIR model with discrete age structures in the
susceptible population. The global stability of endemic equilibria of SIR
epidemic models with discrete age structures in both susceptible and
infectious populations are still an open problem. In this paper, we

https://doi.org/10.1016/j.mbs.2018.12.003
Received 23 March 2018; Received in revised form 4 October 2018; Accepted 3 December 2018

☆ Submitted to the editors April 21, 2017.
⁎ Corresponding author.
E-mail addresses: zhoulh@cust.edu.cn (L. Zhou), wangy891@dlut.edu.cn (Y. Wang), yanyu.xiao@uc.edu (Y. Xiao), myli@ualberta.ca,

mli@math.ualberta.ca (M.Y. Li).

Mathematical Biosciences 308 (2019) 27–37

Available online 07 December 2018
0025-5564/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00255564
https://www.elsevier.com/locate/mbs
https://doi.org/10.1016/j.mbs.2018.12.003
https://doi.org/10.1016/j.mbs.2018.12.003
mailto:zhoulh@cust.edu.cn
mailto:wangy891@dlut.edu.cn
mailto:yanyu.xiao@uc.edu
mailto:myli@ualberta.ca
mailto:mli@math.ualberta.ca
https://doi.org/10.1016/j.mbs.2018.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2018.12.003&domain=pdf


present a new global-stability result to this problem using the approach
in [11,21].

Studies on continuous age-structured epidemic models have shown
that, when the basic reproduction number is greater than 1, uniqueness
and global stability of the endemic equilibrium may not hold (see e.g.
[3,8,28]). Investigations of similar results for discrete-structured epi-
demic models will be of interest. In our main result, global stability of
the endemic equilibrium is proved under sufficient condition that holds
for an open set of parameter values.

Vaccination is a major control measure against infectious diseases.
One of the most common and successful vaccines is the measles vaccine,
which is typically given to infants as part of the measles-mumps-rubella
(MMR) vaccination. The efficacy of a single-dose of measles vaccine
given to infants at 12 or 15 months of age is between 85% and 93%. A
second dose is given before school age. With two doses, efficacy of
measles vaccines can reach 97% [30]. Measles is one of the most serious
infectious human diseases as it can cause severe illness, lifelong com-
plications and death. By the estimation of the World Health Organiza-
tion (WHO), even with routine vaccination programmes, millions of
measles cases occur each year in developing countries [33], mainly due
to low vaccination coverage. In its Global Measles and Rubella Strategic
Plan: 2012–2020, WHO has set measles eradication targets for year
2020 for high measles incidence countries in Africa and Southeast Asia:
a 95% or higher rate of vaccine coverage with both the first and second
routine doses of measles vaccine, a reduction of the measles incidence
rate to below 5 cases per million population, and a 95% reduction of
measles mortality rate from that of year 2000 [34,35]. We adapted a
discrete age-structured model to analyze measles data from India and
examine the effects of the current vaccination programmes in India,
which has the highest measles incidence rates in the world. We further
discussed the effectiveness of different vaccination strategies for India
in the context of WHO’s measles elimination targets.

The organization of this paper is as follows: in Section 2, we for-
mulate the discrete age-structured SIR epidemic model and derive the
basic reproduction number 0. In Section 3, we discuss the global
stability of the disease-free equilibrium and the endemic equilibrium. In
Section 4, we develop a vaccination model with four age groups to
analyze different vaccination strategies for measles epidemics in India.
We end the paper with conclusions and discussion in Section 5.

2. An SIR epidemic model with a discrete age structure

Partition the host population into n age groups. Each age group is
further divided into three epidemiological classes: susceptible (Sk), in-
fectious (Ik), and removed or immune (Rk). For the kth age group, Λk is
the constant influx of susceptible, βkj is the transmission coefficient
between susceptible Sk and infectious Ij, dk is the natural death rate, μk
is the disease-caused death rate, γk is the recovery rate, and αk is the
rate for aging. The model is depicted in the transfer diagram in Fig. 1.
Based on the transfer diagram, the model is described by the following
system of ordinary differential equations:
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Here, our convention for the aging is that = = 0n0 . We assume that
Λk≥0, Λ1> 0, dk≥0, and dn>0, for =k n1, 2, , . All other model
parameters are assumed to be nonnegative.

Set = + +N S I Rk k k k. It can be verified by adding the equations of
Sk, Ik, Rk that, for = …k n1, 2, , ,
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Similarly, using the first equation of (1) we can derive, for
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Observe that variable Rk does not appear in the first two equations of
(1), and we can consider the following reduced system:
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We investigate system (4) in the feasible region:
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It can be shown that Γ is positively invariant with respect to (4).
System (4) always has the disease-free equilibrium
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Then using the method of van den Driessche and Watmough [32], the
basic reproduction number, which measures the average number of

Fig. 1. Transfer diagram for the SIR model with a discrete age structure.
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secondary infections caused by a single infectious individual in an en-
tirely susceptible population during its infectious period, is given by

= FV( ),0
1 (8)

where FV 1 is the next generation matrix and ρ denotes the spectral
radius of a matrix. The following result follows from Theorem 2 of [32].

Proposition 1. The disease-free equilibrium E0 is local asymptotically
stable if < 10 and unstable if > 10 .

3. Global dynamics of model (4)

Consider matrices:
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and define

= V F( ).0 1
1

1 (11)

Then we have the following result.

Proposition 2. sign( 1)0 =sign( 1).0

Proof. The result follows from the fact that =F V F V1 1. □

3.1. Global stability of the disease-free equilibrium

Theorem 3. Assume that = ×B ( )kj n n is irreducible. Then the following
results hold.

(1) If 1,0 then the disease-free equilibrium E0 is the unique equilibrium
of (4) and it is globally asymptotically stable in Γ;

(2) If > 1,0 then the disease-free equilibrium E0 is unstable, and system
(4) is uniformly persistent in . In particular, an endemic equilibrium E*
exists in .
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where δst is the Kronecker symbol such that = 1st when =s t and 0
when s≠ t. Then any equilibrium of system (4) satisfies the following
matrix equation

=M S I I( ) 0.

From = =M M S V F( )0
0

1
1

1 it follows = M( )0 0 . In the feasible region
Γ, we have 0≤M(S)≤M0 since 0≤ S≤ S0. By properties of
nonnegative matrices ([14]), we know that M(S), M0 and +M S M( ) 0
are irreducible, and that ρ(M(S))< ρ(M0) provided S≠ S0. Therefore, if

= M( ) 10 0 and S≠ S0, we have ρ(M(S))< 1 and =M S I I( ) 0
has only the trivial solution =I 0. Thus E0 is the unique equilibrium of
(4) in Γ if 10 .

Since M0 is nonnegative and irreducible, by Perron–Frobenius
Theorem [4,14], = >M( ) 00 0 is the dominant eigenvalue with a
positive left eigenvector …( , , , )n1 2 . Set
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Differentiating L along solutions of system (4) we obtain
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Furthermore, if < 1,0 we have =L 0 if and only if =I 0. If = 1,0
then =L 0 implies

… = …M S I I( , , ) ( ) ( , , ) .n n1 1 (13)

Since S< S0 and <M S( ( )) ,0 we find that equation (13) holds if and
only if =I 0. Therefore, the largest invariant set in Γ where =L 0 is the
singleton {E0}. By LaSalle’s Invariance Principle [19], E0 is globally
asymptotically stable in Γ when 10 .

If > 10 and I≠0, we have

… = … >M( , , , ) ( , , , ) ( 1)( , , , ) 0,n n n1 2 0 1 2 0 1 2

and by continuity,

= … >L M S I I( , , )( ( ) ) 0n1

in a small neighborhood of E0 in . This implies that the disease-free
equilibrium E0 is unstable when > 10 . Based on a uniform persistence
result in [9] and a similar argument as in the proof of Proposition 3.3 in
[20], when > 1,0 the uniform persistence of (4) is guaranteed by the
instability of E0. The existence of E* follows from the uniform persis-
tence and uniform boundedness of solutions in Γ (see [6] or [27]).
Using Proposition 2we know that < 10 if and only if < 1,0 and the
proof is complete. □

3.2. Global stability and uniqueness of the endemic equilibrium

Denote an endemic equilibrium by

= …E S I S I S I* ( *, *, *, *, , *, *) in .n n1 1 2 2

Let

= +S I I* * * * ,kj kj k j k j k k1, 1 1

where δi, j is the Kronecker delta function, namely, = 1i j, if =i j,
otherwise = 0,i j, and set
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.
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Then, the following result is standard in linear algebra (see e.g., Lemma
2.1. in [11]).

Lemma 4. Assume that = ×B ( )kj n n is irreducible. Then the following linear
system

=v 0,

has a positive solution …v v v( , , , )n1 2 defined by

… = …v v v C C C( , , , ) ( , , , ),n nn1 2 11 22 (15)

where = …C k n, 1, 2, , ,kk denotes the cofactor of the kth diagonal entry of
matrix Φ.
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Theorem 5. Suppose that = ×B ( )kj n n is irreducible and that > 10 .
Assume that the following conditions hold
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= ×( *)kj n n and be any directed cycle in , if one exists. Let E( )

denote the set of edges of . Then, the telescoping property of Fkj
implies that
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for all …S I S I S I( , , , , , , ) inn n1 1 2 2 . Here, is the set of all spanning
unicyclic graphs of weighted digraph ( , ), w ( ) is the weight of ,
and denotes the unique directed cycle in . Since vk>0, it can be
verified that =V 0 implies

= = = …S S I I k n*, and *, 1, 2, , .k k k k

Therefore, the largest invariant set in on which =V t( ) 0 is the
singleton {E*}. By Lasalle’s Invariance Principle [19], E* is globally
asymptotically stable in . The global stability also implies that E* is
unique. □

To demonstrate that our assumption (16) can be satisfied, and hence
the results of Theorem 5 can hold, we carried out numerical simulations
using a special case of model (4) with =n 4 and the following set of
biologically plausible parameter values:
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The time unit in the simulations is week. With these values of
parameters, it can be verified that the basic reproduction number

= >5.2566 10 and the threshold value = >4.9652 10 . Furthermore,
= ×S* 1.97 10 ,1

3 = ×S* 1.42 10 ,2
3 = ×S* 7.35 10 ,3

4 and = ×S* 4.49 104
5.

The coefficients =v 456138.4k for =k 1, 2, 3, 4. Expressions on the right
hand side of (16) are

+ = >d S S v
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2

1
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3
3 3 (19)

= >d S S* * 8.33 0.4 4 3 3 (20)

This shows that the assumption (16) is satisfied for an open set of the
parameters values. Simulation results shown in Fig. 2 demonstrate that
solutions with different initial values converge to positive equilibrium
values in all four age groups.

In some special cases, assumption (16) can hold for all positive
parameter values. In a large population, the number of susceptible
people αkSk who transit into the next age group +Sk 1 each year is ty-
pically small compare to the sizes of Sk and +S ,k 1 since only people
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whose age is the highest in Sk will transfer into +Sk 1. The impact of
aging of susceptibles αkSk on the incidence in the +k( 1)th age group

S Ikj k k j1 1 is typically small. In the following, we assume that
changes in +Sk 1 due to the aging term αkSk are negligible with respect to
its impact on the disease incidence. We then arrive at the following
simplified model:
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Since the matrices F, V in the calculation of 0 do not depend on the
equations for the susceptible populations, the basic reproduction
number for the revised model is given by = FV( ),0

1 where F and V
are the same as given in (6) with = = …S d k n/ , 1, 2, , .k k k

0 For model
(21), terms S*k k in (16) vanish, and thus assumption (16) holds auto-
matically. We have the following result.

Theorem 6. Assume = ×B ( )kj n n is irreducible. Suppose that the basic
reproduction number for system (21) satisfies > 1.0 Then there exists a
unique endemic equilibrium = …E S I S I* ( *, *, , *, *),n n1 1 and E* is globally
asymptotically stable in .

4. An application to vaccination strategies for measles

Measles is a vaccine preventable disease. Given as part of the
measles-mumps-rubella (MMR) vaccine, the measles vaccine typically
requires two doses. The first dose of measles containing vaccine (MCV1)
is commonly given to infants at 12 or 15 months of age, and it has an
efficacy between 85% and 93%. A second dose (MCV2) is re-
commended to be given before school age. With two doses, the efficacy
of MCV can reach as high as 97% [30,31]. In the United States and
other developed countries, where measles have been under control, the
coverage rate of MCV1 among children is well over 90%, while the

MCV1 global coverage rate has stagnated around 85% and much lower
in many developing countries. According to WHO’s guidelines for in-
troducing the second dose of measles vaccine [36], when MCV1 cov-
erage in a country/region has been higher than 80% for three con-
secutive years, MCV2 should be administered to children either at the
age of 15–18 months or at the school entry, depending on which choice
will enable a higher vaccination coverage. In this section, we develop a
two-dose vaccination model with four age groups (Fig. 3) to study the
vaccination strategies for measles epidemics and apply the model to
analyze measles data from India, one of the countries with highest
measles incidence in the world.

4.1. Measles vaccination model for India

Measles vaccine has been licensed and introduced nationally in
India since 1985 [17]. A single dose is administered to children at 9
months of age. The vaccination coverage has been low in the early stage
of the vaccination programme and has reached 80% since 2010 [39].
Starting from 2010, the Indian Academy of Pediatrics (IAP) re-
commended two doses of MMR vaccine, MCV1 at 15–18 months and
MCV2 at school entry (4–6 years of age) [5,15,16]. Measles case mor-
tality rate varies drastically among different age groups; it is the highest
among children 4 years of age and younger, the next highest among
children aged 5–9 years, and the case mortality rate is very small among
children older than 10 years. Based on consideration of age-specific
differences in vaccination schedules, case fatality rates, and contact
patterns, we partition the host population into the following four age
groups:

• infants (0 4 years), children (5 9 years), teenagers (10 14
years), and the rest ( +15 years).

The model structure is illustrated in the transfer diagram in Fig. 3.
Compared to the general model structure in Fig. 1, we have in-
corporated a two-dose measles vaccination: MCV1 for age group 1 and
MCV2 for age group 2. The model is described by the following system
of differential equations:

Fig. 2. Numerical simulations of a discrete age-structured epidemic model (4) with =n 4. The parameter values used for the simulations are = 20,1 = 150,2
= 1200,3 = 1550,4 =µ 0.0001,k = 0.01, = 0.004,1 = 0.005,2 = 0.006,3 = = ×0.24 10 ,k k1 2

7 = ×0.48 10 ,k3
7 = ×0.16 10 ,k4

7 and =d 0.001,k
=k 1, 2, 3, 4.. The basic reproduction number = >5.25667 1.0 The figures demonstrate that solutions with different initial values converge to positive equilibrium

values in all four age groups.
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Model parameters, together with their meaning and estimated values,
are given in Table 1. In particular, θ1 and θ2 are vaccination rate of
MCV1 and MCV2, respectively, and σ1 and σ2 are the respective effi-
cacies of MCV1 and MCV2, so that σ1θ1 and σ2θ2 are the effective
coverage of MCV1 and MCV2, respectively. The transmission coefficient
βkj between Sk and Ij is decomposed into two factors: = c ,kj k kj where
βk is the probability of transmission for an average contact between a
susceptible individual in age group k (Sk) with an infected individual,
and ckj is the average number of contacts from individuals in age groups

j with individuals in age group k. We note that ckj and cjkmay not be the
same due to different sizes of age groups, and the contact matrix (cij)
may not be symmetric. Other parameters have the same meaning as in
the general model (1).

4.2. Parameters estimation and model calibration

As indicated in Table 1, values of some parameters and initial values
of state variables in model (22) are estimated directly from published
data. We have followed the procedure in [23,24] to compute the con-
tact matrix (cij) for the population of India, using population data to
derive age distributions among the four age groups. The result is shown
in Table 2. Other parameter values, especially those of the probability
of transmission per contact (βi) and the recovery rate from measles (γi)
for each age group, are estimated by fitting the model outcomes to
measles data using the nonlinear least squares method [10]. The
measles data used for model fitting include the reported annual in-
cidence and age specific incidence of measles in India from 2000 to
2010 [26,39,40]. The values of measles case-fatality-ratio (CFRs) are

=µ 0.016,1 =µ 0.08,2 = =µ µ 03 4 [26]. By the end of 2015, the values
of θ1, θ2 are the actual vaccination rates published by WHO, and we
assume that = 0.851 and = 0.82 from 2016 onwards. In Figs. 4 and 5,
we provide a comparison between the model simulations using the
estimated parameter values and the reported annual incidence of India
from 2011 to 2015 for the total population and four age groups [39,40].
These figures show a good fit between our model predictions and the
data.

4.3. Immune profile analysis

Our calibrated model is used to generate the measles immune pro-
files for the total population and for different age groups. The baseline
is the current measles vaccination policy in India, namely, a single-dose
(MCV1) for the first age group of children (4 years and younger) during
years 2000–2010, and a second dose (MCV2) after 2010 for the second
age group of children (5–9 years olds). We assume that the vaccination
coverage of the first dose is 85% ( = 0.851 ) and that of the second dose
80% ( = 0.82 ). The efficacy of the first dose is 85% ( = 0.851 ) and that
of the second dose 95% ( = 0.952 ). The results are shown in Fig. 6.

Fig. 3. Transfer diagram for a vaccination model with four age groups.
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In Fig. 6(a), the immune profile for the total population is shown.
With India’s sustained effort on measles immunization programmes,
especially after the introduction of MCV2 in 2010, the fraction of po-
pulation that are protected by immunity has been increasing, albeit
slowly during 2000–2010. The fraction of population that are protected
by vaccination has increased drastically after 2010 and surpassed the
fraction who are protected by immunity due to past infection. This
demonstrated the effectiveness of the MCV2 at the population level.

Fig. 6(b)–(d) show the immune profiles in each of the four age
groups. The proportion of population who are protected by immunity in
the first three age groups are much higher than that in the whole po-
pulation, which is estimated at 55% in 2016. For infants aged 0–4 years,
this proportion is estimated at 70% in 2016. Because of the introduction

of MCV2 to the second age group (5–9 years), proportion of the immune
population in that age group is the highest at an estimated level of 75%.
This shows that MCV2 is highly effective for increased protection of the
targeted age group.

The model also allows us to project the level of immunity in the
populations beyond year 2016. As shown in Fig. 6(a), proportion of the
immune population will reach 65% by the end of 2025, which is still
significantly below the WHO target of 95%, which is the level required
for herd immunity for measles [1]. This proportion will be much higher
in the vaccine targeted age groups. For children aged 5–9 years, the
proportion of the population with immunity against measles will be
over 90% at the end of 2025, and the corresponding proportion among
children aged 10–14 years will be 85%, due to aging of children who
were vaccinated at a younger age. In contrast, for children 4 years of
age and younger, the immune proportion will only reach a low rate of
72% by the end of 2025.

Our model projections show that the current two-dose policy of
measles vaccination programme in India had a great effect on in-
creasing the proportion of immune individuals among children aged
5–14 years. In Fig. 7, our model projections also show a drastic decline
in measles mortality rates among children 9 years of age and younger
during 2016–2025. In Fig. 8(a), the solid curve is our projection of the

Table 1
Parameters and their estimated values for model (22).

Parameter Value/Range Unit Definition Reference

Λ 650 103/week Iinflux of susceptibles Fitting
dk 0.00029 week 1 Natural mortality rate of age group k [37]
αk 0.00385 week 1 Aging rate of age group k Calculated
γk 0.024368 week 1 Recovery rate of age group k Fitting
μk [0,0.2] Case fatality rate of age group k [26]
θk [0,1] Immunization rate of Measles vaccine [38]
σ1 0.85 Efficacy of MCV1 [12,25]
σ2 0.95 Efficacy of MCV2 [30]
β1 0.167989*10 6 Probability of transmission per contact for age group 1 Fitting
β2 0.515425*10 7 Probability of transmission per contact for age group 2 Fitting
β3 0.262981*10 7 Probability of transmission per contact for age group 3 Fitting
β4 0.285701*10 8 Probability of transmission per contact for age group 4 Fitting
ckj See Table 2 week 1 Average number of contacts from age group j to age group k [24]

Note: k, j= 1, 2, 3, 4.

Table 2
Contact matrix for model (22).

0–4 years 5–9 years 10–14 years 15+ years

0–4 years 13.3 5.88 3.08 27.65
5–9 years 6.02 46.2 8.26 38.29
10–14 years 3.22 8.54 48.3 37.94
15+ years 4.41 6.02 5.74 73.5

Fig. 4. Model fitting results. Using the nonlinear least-squares method, reported annual incidence and age-specific incidence of India from 2000 to 2010 [26,39,40]
are used to estimate the transmission coefficients βk, recovery rate γk and the initial values of the infected individuals Ik for =k 1, 2, 3, 4.
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decline in measles annual incidence for the whole population of India
during 2016–2025.

Despite these positive effects of the current vaccination programme
in India, our model projection shows that (the solid line in Fig. 8(a)), by
the end of 2020, the India’s annual measles incidence rate in 2020 will
remain above the WHO elimination goal of 5 cases per one million
population. From our immune profile analysis in Fig. 6, we can see that
part of the reason lies in the low effective coverage rate of MCV1
(θ1*σ1) among children aged 0–4 years, which will only be at 72.25% in
year 2020. This age group has the highest proportion of the measles
incidence during 2000–2010 (Fig. 4). The effective coverage rate of

MCV1 (θ1*σ1) can be boosted by increasing the vaccine coverage rate θ1
or increasing the vaccine efficacy σ1. We discuss the effects of these two
strategies in the next two sections.

4.4. Effect of increasing measles vaccination coverage

According to the recommendation of WHO, coverages of MCV1 and
MCV2 should both be increased to 95%. We explored several scenarios
in which the coverage rate of MCV1 or MCV2 are increased to 95%.
Results are shown in Figs. 8 and 9.

In Fig. 8(a), we compared the two scenarios of increasing coverage

Fig. 5. Reported annual measles incidence in total population and in four age groups of India from 2011 to 2015 [39,40] compared to the simulation results of the
calibrated model.

Fig. 6. Immunity profiles of the whole population and four age groups in India.
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rate θ1 of MCV1 or θ2 of MCV2 starting from 2016, while keeping the
vaccine efficacies the same as in Table 2. Our results show that a 10%
increase in MCV1 coverage rate (θ1) can be more effective in reducing
the measles cases than a 15% increase in MCV2 coverage rate (θ2). This
is partly because of the relative low coverage rate of MCV1 in the
baseline.

In Fig. 9, we show that the proportion of annual measles incidence
coming from first age group continues to rise during 2016–2020, under
different scenarios of scaling up vaccine coverages. As the annual in-
cidence of the entire population continues to decline, larger and larger
proportion of the measles cases will come from children 4 years of age
and younger. Combined with the fact that the measles fatality rate is the
highest in this age group, our model projections indicate that a good
alternative strategy for measles control in India is to give priority to
boost the coverage rate of measles vaccination MCV1 among children of
age 0–4 years.

4.5. Effects of improving efficacy of measles vaccines

In the United States and other developed countries, the efficacy of

MCV1 can reach 95% when administered to children of age 12 months
and older [29]. In India, MCV1 is administered to children of age 15–18
months, with an efficacy of 85% [12,25]. There is room for India to
increase the efficacy of MCV1. We explore the scenario of increasing the
efficacy of MCV1 (σ1) from the current 85% to 95%. Results are shown
in Fig. 9.

Our projections show that increasing the efficacy of MCV1 by 10%
has a strong effect on reducing the measles incidence in all combina-
tions of coverage rates of MCV1 and MCV2 we have examined. In
particular, if the efficacy of MCV1 and MCV2 can both reach 95%, the
annual measles incidence can be reduced to below 5 cases per million in
2020 even with a coverage rate 85% for MCV1 and 80% for MCV2
(Fig. 9(b)), allowing India to reach WHO’s measles elimination target.

5. Conclusions and discussion

In this paper, we investigated the global dynamics of a class of
epidemic models with discrete age structure (4). We have derived the
basic reproduction number 0 for the model and show that it is a sharp
threshold. More specifically, if 1,0 the disease-free equilibrium E0 is
globally asymptotically stable, and if > 10 and the transmission ma-
trix {βij} among age groups is irreducible, then the endemic equilibrium
E* is unique and globally asymptotically stable, under a mild condition.
While this is a new result, the complete resolution of the uniqueness
and global stability of the endemic equilibrium of epidemic models with
a discrete age structure still remains open.

We applied our discrete age-structured epidemic model to study the
effectiveness of vaccination strategies for measles in India, in the con-
text of WHO’s Global Measles and Rubella Strategic Plan: 2012–2020,
and its measles eradication targets for year 2020 for high measles in-
cidence countries in Arica and Southeast Asia. We have calibrated a
measles vaccination model (22) with four age groups that incorporated
the current measles vaccination programmes (MCV1 and MCV2) in
India, using published measles surveillance data from India [26,39,40].
We used our model to analyze the immune profile in the whole popu-
lation and in each age groups to establish the baseline and make future
projections. Our model projections show that, due to a low MCV1
coverage among children of age 0–4 years at 70% in 2020 if the current
vaccination programmes are to continue, India will not likely to reach
the WHO’s measles eradication target for 2020.

We have also used our calibrated model to explore alternative
measles vaccination strategies such as increasing the vaccine coverage

Fig. 7. Measles deaths in infants aged 0–4 years and in children aged 5–9 years.

Fig. 8. Effect of increased vaccination coverage (MCV1/MCV2) and improved efficacy of measles vaccine.

L. Zhou et al. Mathematical Biosciences 308 (2019) 27–37

35



of MCV1 or MCV2, and increasing vaccine efficacy of MCV1. Our model
predictions show that increasing the coverage rate of MCV1 among
children of age 0–4 years is more effective than increasing the coverage
rate of MCV2 for children of age 5–9 years. We also show that in-
creasing the efficacy of MCV1 can be most effective in reducing the
measles incidence even at a moderate vaccine coverage rate. With a
coverage rate 85% for MCV1 and 80% for MCV2, increasing vaccine
efficacy from the current 85% to 95% will allow India to reduce the
annual measles incidence rate to below 5 cases per one million popu-
lation by 2020, reaching WHO’s measles eradication target for measles
incidence reduction.

Our results in this paper demonstrated the utility of discrete age-
structured epidemic model for analyzing vaccination strategies for
measles. Similar analysis can be adapted to study control strategies for
other infectious diseases. There is a great potential for discrete age-
structured models in cost-effectiveness analysis of vaccination strate-
gies.
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