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For a class of higher dimensional autonomous systems that have an invariant
affine manifold, conditions are derived to preclude the existence of periodic
solutions on the invariant manifold. It is established that these conditions are
robust under certain types of local perturbations of the vector field. As a conse-
quence, each bounded semitrajectory on the invariant manifold is shown to
converge to a single equilibrium using a C1 closing lemma for this class. Applica-
tions to autonomous systems that are homogeneous of degree 1 are also consid -
ered. Q 1996 Academic Press, Inc.

1. INTRODUCTION

n Ž . n 1Let X ; R be an open set and x ¬ f x g R a C function defined
for x g X. We consider the autonomous system of ordinary differential
equations

x9 s f x . 1.1Ž . Ž .
Ž . Ž . Ž .Let x t, x denote the solution to 1.1 such that x 0, x s x . We are0 0 0

Ž .interested in systems 1.1 that satisfy the following assumptions:

Ž .H There is a constant matrix B such that rank B s r and the1
Ž .n y r -dimensional affine manifold

G s x g X : B x y x s 0 for some x g X 1.2� 4Ž . Ž .
Ž .satisfies Bf x s 0, x g G.

Ž .H The Jacobian matrix ­ fr­ x can be written as2

­ f
s n x I q A x , x g G 1.3Ž . Ž . Ž .n=n­ x
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and

BA x s 0, x g G , 1.4Ž . Ž .

Ž .where x ¬ n x is a real-valued function.

Ž . Ž . Ž .A system 1.1 satisfying H and H will be called an autonomous1 2
Ž .system ha¨ing an in¨ariant affine manifold, since H is equivalent to that1

Ž .G is invariant with respect to 1.1 . Let a s Bx. We denote the class of
such systems by SS . When B and a are implied or when their appear-B, a
ance is not essential, we denote this class simply by SS . This is a wider class

w x Ž .than that considered in 12 , where 1.1 was assumed to satisfy:

Ž X .H The Jacobian matrix ­ fr­ x can be written as1

­ f
s yn I q A x , x g X 1.5Ž . Ž .n=n­ x

where n is some constant.
Ž X .H There is a constant matrix B such that rank B s r and2

BA x s 0, x g X , 1.6Ž . Ž .

Ž .and the corresponding system 1.1 called an autonomous system ha¨ing an
in¨ariant linear subspace. In this case, the existence of an invariant affine

Ž . Ž .manifold was proved as a consequence of 1.5 and 1.6 . Systems in SS

enjoy concrete examples arising from many different areas which are not
w xcovered by systems considered in 12 ; for instance, the hypercycles which

Ž w x.describe self-organization in Mathematical Biology see 8, 11 , and some
epidemiological models which allow variable total populations such as

Ž wmodels with disease-related death and with vertical transmission see 1,
x. Ž .3 . A general class of homogeneous systems of degree 1 Section 3 can

also be treated in this context.

In many cases, our prime interest in systems that belong to SS is the
behaviour of solutions that stay in the invariant manifold G. The main
purpose of the present paper is to derive Dulac type conditions for the
nonexistence of periodic solutions in G. Generalizations of the criteria of
Bendixson and Dulac to higher dimensions have been obtained in the

w xcontext of general autonomous systems by many authors 2, 14, 19, 21 . In
Ž .our situation, one usually tries to restrict 1.1 to the invariant manifold G

to get a lower dimensional system and then apply these general criteria.
However, the effectiveness of this approach depends critically on the

w xchoice of coordinates for G. A different technique was developed in 12
which does not require this reduction in dimension and thus is indepen-
dent of any choice of coordinates for G. As a consequence, Bendixson type
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conditions were derived more coherently and more economically. In the
present paper, this technique is further explored in deriving Dulac type

w xconditions for systems more general than those considered in 12 . We also
w xpresent some applications where the theory in 12 is not applicable.

w xAutonomous convergence theorems were first obtained in 15, 21 , and
w x nlater in 16 , for general autonomous systems in R . Certain higher

dimensional Bendixson]Dulac criteria were shown to be robust under C1

perturbations of f and this robustness was used, together with the C1

w xclosing lemma of Pugh 20 , to show that each bounded semitrajectory
converges to an equilibrium under any of these higher dimensional
Bendixson]Dulac criteria. In developing this type of result in Section 3 for
systems which belong to SS , we prove in Lemma 3.3 that a local C1 closing
lemma can be applied to systems in SS , namely, we are able to show that
the perturbation may be chosen from SS .

The paper is organized as follows: in Section 2, we derive Dulac criteria
for systems in SS ; in Section 3, we prove an autonomous convergence
theorem on G, after we show the C1 robustness of our Dulac criteria in a
very specific sense and prove a local C1 closing lemma for systems in SS by
applying Pugh’s result; in Section 4, we present an application to au-
tonomous homogeneous systems of degree 1.

2. DULAC CRITERIA

Ž . Ž .For a solution x t, x to 1.1 with x g G, the linear variational0 0
equation takes the form

y9 t s n x t , x y t q A x t , x y t . 2.1Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .0 0

Ž . Ž . � t Ž Ž .. 4The change of variables u t s y t exp yH n x s, x ds leads to0 0

u9 t s A x t , x u t 2.2Ž . Ž . Ž . Ž .Ž .0

satisfying the condition

BA x t , x s 0 for t g R. 2.3Ž . Ž .Ž .0

� n 4 nTherefore the linear subspace ker B s u g R : Bu s 0 of R is invari-
Ž . Ž .ant with respect to the linear system 2.2 in the sense that u 0 g ker B

Ž . Ž Ž ..implies u t g ker B for t g R, since Bu t 9 ' 0. Linear differential
w xsystems with such invariance properties were investigated in 12 . We first

recall a result proved there.
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� 4Let w , . . . , w be an orthonormal basis for the orthogonal comple-10 r 0
n Ž . Ž . Ž .ment of ker B in R , and w t be the solution to 2.2 such that w 0 s w .i i i0

Ž .The following proposition is relation 4 in the proof of Theorem 2.5 in
w x12 .

Ž . Ž . Ž .PROPOSITION 2.1. Let u t , u t be two solutions to 2.2 . Then1 2

u t n u t F w t n ??? n w t n u t n u t .Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 r 1 2

5 5 nHere ? is the euclidean norm and n denotes the exterior product in R .

Ž . Ž . Ž . Ž . Ž .The exterior product z t s w t n ??? n w t n u t n u t satisfies1 r 1 2
the linear system

z9 t s Aw rq2x x t , x z t 2.4Ž . Ž . Ž . Ž .Ž .0

Ž . Ž . w rq2xwhich is the r q 2 nd compound equation of 2.2 . Here A is the
n nŽ . w xr q 2 nd additï e compound matrix of A 17, 19 . It is a =ž / ž /r q 2 r q 2

n nŽ .matrix, and hence 2.4 is a = linear system. For a detailedž / ž /r q 2 r q 2

study on compound matrices and compound equations, we refer the reader
w xto 17, 19 .

2Let W be the euclidean unit ball in R and let W and ­ W be its closure
Ž .and boundary, respectively. A function w g Lip W ª G will be described

Ž .as a rectifiable 2-surface in G; a function c g Lip ­ W ª G is a closed
rectifiable cur̈ e in G and will be called simple if it is one-to-one.

A method for deriving Dulac type conditions for general autonomous
w x Ž .systems was developed in 14 by studying the evolution under 1.1 of

certain functionals which are defined on rectifiable 2-surfaces. If G is
Ž .simply connected, for a given simple closed curve in Lip ­ W ª G , the set

S c , G s w g Lip W ª G : w ­ W s c ­ WŽ . Ž . Ž . Ž .� 4
Ž w x. Ž .is not empty see 14 . Consider a functional AA defined on S c , G by

­w ­w
AAw s n ,H

­ r ­ rW 1 2

nN< <where ? is any vector norm in R , N s . For instance, when thež /r q 2
< < < <1r2norm is y s y*y , where here and throughout the paper asterisk

Ž .denotes transposition, then AAw is the usual surface area of w W . Since G
w xis affine, the following result can be proved as Proposition 2.2 in 14 .

PROPOSITION 2.2. Suppose c is a simple closed rectifiable cur̈ e on G.
Then there exists a d ) 0 such that

AAw G d

Ž .for all w g S c , G .
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Ž .A subset K ; G is absorbing in G for 1.1 if each compact subset
Ž .D ; G satisfies x t, D ; K for sufficiently large t. We make the following

assumption:

Ž .H G is simply connected and there is a compact set K in the3
Ž .interior of G which is absorbing for 1.1 .

n nŽ .Let x ¬ P x be a nonsingular = matrix-valued functionž / ž /r q 2 r q 2
1 < y1Ž . <which is C in G. Then P x is uniformly bounded for x g K. Let m be

Ž . < <the Lozinskiı measure or the logarithmic norm with respect to ? defined˘
Ž w x w x.by cf. 6, p. 41 , or 19

< <I q hF y 1
m F s limŽ .

q hhª0

nfor any N = N matrix F, N s . Setž /r q 2

w xrq2­ f
y1 y1E s P P q P P y rn I . 2.5Ž .f N=N­ x

Here P is the matrix obtained by replacing each entry p of P byf i j
Ž U . w rq2x­ p r­ x f , its directional derivative in the direction of f , and ­ f r­ xi j

Ž .is the r q 2 nd additive compound matrix of the Jacobian matrix ­ fr­ x.
Define the quantity

1 t
q s lim sup sup m E x s, x ds. 2.6Ž . Ž .Ž .Ž .Hrq2 0t 0tª` x gK0

Ž .We note that, since K ; G, the time average in 2.6 is only calculated
along solutions on the affine manifold G. Since G is invariant, q is wellrq2
defined.

Ž .A closed rectifiable curve c g Lip ­ W ª G is in¨ariant with respect to
Ž . Ž .1.1 if the subset c ­ W of G is invariant. The following result gives a
general Dulac criterion in a weak form for autonomous systems in SS .

Ž . Ž . Ž .THEOREM 2.3. Assume that H , H , and H are satisfied. If1 2 3

q - 0, 2.7Ž .rq2

then no simple closed rectifiable cur̈ e in G can be in¨ariant with respect to
Ž .1.1 .

1Proof. Let e s y q ) 0. There exists T ) 0 such that0 rq22

t
m E x s, x ds - ye t 2.8Ž . Ž .Ž .Ž .H 0 0

0

for t ) T , x g K.0
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Suppose that, on the contrary, there is a simple closed rectifiable curve
Ž . Ž . Ž .c g Lip ­ W ª G that is invariant with respect to 1.1 . Let w g S c , G
Ž . Ž Ž .. Ž .and w p s x t, w p , where p s p , p g W. Then, from the invari-t 1 2

Ž .ance of c , we know w g S c , G for all t, and hencet

AAw G d 2.9Ž .t

for some d ) 0 independent of t, by Proposition 2.2.
Ž . Ž Ž . .Ž .Now, y t s ­w r­ p s ­ x t, w r­ x ­wr­ p , i s 1, 2, are solutionsi t i t 0 i

Ž . Ž .to the linear variational equation 2.1 with respect to x s w p , andt
Ž . Ž . � t Ž Ž .. 4hence u t s ­w r­ p exp yH n w p ds are solutions to the lineari t i 0 s

Ž . Ž . Ž . Ž . Ž . Ž .system 2.2 with x t s w p . Let w t , . . . , w t be the solution to 2.2t 1 r
Ž . Ž . Ž . Ž .as in Proposition 2.1. Then u t n u t n w t n ??? n w t satisfies the1 2 1 r

Ž . Ž .r q 2 nd compound equation 2.5 . The following relation holds

t
y t n y t s u t n u t exp 2 n w p ds 2.10Ž . Ž . Ž . Ž . Ž . Ž .Ž .H1 2 1 2 s½ 5

0

and by Proposition 2.1

t
u t n u t exp 2 n w p dsŽ . Ž . Ž .Ž .H1 2 s½ 5

0

t
F u t n u t n w t n ??? n w t exp 2 n w p ds .Ž . Ž . Ž . Ž . Ž .Ž .H1 2 1 r s½ 5

0

2.11Ž .

Direct differentiation yields that

t
¨ t s u t n u t n w t n ??? n w t exp 2 n w p dsŽ . Ž . Ž . Ž . Ž . Ž .Ž .H1 2 1 r s½ 5

0

satisfies the differential system

w xrq2­ f
¨ 9 t s w p y rn w p I ¨ t .Ž . Ž . Ž . Ž .Ž . Ž .t t N=Nž /­ x

w rq2x w rq2x w rq2x Ž . w rq2x ŽHere we use ­ f r­ x s A q I from 1.3 and I s r qn=n n=n
n. Ž . Ž Ž .. Ž .2 I , N s . Therefore V t s P w p ¨ t satisfies the equationN=N tž /r q 2

Ž . Ž Ž .. Ž . Ž .V9 t s E w p V t , where E is given in 2.5 . By a property of thet
Ž w x. Ž .Lozinskiı measure see 6, p. 41 and by 2.8˘

t
V t F V 0 exp m E w p ds F V 0 exp ye t , 2.12Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .H s 0

0
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Ž .for p g W and t ) T. Therefore V t ª 0 as t ª `, uniformly for p g W.
y1Ž . Ž .Since w W ; K for sufficiently large t, and P x is uniformly boundedt

Ž .for x g K, this implies that ¨ t ª 0 as t ª `, uniformly for p g W. Thus
Ž . Ž . < <by 2.11 and 2.12 , ­w r­ p n ­w r­ p ª 0 exponentially as t ª `, andt 1 t 2

the exponential rate is uniform for all p g W. As a consequence, AAw ª 0t
Ž .as t ª `. This contradicts 2.9 , completing the proof of Theorem 2.3.

Ž . Ž .Remarks. i Condition 2.7 rules out the existence in G of orbits of
Ž . Ž . Ž .the following types: a periodic orbits, b homoclinic orbits, c hetero-

clinic cycles, since each of such orbits gives rise to an invariant simple
closed rectifiable curve.

Ž . Ž .ii A sufficient condition for 2.7 is

w xrq2­ f
y1 y1m P P q P P y rn I - 0 on K 2.13Ž .f N=Nž /­ x

Ž .which is a general Dulac type condition. Note that conditions 2.7 and
Ž . 22.13 provide the flexibility of a choice of N arbitrary functions in
addition to the choice of vector norms in deriving suitable conditions.

Ž .Setting A s I in 2.13 leads to the condition

w xrq2­ f
m y rn I - 0 2.14Ž .N=Nž /­ x

w xwhich is the Bendixson type condition obtained in 12 . Concrete expres-
Ž .sions of 2.14 in terms of Lozinsskiı measures with respect to some˘

w xcommon vector norms can be found in 12 .
Ž . Ž . Ž .iii Conditions 2.13 and 2.14 take a simple form when r s n y 2.

n Ž .In this case, r q 2 s n, N s s 1, and thus P x is scalar-valuedž /r q 2
w rq2x Ž . Ž .and ­ f r­ x s div f . For example, 2.14 will read

div f - n y 2 n on G. 2.15Ž . Ž . Ž .

Also note that G is a 2-dimensional affine manifold in this case; any simple
closed curve in G encloses a region in G. From the proof of Theorem 2.3

Ž .we can see that 2.15 need only hold for all x g G except a set of measure
zero.

Ž . Ž . Ž . Ž .iv When r s 0, H and H pose no restriction on 1.1 . In1 2
Ž .accordance, the condition 2.13 agrees with a Dulac type condition for

w xgeneral autonomous systems obtained in 14 .
Ž . Ž . Ž X . Ž X .v Assume that 1.1 satisfies H and H with n s 0. It is proved1 2

w x Ž .in 12 that Bx gives r independent linear first integrals for 1.1 . In the
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special case that n s 3, r s 1, it follows from Theorem 2.3 and Remark
Ž .iii that no simple closed rectifiable curve on a level surface S defined by

Ž . Ž .Bx s c can be invariant with respect to 1.1 if div f - 0 for almost all
w xx g S. This gives a result of Demidowitsch 7 for the case of a linear first

integral.
Ž .iv For many systems which describe population dynamics, the feasi-

ble region X is usually the nonnegative cone Rn and the affine manifoldq
G is the portion of a hypersurface bounded in Rn , e.g., the simplexq
� n n 4 Ž .x g R : Ý x s 1 ; the assumption H in such a case is equivalent toq is1 i 3

Ž . Ž w x.the uniform persistence of 1.1 in G see 5 .

3. CONVERGENCE OF TRAJECTORIES AND
GLOBAL STABILITY

Ž .In this section, we investigate further implications of condition 2.7 for
Ž .the behaviour of solutions to 1.1 which stay on the invariant manifold G.

Ž .We begin by studying the robustness of condition 2.7 under certain
< < nsmooth perturbations of f. Let ? denote a vector norm on R and the

operator norm which it induces for linear mappings from Rn to Rn. The
1Ž n.distance between two functions f , g g C X ª R such that f y g has

compact support is

­ f ­ g
1< <f y g s sup f x y g x q x y x : x g X .Ž . Ž . Ž . Ž .C ½ 5­ x ­ x

1Ž n. 1A function g g C X ª R is called a C local e-perturbation of f at
x g X if there exists an open neighbourhood U of x in X such that the0 0

Ž . Ž . < < 1support of f y g supp f y g ; U and f y g - e .C
Ž .Given B and x in the assumption H , set a s Bx. For f g SS , let1 B, a

g g SS be a C1 local perturbation of f. We consider the correspondingB, a
differential equation

x9 s g x . 3.1Ž . Ž .
Ž .Since g g SS , the affine manifold G defined in 1.2 is necessarilyB, a

Ž . Ž .invariant with respect to 3.1 . We say that a Dulac criterion 2.7 is robust
under C1 local perturbations of f at x if, for each sufficiently small e ) 00
and neighbourhood U of x , it is also satisfied by C1 local e-perturbations0

Ž .g such that supp f y g ; U.
<Let f s f . Then f defines a vector field on the affine manifold GGG G

Ž . Ž .from the assumption H . Denote the differential equation x9 s f x ,1 G

Ž . Ž .x g G by 1.1 . A point x g G is said to be nonwandering for 1.1 if,G 0 G

Ž .for each sufficiently small relative neighbourhood V of x in G, x t, V l0
V / B for some t.
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Ž .PROPOSITION 3.1. Assume that f g SS . Let q be defined in 2.6 forB, a rq2
< <some ¨ector norm ? and matrix-̈ alued function P. Then the Dulac criterion

1q - 0 is robust under C local perturbations in SS at any nonequilib-rq2 B, a
Ž .rium point x g G that is nonwandering for 1.1 .0 G

w xProof. This is essentially Proposition 3.3 of 16 . Since q - 0 impliesrq2
Ž .that 1.1 has no periodic solutions, the minimum return time at aG

Ž . w xnonequilibrium nonwandering point x , as defined in 3.8 of 16 , is q`.0
Also note that only trajectories on the invariant manifold G are involved in
the calculation of q and that G is affine, the proposition can be provedrq2

w x Ž . Ž .as Proposition 3.3 in 16 by restricting both 1.1 and 3.1 to G.

Next, we prove an adapted local C1 closing lemma for systems in SS ,B, a
in which the perturbations g belong to SS . The idea is to apply theB, a

w x Ž .general local closing lemma of Pugh 20 to the restricted system 1.1 onG

G, and then extend the perturbation to Rn using a bump function. Sinceq
the extended perturbation has to be in SS , we carry out the constructionB, a
of the bump function in detail.

LEMMA 3.2. Let f g SS . Suppose that x g G is nonwandering forB, a 0
Ž . Ž .1.1 and that f x / 0. Then, for each e ) 0 and each neighbourhood UG 0
of x in X, there exists C1 e-perturbations g of f such that0

Ž . Ž .1 g g SS and supp f y g ; U,B, a

Ž . Ž .2 the system 3.1 has a nonconstant periodic solution whose trajec-
tory lies in G and passes through x .0

Proof. Since G is affine, without loss of generality, we may assume that
Ž .G lies on the coordinate plane x , . . . , x and that x is at the origin.1 nyr 0

More precisely, write X s X [ X , such that X ( Rny r, X ( R r. Then1 2 1 2
Ž . Ž1. Ž .we assume G ; X . If x s x , . . . , x , we write x s x , . . . , x and1 1 n 1 nyr

Ž2. Ž . Ž Ž1. Ž2..x s x , . . . , x so that x s x , x . In this setting, the matrix Bny rq1 n
Ž .may be chosen as the form B s 0, I .r=r

Ž .Now f is a mapping from G to X , and thus system 1.1 is a n y rG 1 G

dimensional autonomous system

d
Ž1. Ž1. Ž1.x s f x , x g G ; X . 3.2Ž . Ž .G 1dt

Ž . ny rLet U 0, d ; R be a euclidean ball centered at the origin and of1
Ž .radius d . We choose d small enough so that U 0, d ; U and1

Ž2. < Ž2. <V s U 0, d = x g X : r x - 1 ; U for some r ) 1. 3.3Ž . Ž .� 41 2
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Ž . 1 w xApply to 3.2 the local C Closing Lemma of Pugh as formulated in 10
Ž w x. 1Ž .also see 20 . There exists a h g C G ª X such thatG 1

Ž . < < 1 Ž . Ž .a h - er8r and supp h ; U 0, d ,CG G 1

Ž . Ž . Ž1. Ž Ž1.. Ž Ž1..b drdt x s f x q h x has a nonconstant periodic solu-G G

tion whose trajectory passes through 0.

Since this periodic trajectory necessarily stays in G, the lemma is proved
if we can extend h to a function h defined on X so that g s f q hG

Ž . Ž . Ž .satisfies Lemma 3.2 1 . For r ) 1 in 3.3 , define a function x ¬ a x
from Rn to R by

22Ž2. Ž2.< < < <1 y r x , r x F 1Ž .a x sŽ . ½ 0, otherwise,

Ž Ž1. Ž2.. Ž . n nwhere x s x , x , and a function x ¬ h x from R to R by

h x Ž1.Ž .Gh x s .Ž . ž /0

< < < < 1 < < 1Then a - 1 and h F h - er8r. Moreover, the gradientC CG

2 < Ž2. < 2 Ž2. < Ž2. <y4r 1 y r x 0, x *, r x F 1,Ž .Ž .=a x sŽ . ½ 0, otherwise,

Ž .and Bh x s 0 for all x g X. Set

g s f q a h.

1Ž n. < Ž .Then g g C X ª R , g s f q h , and supp f y g ; V ; U, whereG G G

Ž . Ž .V is given in 3.3 . In particular, Bg G s 0. Moreover

g y f s a h

­ g ­ f ­ h
y s a q h =a*.

­ x ­ x ­ x

Thus

­ h
1< < < < < <g y f F a h q a q h=a*C

­ x
e

F 1 q 2 r - e ,Ž .
4r

Ž .and B ­ gr­ x y ­ fr­ x s 0 for all x g X. Therefore g g SS and satis-B, a
Ž . Ž .fies 1 and 2 .
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Ž . Ž . Ž .PROPOSITION 3.3. Under the assumptions H , H , and H , if q -1 2 3 rq2
Ž .0, then the dimension of the stable manifold of any equilibrium of 1.1 is atG

Ž .least n y r y 1; if an equilibrium of 1.1 is not isolated, then its stableG

manifold has dimension n y r y 1 and it has a center manifold of dimension
Ž .1 which contains all nearby equilibria of 1.1 .G

Proof. Without loss of generality, we assume the same set up as in the
Ž . ny rproof of Lemma 3.2 such that B s 0, I , G ; X ( R , and ther=r 1

Jacobian matrix ­ fr­ x may be written in the block form

­ f n x I 0Ž . r=rs .
A A­ x 1 2

Ž .Ž . Ž .It is easy to see that ­ fr­ x x has an eigenvalue n x with r indepen-0 0
Ž .dent eigenvectors in X . At an equilibrium x of 1.1 , q - 0 implies1 1 G rq2

w xrq2­ f
y1m P y rn I P - 0 3.4Ž .N=Nž /­ x

Ž . Ž .since f x s 0 implies P x s 0.1 f Ž x . 11
Ž .Ž .Let l , . . . , l be the eigenvalues of ­ fr­ x x with respect to the1 nyr 1

invariant subspace X , such that Re l G ??? G Re l . Then1 1 nyr

l q l q rn1 2

Ž w rq2x .Ž . Ž w x.is an eigenvalue of ­ f r­ x x see 19 . Therefore the matrix1
w rq2x Ž . Ž­ f r­ x y rn I has an eigenvalue l q l . Thus 3.4 implies seeN=N 1 2

w x.6, p. 41

Re l q Re l - 0.1 2

Ž .It then follows that 0 ) Re l G ??? G Re l ; only l x can possibly2 nyr 1 1
have nonnegative real part. The stable manifold of x in G has dimension1

Ž .Ž . <at least n y r y 1. If x is not isolated, ­ fr­ x x has a singularX1 1 1

Ž .matrix representation, l x s 0 so that its stable manifold in G has1 1
dimension n y r y 1 and there is a 1-dimensional center manifold in G
which contains all nearby equilibria in G, by the Center Manifold Theorem
Ž w x.cf. 9, p. 48 .

Ž . Ž . Ž .THEOREM 3.4. Under the assumptions H , H , and H , if q - 0,1 2 3 rq2
then

Ž . Ž .1 E¨ery nonwandering point of 1.1 is an equilibrium.G

Ž . Ž .2 E¨ery nonempty alpha or omega limit set of 1.1 is a singleG

equilibrium.
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Ž .Proof. Under the condition q - 0, 1.1 has no nonconstant peri-rq2 G

Ž .odic point by Theorem 2.3. Let x g G be a nonwandering point for 1.10 G

Ž . 1and f x / 0. Then by Lemma 3.2, there exist arbitrarily small local C0
Ž .perturbations g g SS of f at x such that 3.1 has a nonconstantB, a 0

periodic solution. However, any such g satisfies q - 0, by Propositionrq2
3.1, and thus cannot have any nonconstant periodic solution. This contra-

Ž .diction establishes 1 .
To prove the assertion that each nonempty alpha or omega limit set is a

single equilibrium, first observe that since each limit point is nonwander-
Ž .ing, it is an equilibrium. Let x g v x , the omega limit set of x for1 0 0

Ž . Ž . � 4 Ž .1.1 . If x is an isolated equilibrium for 1.1 , then x s v x , sinceG 1 G 1 0
Ž .v x is connected. If x is not isolated, then Proposition 3.3 implies that0 1

there is a 1-dimensional center manifold associated with x in G contain-1
Ž . Ž .ing all nearby equilibrium for 1.1 . Since v x contains a continuum ofG 0

equilibria, we may choose x and a sufficiently small neighbourhood U1
of x so that in U any of such local center manifolds consists entirely of1

Ž .equilibria and every trajectory of 1.1 which intersects U is asymptotic toG

Ž .a trajectory in the center manifold. Thus lim x t, x s x so thatt ª` 0 1
Ž . � 4v x s x in this case also. The proof that a nonempty alpha limit set is0 1

a single equilibrium is the same.

Ž . Ž . Ž .COROLLARY 3.5. Assume that H , H , and H are satisfied. Sup-1 2 3
Ž .pose 1.1 has a unique equilibrium x in the interior of G. If q - 0 for0 rq2

< < Ž .some ¨ector norm ? and matrix-̈ alued function P x , then x is globally0
asymptotically stable in the interior of G.

� 4Proof. Clearly x is globally attracting in the interior of G since0
Theorem 3.4 implies that it is the omega limit set of every trajectory

� 4starting in the interior of G. Moreover, x is stable since otherwise it0
would be both the alpha limit set and the omega limit set of some
homoclinic trajectory g ; G, which gives rise to a simple closed invariant

Ž w x.curve that is also rectifiable see 15, the proof of Corollary 2.6 . This has
been ruled out by q - 0.rq2

4. HOMOGENEOUS SYSTEMS OF DEGREE 1

Ž .In this section, we consider autonomous system 1.1 under the assump-
Ž .tion that f x is homogeneous of degree 1, namely,

f l x s l f x for l ) 0, x g Rn . 4.1Ž . Ž . Ž .

Such systems have been used in modeling of population dynamics and the
Ž w x.spread of infectious diseases e.g., see 3, 18 , where components x of xi
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are restricted to be nonnegative. In the same spirit, we assume that each
< ncomponent f of f satisfies f G 0 so that the nonnegative cone R isx s0i i qi

Ž .positively invariant with respect to 1.1 .
Ž . Ž . nLet x t, x be a solution to 1.1 with x g R R 0. It is customary in0 0 q

the study of homogeneous differential systems to consider the projected
variable

nx tŽ .
y t s , where N t s x t . 4.2Ž . Ž . Ž . Ž .Ý iN tŽ . is1

n nŽ . Ž . Ž Ž ..Then Ý y t s 1 for all t and N9 t s Ý f x t . We thus have theis1 i is1 i
relation

nN9 tŽ .
s f y t . 4.3Ž . Ž .Ž .Ý iN tŽ . is1

Ž .As a consequence, y t satisfies the following system of differential equa-
tions

n

y9 t s y f y y q f y . 4.4Ž . Ž . Ž . Ž .Ý iž /
is1

nŽ . Ž .System 4.4 is well-defined in R , though the variable y defined in 4.2q
stays in the simplex

n
nD s y g R : y s 1 . 4.5Ž .Ýq i½ 5

is1

Ž .In fact, by adding the equations of 4.4 , one may check that D is invariant
Ž .with respect to 4.4 . When restricted to the invariant simplex D, system

Ž . Ž .4.4 describes the projected flow of the homogeneous system 1.1 onto D.
Ž . Ž . Ž .In particular, for each solution y t of 4.4 with y 0 g D, there exists a

Ž . Ž . Ž . Ž . Ž .solution x t to 1.1 such that x t and y t satisfy the relation 4.2 . In
Ž .fact, by the uniqueness of solution, such a x t may be obtained by setting

Ž . Ž .the initial conditions x 0 s y 0 . From these considerations, we want toi i
Ž .study the behaviour of solutions of 4.4 on D.

Observe that D is an affine manifold in Rn defined byq

1, . . . , 1 y s 1.Ž .

Ž .Thus the assumption H in Section 1 is satisfied with X being the1
n Ž . Ž .interior of R , G being D, B s 1, . . . , 1 , r s 1, and x s 1rn, . . . , 1rn *.q
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Ž . Ž .The Jacobian matrix J y of 4.4 can be written as

J y s n y I q F y ,Ž . Ž . Ž .1 n=n

where
n

n y s y f y 4.6Ž . Ž . Ž .Ý1 i
is1

and
n n­ f ­ f ­ fi i

F y s y y , . . . , y * , . . . , . 4.7Ž . Ž . Ž .Ý Ý1 n ž /­ y ­ y ­ y1 nis1 is1

Since

n n n­ f ­ fi i
1, . . . , 1 F y s 1 y y , . . . ,Ž . Ž . Ý Ý Ýiž / ž /­ y ­ yi nis1 is1 is1

Ž .one may see that H is also satisfied.2
Ž .Theorem 2.3 can now be applied to system 4.4 to yield conditions

Ž . Ž . Ž .which rule out the existence of solutions x t to 1.1 for which y t is
Ž .periodic in D. Assume that 4.4 is uniformly persistent in D and let K be1

Ž .the compact absorbing set in D. We can define q as in 2.6 for r s 1,3
Ž .n s n , and for some N = N matrix-valued function P x and some vector1

< < Nnorm ? in R , N s nr3. The next result follows from Theorem 2.3 and
Ž . Ž . Ž . Ž .the fact that y t is periodic if x t associated with y t by 4.2 is periodic.

THEOREM 4.1. If q - 0, then no simple closed rectifiable cur̈ e in D can3
Ž . Ž .be in¨ariant with respect to 4.3 . In particular, 1.1 has no periodic solutions

in Rn .q

Ž .Remark. The condition q - 0 also rules out the types of orbits of 1.13
Ž .listed in Remark i following the proof of Theorem 2.3.

For an application of Theorem 4.1 to a SEIRS epidemiological model
with a homogeneous incidence function and a varying total population, we

w xrefer the reader to 13 . In the following, we consider a special case.
Assume n s 3 and f takes the form

f x s Ax q diag x f x , 4.8Ž . Ž . Ž . Ž .
Ž .where A s a is a nonnegative matrix, namely,i j 3=3

a G 0 i / j 4.9Ž .i j

Ž . Ž . Ž .and f x is homogeneous of degree 0, that is, f l x s f x , for l ) 0
3 Ž . Ž .and x g R . System 1.1 with f given in 4.8 has been used in population

Ž w x.models see 3, 4 . In this case, we have the following result.
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Ž . Ž .THEOREM 4.2. Assume that n s 3 and that f satisfies 4.8 and 4.9 .
Then the conclusions of Theorem 4.1 hold if

3 3­fi
x - 0 when x s 1. 4.10Ž .Ý Ýi i­ xiis1 is1

Ž . Ž .y1 Ž .Proof. Set P y s y y y , n s 3, r s 1, and n s n in 2.5 . Then1 2 3 1
Ž .the matrix E can be calculated with respect to system 4.4 as

E s P Py1 q div g y n ,Ž .g 1

Ž . Ž .where g denotes the vector field of 4.4 . Relation 4.3 leads to

3 ­ P
y1 y1 y1P P s P P q y n PÝg f i 1ž /­ yiis1

s P Py1 y 3nf 1

and

3 3 ­ fi
div g s div f y y q 3n .Ž . Ž . Ý Ý j 1­ yjjs1 is1

Ž .Differentiating 4.1 with respect to l at l s 1 leads to

3 ­ fi
y s f , i s 1, 2, 3.Ý j i­ yjjs1

Therefore

E s P Py1 q div f s Py1 div Pf .Ž . Ž .f

Ž .For f given in 4.8

3y ­fj i
div Pf s y a q y ,Ž . Ý Ýi j iy ­ yi ii/j is1

and thus for y g K ; S

3y ­fj iy1m E s P y a q y F yd - 0Ž . Ý Ýi j i 1ž /y ­ yi ii/j is1

for some d ) 0. Therefore Theorem 4.2 follows from Theorem 2.3.1
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Ž . Ž . Ž .Remarks. 1 When condition 4.10 is satisfied, a system 1.1 with
Ž . Ž . Ž .f x s diag x f x is said to be self-regulating. For 3-dimensional self-reg-

w xulating systems, a result of Butler, Schmid, and Waltman 4 implies that
Ž .3-dimensional volumes decay exponentially along solutions of 1.1 , whereas

Ž .Theorem 4.2 implies that if 1.1 is also homogeneous of degree 1, then
2-dimensional surface areas as well as 3-dimensional volumes, when pro-
jected onto D, decay exponentially. Moreover, the projected dynamics of
Ž .1.1 onto D is trivial in the sense that every nonwandering point is an
equilibrium and bounded solutions either converge to equilibria or ap-
proach the boundary.

Ž . Ž . Ž .2 Homogeneous systems 1.1 with vector fields given in 4.8 was
w xalso considered in Busenberg and van den Driessche 2 , where conditions

which preclude the existence of periodic solutions and closed phase
polygons D are derived without the uniform persistence assumption. One

w xof the conditions given in 2 is

­f ­f ­f ­fi j i jq y q F 0, i / j, i , j s 1, 2, 3, on D . 4.11Ž .ž /­ x ­ x ­ x ­ xi j j i

Ž . Ž .While 4.10 may be easier to verify than 4.11 , it is not apparent that one
implies the other.
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