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Abstract

A mathematical model that describes HIV infection of CD4+ T cells is analyzed. Global dynamics of the
model is rigorously established. We prove that, if the basic reproduction number R0 6 1, the HIV infection
is cleared from the T-cell population; if R0 > 1, the HIV infection persists. For an open set of parameter
values, the chronic-infection equilibrium P* can be unstable and periodic solutions may exist. We establish
parameter regions for which P* is globally stable.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Human Immunodeficiency Virus (HIV) mainly targets a host’s CD4+ T cells. Chronic HIV
infection causes gradual depletion of the CD4+ T cell pool, and thus progressively compromises
the host’s immune response to opportunistic infections, leading to Acquired Immunodeficiency
Syndrome (AIDS). For this reason, the count of CD4+ T cells is a primary indicator used to mea-
sure progression of HIV infection. In a normal person, the level of CD4+ T cells in the peripheral
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blood is regulated at a level between 800 and 1200 mm�3. The body is believed to produce CD4+

T cells from precursors in the bone marrow and thymus at a constant rate s, and T cells have a
natural turn-over rate a. When stimulated by antigen or mitogen, T cells multiply through mitosis
with a rate r. Thus the CD4+ T cell dynamics can be modelled by the following logistic equation:
dT
dt

¼ s� aT þ rT 1� T
Tmax

� �
; ð1Þ
where T is the concentration of CD4+ T cells, and Tmax is the maximum level of CD4+ T-cell
concentration in the body [1,2]. HIV infection will interrupt the normal CD4+ T-cell dynamics.
The total concentration of CD4+ T cells is now T + T*, where T is the concentration of susceptible
CD4+ T cells and T* the concentration of infected CD4+ T cells by the HIV viruses. The T-cell
dynamics will be determined by the interactions among susceptible CD4+ T cells, infected CD4+

T cells, and free HIV viruses. Several mathematical models have been proposed to describe the
in vivo dynamics of T cell and HIV interaction, see [1–6] for review and references. Of particular
interest to us is a model in [1], which is given by the following system of differential equations:
dT
dt

¼ s� aT þ rT 1� T þ T �

Tmax

� �
� kVT ;

dT �

dt
¼ kVT � bT �;

dV
dt

¼ NbT � � cV .

ð2Þ
In this model, T, T* and V denote the concentration of susceptible CD4+ T cells, infected CD4+ T
cells, and free HIV virus particles in the blood, respectively. Parameters a, b, and c are natural
turn-over rates of uninfected T cells, infected T cells, and virus particles, respectively. Because
of the viral burden on the HIV infected T cells, we assume that a 6 b. The logistic growth of
the healthy CD4+ T cells is now described by rT ð1� TþT �

Tmax
Þ, and proliferation of infected CD4+

T cells is neglected. The term kVT describes the incidence of HIV infection of health CD4+ T cells,
where k > 0 is the infection rate. Each infected CD4+ T cell is assumed to produce N virus par-
ticles during its life time, including any of its daughter cells.

A model for HIV infection similar to (2) but using a simplified logistic growth rT(1 � T/Tmax)
for susceptible CD4+ T cells has been proposed in Perelson and Nelson [2], its global dynamics are
analyzed in De Leenheer and Smith [6]. The global dynamics of model (2), however, have not been
rigorously established in the literature. The difference in the proliferation term does not change
the basic reproduction number. It will not change the CD4 count at equilibrium level, as we will
show, but it changes the equilibrium level of viral load during chronic infection. It is of interest to
investigate if the difference in logistic terms will cause qualitative changes in the dynamics. The
main difficulty of the mathematical analysis lies in the determination of the basin of attraction
of the chronic-infection equilibrium P*. This is done by identifying the range of parameters for
which P* is globally asymptotically stable in the entire feasible region. The global-stability anal-
ysis is significant since models of this type are known to possess periodic solutions for an open set
of parameter values.

Models considered in [2,6] with a simplified logistic term are competitive systems. The global
analysis in [6] relies in an essential way on properties of competitive systems. With a full logistic
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term, model (2) is no longer competitive, and the global stability of P* needs to be established
using a different approach. In the present paper, we adopt the approach developed in Li and
Muldowney [7], which has been successfully applied to many epidemic and in-host models that
are not competitive or monotone (see [8,9]).

For system (2), we show that, if the basic reproduction number R0 6 1, the infection-free equi-
librium P0 is globally asymptotically stable, the virus is cleared and no HIV infection persists. If
R0 > 1, P0 becomes unstable and the HIV infection persists in the T-cell population. In this case, a
unique chronic-infection equilibrium P* exists. The local stability of P* is described in term of the
proliferation rate r of healthy T cells. We show that P* can be unstable for a range of r. Numerical
simulations show periodic solutions may exist. It is therefore important to investigate the basin of
attraction of P* when it is locally stable. For an open set of r values that are biologically reason-
able, we show that the basin of attraction of P* includes the whole feasible region.
2. Equilibria

The non-negative octant R3
þ is positively invariant with respect to (2). In the absence of infec-

tion, the dynamics of healthy T cells are governed by Eq. (1). It can be shown that the T-cell con-
centration stabilizes at a level T0 given by
T 0 ¼
Tmax

2r
ðr � aÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞ2 þ 4sr

Tmax

s2
64

3
75. ð3Þ
From the first equation of (2), we know T(t) 6 T0 if T(0) 6 T0. Adding the first two equations of
(2) gives T 0 + T* 0

6 s + rT0 � aT � bT*
6 s + rT0 � a(T + T*), since a 6 b. Therefore T + T* is

bounded, and thus T* is bounded, say by M. Clearly, V is bounded from the third equation,
say by K. So we proved that the set
C ¼ fðT ; T �; V Þ 2 R3
þ : T 6 T 0; T �

6 M ; V 6 Kg

is positively invariant with respect to (2). Let
R0 ¼
kNT 0

c

denote the basic reproduction number as given in [1]. It represents the average number of second-
ary infection caused by a single infected T cell in an entirely susceptible T cell population,
throughout its infectious period. We have the following result.

Proposition 1. If R0 6 1 the infection-free equilibrium P0 = (T0,0,0) is the only equilibrium in C;
if R0 > 1 there are two equilibria in C: P0 and a unique chronic-infection equilibrium P � ¼
ðT ; T �; V Þ 2 C

�
, the interior of C, where
T ¼ c
Nk

; T � ¼ c
Nb

V ; V ¼
sp2 þ ðr � aÞcp � r

Tmax

c2

kc p þ rc
bTmax

� �

and p = kN.



L. Wang, M.Y. Li / Mathematical Biosciences 200 (2006) 44–57 47
For the models considered in [2,6] that use a simplified logistic growth for T, the coordinates of
the chronic-infection equilibrium are given by
T ¼ c
Nk

; T � ¼ c
Nb

V ; V ¼
sp2 þ ðr � aÞcp � r

Tmax

c2

kcp
.

In comparison, we see that the CD4 count ðT Þ is not affected by the difference in logistic terms,
while viral load ðV Þ is. The full logistic term produces a lower viral load at the chronic-infection
equilibrium.
3. Stability of the infection-free equilibrium P0

The Jacobian matrix of (2) at P0 is
JðP 0Þ ¼
�aþ r 1� T 0

Tmax

� �
� rT 0

Tmax

� rT 0

Tmax

�kT 0

0 �b kT 0

0 Nb �c

2
6664

3
7775.
An eigenvalue of J(P0) is
�aþ r 1� T 0

Tmax

� �
� rT 0

Tmax

¼ � s
T 0

� rT 0

Tmax

< 0
from the first equation of (2). The other two eigenvalues have negative real parts if and only if
bc � NbkT0 > 0, i.e., R0 < 1. If R0 = 1, one eigenvalue is 0 and it is simple. If R0 > 1, J(P0) has
a positive eigenvalue. P0 is thus unstable with a two-dimensional stable manifold and a one-
dimensional unstable manifold. We arrive at the following local stability result for P0.

Proposition 2. If R0 < 1, P0 is locally asymptotically stable. If R0 = 1, P0 is locally stable. If R0 > 1,
P0 is a saddle point with a two-dimensional stable manifold and a one-dimensional unstable manifold.

We will show that instability of P0 leads to chronic HIV infection, which is described in terms of
uniform persistence of system (2). System (2) is said to be uniformly persistent in C

�
if there exists

constant c > 0, independent of initial data in C
�
, such that, all solutions (T(t),T*(t),V(t)) of (2)

satisfy
lim inf
t!1

T ðtÞ > c; lim inf
t!1

T �ðtÞ > c; lim inf
t!1

V ðtÞ > c
provided ðT ð0Þ; T �ð0Þ; V ð0ÞÞ 2 C
�
.

Theorem 3. If R0 6 1, the infection-free equilibrium P0 is globally asymptotically stable in C. If
R0 > 1, P0 is unstable, and solutions starting sufficiently close to P0 move away from P0, except those
starting on the invariant T-axis which approach P0 along the T-axis. In particular, system (2) is
uniformly persistent in C

�
.
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Proof. Let L = NT* + V. Then the derivative of L along a solution of (2) is
L0 ¼ cV
KN
c

T � 1

� �
¼ cV R0

T
T 0

� 1

� �
6 0; if R0 6 1;
since T 6 T0 in C. Furthermore, L 0 = 0 if and only if V = 0 or if R0 = 1 and T = T0. The maxi-
mum invariant set in {(T,T*,V) 2 C : L 0 = 0} is {P0}. LaSalle’s Invariance Principle [10] implies
that all solutions in C converge to P0. The global attractivity of P0 and its local stability as estab-
lished in Proposition 2 imply the global stability as claimed.

When R0 > 1, we have L 0 > 0 for solutions starting in C
�
and sufficiently close to P0, and thus

these solutions leave a neighborhood of P0. Solutions on the positively invariant T-axis satisfies
Eq. (1). Thus T(t) ! T0 as t !1. Therefore solutions converge to P0 along the T-axis. It can be
shown that the instability of P0 and the local behaviours of solutions near P0 imply the uniform
persistence of system (2), using a uniform persistence result in [11] and a similar argument as in the
proof of Proposition 3.2 in [12]. h

Theorem 3 completely determines the global dynamics of (2) in C when R0 6 1. All solutions
with initial conditions in C converge to P0. Biologically, this implies that, when the basic repro-
duction number R0 6 1, the infected T cells and virus particles are cleared from the T-cell popu-
lation. If R0 > 1, then any initial HIV infection will progress to chronic infection.
4. Local stability of the chronic-infection equilibrium P*

To investigate the fashion in which the HIV infection persists when R0 > 1, we examine the
local stability of P*. The Jacobian matrix of (2) at P* is
JðP �Þ ¼
��a � rT

Tmax

�kT

kV �b kT

0 Nb �c

2
6664

3
7775;
where �a ¼ a� r 1� TþT �

Tmax

� �
þ rT

Tmax
þ kV ¼ s

T
þ rT

Tmax
> 0. The characteristic polynomial of J(P*) is� �
P ðkÞ ¼ k3 þ ð�aþ bþ cÞk2 þ �aðbþ cÞ þ kr
Tmax

V T kþ krc
Tmax

V T þ kbcV .
Note that all coefficients of P(k) are positive. Thus by the Routh–Hurwitz criteria, all zeros of P(k)
have negative real parts if and only if
D ¼ ð�aþ bþ cÞ �aðbþ cÞ þ kr
Tmax

V T
� �

� krc
Tmax

V T � kbcV > 0. ð4Þ
Let q = r/Tmax. Then D can be rewritten as D ¼ F=ðbþ TqÞ, where
FðqÞ ¼ Aq3 þ Bq2 þ Cqþ D; ð5Þ

and
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A ¼ ðbþ cÞ þ b
Tmax

T
� 1

� �� �
T 3;

B ¼ s

T
þ b

� �
bþ cþ b

Tmax

T
� 1

� �� �
þ s

T
þ c

� �
ð2bþ cÞ þ bðb� aÞ

� 	
T 2;

C ¼ s

T
þ b

� �
ðbþ cÞ s

T
þ bþ c

� �
þ b

s

T
� a

� �� �� 	
T

þ b
sbþ sc

T
þ bc

� �
� b2c

T
Tmax

� �
T ;

D ¼ ðbþ cÞ s

T
þ b

� �
sb

T
þ sbc2

T
þ ab2c.

ð6Þ
Clearly, A > 0, B > 0 and D > 0 since T < Tmax and a 6 b. Observe that F(0) = D > 0, thus F has
at least one negative zero. Function F(q) is negative for some positive value q if and only if F(q)
has two positive zeros. The following result in [13] deals with the existence of positive zeros of
cubic polynomials.

Lemma 4. Let g(k) = k3 + lk2 + mk + n with n > 0 and R = l2 � 3m.

(i) If R < 0, then g(k) has no positive zeros.
(ii) g(k) has positive zeros if and only if �k ¼

ffiffiffiffi
R

p
� l > 0 and gð�k=3Þ 6 0.

In fact, if �k > 0, then g(k) has a local minimum at �k=3. If gð�k=3Þ ¼ 0, g has only one positive
zero �k=3. If gð�k=3Þ < 0, then g(k) has two positive zeros k1 and k2 with k1 < �k=3 < k2. Applying
Lemma 4 to polynomial F(q), we set
R ¼ B2 � 3AC

A2
; �q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 3AC

p
� B

A
. ð7Þ
Note that �q > 0 if and only if C < 0. We thus obtain the following result.

Theorem 5. Let F, A, B, and C be defined in (5) and (6).

(a) If B2 < 3AC, then F(q) > 0 for all qP 0, and P* is locally asymptotically stable for all r P 0.
(b) If B2 P 3AC, let �q be as in (7), then F(q) has two positive roots if and only if C < 0 and

Fð�q=3Þ < 0. Let 0 < q1 < q2 be two positive roots of F(q). Then P* is locally asymptotically
stable if 0 6 r < q1Tmax or r > q2Tmax; P* is unstable if q1Tmax < r < q2Tmax.

It follows from Theorem 5 that, if C < 0 and Fð�q=3Þ < 0, then P* is unstable for r in the range
q1Tmax < r < q2Tmax.
To explore the dynamics for r in this range, we carried out numerical simulations which consis-
tently show the existence of periodic solutions. Output of one of the numerical simulations is
shown in Fig. 2. We would like to remark that clinical data on HIV infection do not show
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sustained oscillations. This implies that if a simple model like (2) is to be used to interpret data,
one needs to focus on the range of r values for which P* is stable.

While Theorem 5 gives a complete description of the stability of P*, it is useful to have a simpler
sufficient condition for stability. If we rewrite D in (4) as
D ¼ ð�aþ bÞ �aðbþ cÞ þ kr
Tmax

V T
� �

þ �aðbþ cÞc� kbcV

¼ ð�aþ bÞ �aðbþ cÞ þ kr
Tmax

V T
� �

þ �bðbþ cÞcþ kc2V ;
where �b ¼ �a� kV ¼ a� r þ rð2T þ T �Þ=Tmax. Then D > 0 if �b P 0. We thus obtain the following
stability condition, which includes as a special case a stability condition derived in [6] for a model
with a simplified logistic term.

Proposition 6. P* is locally asymptotically stable if
a� r þ r
2T þ T �

Tmax

P 0. ð8Þ
5. Global stability of P*

When r belongs to the range for which P* is locally asymptotically stable, it is of interest to
know the basin of attraction of P*. In particular, we would like to know if the basin of attraction
includes all points in the feasible region C, namely, if P* is globally asymptotically stable. Estab-
lishing the range of r values for which P* is globally stable is especially important given that model
(2) is capable of having periodic solutions.

Global stability of P* for model (2) when the logistic term does not contain T* was established
in [6]. The approach in [6] depends crucially on the fact that the system is competitive. Model (2)
with the full logistic term is no longer competitive. To investigate the global stability of P*, we
apply the approach developed in Li and Muldowney [7], which we briefly summarize in the
following.

Let G � Rn be an open set and function f : x 7!f ðxÞ 2 Rn be C1 for x 2 G. Consider the differ-
ential equation
x0 ¼ f ðxÞ. ð9Þ

Denote by x(t,x0) the solution to (9) such that x(0,x0) = x0. A set E is said to be absorbing in G for
system (9) if x(t,E1) � E for each compact set E1 � G when t is sufficiently large. The following
assumptions are made:

(H1) System (9) has a unique equilibrium point �x in G.
(H2) System (9) has a compact absorbing set E � G.

Let M be an n · n matrix. The second additive compound matrix of M, denoted by M[2], is an
n
2

� �
� n

2

� �
matrix. For instance, if M = (mij) is a 3 · 3 matrix, then
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M ½2� ¼
m11 þ m22 m23 �m13

m32 m11 þ m33 m12

�m31 m21 m22 þ m33

2
64

3
75. ð10Þ
For definition and discussions of compound matrices and their applications in differential equa-
tions, we refer the reader to [14,15]. Let j Æ j denote a vector norm in Rn and the induced matrix
norm in Rn�n, the space of all n · n matrices. For each matrix N in Rn�n, the Lozinski�i measure
with respect to norm j Æ j is defined as (see [16, p. 41])
lðNÞ ¼ lim
h!0þ

jI þ hN j � 1

h
.

Let Q : x# Q(x) be an
n
2

� �
� n

2

� �
matrix-valued function that is C1 and Q�1 (x) exists for

x 2 G, and let l be a Lozinski�ı measure on Rd�d , where d ¼ n
2

� �
. Define a quantity �q2 as
�q2 ¼ lim sup
t!1

sup
x02E

1

t

Z t

0

lðMðxðs; x0ÞÞÞds; ð11Þ
where
M ¼ QfQ
�1 þ QJ ½2�Q�1 ð12Þ
the matrix Qf is obtained by replacing each entry qij of Q by its derivative in the direction of f,

(qij)f, and J[2] is the second additive compound matrix of the Jacobian matrix J of system (9).
The following result is established in Li and Muldowney [7].

Theorem 7. For system (9), assume that G is simply connected and that the assumptions (H1) and
(H2) hold. Then the unique equilibrium �x is globally asymptotically stable in G if there exist a function
Q(x) and a Lozinski�i measure l such that �q2 < 0.

From the discussion in Section 2, we know that C
�
is simply connected and P* is the unique equi-

librium in C
�
. The uniform persistence of system (2) when R0 > 1 as shown in Theorem 3, together

with the boundedness of solutions, implies the existence a compact absorbing set E � C
�
, see

[17,18]. Therefore, both assumptions (H1) and (H2) are satisfied by system (2) when R0 > 1.
The next lemma is needed for establishing the global stability result. Observe that in the absence
of the HIV infection, T-cell concentration T remains below the maximum capacity Tmax, we
should naturally have s < aTmax. Since a 6 b, we have
s < bTmax.
Let 0 < p < 1 be such that
s < pbTmax. ð13Þ
Lemma 8. Let 0 < p < 1 be as in (13). There exists �t > 0 such that all solutions in the compact
absorbing set E to (2) satisfy
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T ðtÞ þ T �ðtÞ P ps
b
; t P �t. ð14Þ
Proof. From (2), we have
ðT þ T �Þ0 ¼ s� aT � bT � þ rT 1� T þ T �

Tmax

� �
P s� bðT þ T �Þ.
This implies that
T ðtÞ þ T �ðtÞ P s
b
þ T ð0Þ þ T �ð0Þ � s

b

� �
e�bt P

ps
b
;

for any 0 < p < 1, as long as t is sufficiently large. This proves the lemma. h

Theorem 9. Assume that R0 > 1. Then P* is globally asymptotically stable in C
�
if r satisfies
r 1� ps
bTmax

� �
< a and

rT 0

Tmax

< b; ð15Þ
where 0 < p < 1 is defined in (13).

We would like to remark on the range of parameters defined by (15). In the absence of HIV
infection, T-cell concentration is capable to stabilize at T0. It is natural to expect that r P a
(Pb). Combine this with the condition (15), we have the following range of r values for which
P* is globally stable
a 6 r < min
bTmax

bTmax � ps
a;

Tmax

T 0

b

� 	
. ð16Þ
Note that T0 < Tmax, the region defined by condition (16) is non-empty and biologically feasible.

Proof of Theorem 9. The Jacobian matrix J associated with a general solution (T(t),T*(t),V(t)) to
(2) is
J ¼
�a � rT

Tmax

�kT

kV �b kT

0 Nb �c

2
664

3
775
and its second additive compound matrix J[2] is, by (10),
J ½2� ¼

�a� b kT kT

Nb �a� c � rT
Tmax

0 kV �b� c

2
664

3
775;
where a ¼ a� r 1� TþT �

Tmax

� �
þ rT

Tmax
þ kV . Set the function Q = Q(T,T*,V) = diag{1,T*/V,T*/V}.

Then QfQ
�1 ¼ diagf0; T �0=T � � V 0=V ; T �0=T � � V 0=V g, and
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M ¼ QfQ
�1 þ QJ ½2�Q�1 ¼

�a� b
kTV
T �

kTV
T �

NbT �

V
T �0

T � �
V 0

V
� a� c � rT

Tmax

0 kV
T �0

T � �
V 0

V
� b� c

2
6666664

3
7777775
¼

M11 M12

M21 M22

� �
;

where M11 = [�a � b], M12 = [kTV/T*,kTV/T*], M21 = [NbT*/V, 0]T, and
M22 ¼

T �0

T � �
V 0

V
� a� c � rT

Tmax

kV
T �0

T � �
V 0

V
� b� c

2
664

3
775.
Let (u,v,w) denote the vectors in R3, choose a norm in R3 as j(u,v,w)j = max {juj, jvj + jwj} and let
l be the corresponding Lozinski�ı measure. Then we have the following estimate, see [19]:
lðMÞ 6 maxfg1; g2g; ð17Þ
where
g1 ¼ l1ðM11Þ þ jM12j and g2 ¼ jM21j þ l1ðM22Þ;
jM12j, jM21j are matrix norms with respect to the l1 vector norm, and l1 is the Lozinski�ı measure
with respect to l1 norm. More specifically, l1(M11) = �a � b, jM12j = kTV/T*, jM21j = NbT*/V,
and l1(M22) can be evaluated as follows, see [16]:
l1ðM22Þ ¼ max
T �0

T � �
V 0

V
� a� cþ kV ;

T �0

T � �
V 0

V
� b� cþ rT

Tmax

� 	

¼ T �0

T � �
V 0

V
� cþmax �b;�bþ rT

Tmax

� 	
;

where
b ¼ a� rð1� ðT þ T �Þ=TmaxÞ þ rT=Tmax P a� r 1� ps
bTmax

� �
; t P �t; ð18Þ
by (14). From (2) we have
T �0

T � ¼ kVT
T � � b;

V 0

V
¼ NbT �

V
� c.
Substitute these relations into those of g1 and g2, we obtain
g1 ¼ �a� bþ kTV
T � ¼ T �0

T � � a <
T �0

T � � b;

g2 ¼
NbT �

V
þ T �0

T � �
V 0

V
� cþmax �b;�bþ rT

Tmax

� 	
<

T �0

T � �min b; b� rT 0

Tmax

� 	
.

ð19Þ
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Therefore lðMÞ 6 T �0=T � � g for t sufficiently large by (17) and (19), where
Fig.
g ¼ min a� r 1� ps
bTmax

� �
; b� rT 0

Tmax

� 	
> 0
by (15). Let (T(t),T*(t),V(t)) be any solution starting in the compact absorbing set E � C and let �t
be sufficiently large such that (T(t),T*(t),V(t)) 2 E for all t P �t and that (14) holds. Then along
each solution (T(t),T*(t),V(t)) such that (T(0),T*(0),V(0)) 2 E we have, for t > �t,
1

t

Z t

0

lðMÞds 6 1

t

Z �t

0

lðMÞdsþ 1

t
ln
T �ðtÞ
T �ð�tÞ �

t ��t
t

g. ð20Þ
The boundedness of T* and (11) imply �q2 < 0, completing the proof. h
6. Numerical simulations

We have shown in Theorem 5(b) that, when R0 > 1, the chronic-infection equilibrium P* may
only be stable for r small or large. In these parameter regions, the stability of P* can be lost as r
increases and then regained as r further increases. We carried out numerical simulations using
Mathematica to illustrate such a change in stability. Furthermore, our numerical simulations con-
sistently show the existence of periodic solutions when P* is unstable. For the simulations, we use
a similar set of parameter values as those in [2,6], but vary the values of r. More specifically,
s = 0.1 day�1 mm�3, a = 0.02 day�1, b = 0.3 day�1, c = 2.4 day�1, k = 0.0027 mm�3 day�1,
Tmax = 1500 mm�3, N = 10. The polynomial F defined in (5) is
FðqÞ ¼ 5:24� 106q3 þ 7:5� 104q2 � 110qþ 0:6� 10�2;
whose three roots are q1 = 0.000062302, q2 = 0.0012745, and q3 = �0.0157105. Thus P* is unsta-
ble if r is between 0.093453 and 1.9118 by Theorem 5(b). Outputs of three simulations are shown
in Figs. 1–3, for values r = 0.05, r = 0.8, and r = 3, respectively. We see that P* is globally stable
for r = 0.05 and r = 3, whereas P* is unstable and a stable periodic solution exist for r = 0.8. Sim-
ulations also reveal that solutions converge to P* as damped oscillations when P* is stable, and
1. With parameter values as chosen in Section 6, P* is shown to be globally stable when r = 0.05, R0 = 10.16.



Fig. 2. A periodic solution is shown when r = 0.8, R0 = 16.45.

Fig. 3. When r = 3, R0 = 16.76, P* is shown to be globally stable.
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that the damping factor is in proportion to r. When r = 3, initial oscillations effectively disappear
after 200 days, whereas when r = 0.05, damped oscillations are clearly visible after 2000 days. We
also observe that the HIV viral load at chronic stage is in reverse proportion to r; the viral load
when r = 3 persists at 600 mm�3 while it is below 100 mm�3 when r = 0.05. We also note that the
values for R0 in the three cases are 10.16, 16.45, and 16.76, respectively. While the values of R0 in
the last two cases are very close, the dynamics shown in Figs. 2 and 3 are drastically different
because of the different r values.
7. Discussion

In-host models for the HIV infection of CD4+ T cells are considered in [2,6], where the growth
of susceptible T cells is assumed to be unaffected by the HIV infection, and follows a simplified
logistic growth:
rT 1� T
Tmax

� �
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during the course of infection. In model (2) considered in the present paper, a full logistic growth
term
rT 1� T þ T �

Tmax

� �
is used for the growth of healthy T cells, where T* is the concentration of infected CD4+ T cells.
This assumes that the growth of healthy T cells slows down during the course of HIV infection.
Our analysis shows that such a difference in the growth term does not alter the qualitative behav-
iours of solutions. More specifically, models with these two different growth terms have the same
basic reproduction number
R0 ¼
kNT 0

c
;

where T0 is the equilibrium of CD4+ T cells in the absence of HIV infection. Furthermore, for
both models, the infection-free equilibrium P0 = (T0,0,0) is globally stable if R0 6 1, and a unique
chronic-infection equilibrium P* exists if R0 > 1. P* can be unstable for a open set of parameter
values, and periodic solutions may exist. Quantitatively, both growth forms produce the same
level of CD4 count at the chronic-infection equilibrium P*, while the full logistic term leads to
a lower level of viral load at the equilibrium P*.

Mathematically, since P* can be unstable and periodic solutions may exist for these models, it is
important to investigate if the basin of attraction of P* contains all points in the feasible region,
namely, if P* is globally stable. Clinical data on HIV positive patients do not show sustained oscil-
lations. This suggests that simple models like (2), which ignore features such as chronically
infected, latently infected cells, and drug sanctuaries that might damp the oscillations, are clini-
cally relevant only in the parameter regions for which no oscillations exist, in particular, for which
the chronic-infection equilibrium P* is globally stable. Therefore, identifying parameter ranges in
which P* is globally stable is of both mathematical and biological significance.

The global stability of P* is established in [6] for HIV models with simplified logistic growth.
The analysis in [6] relies in an essential way on the fact that the model is competitive. Models
(2), with a complete logistic term, is no longer competitive. To establish the global stability of
P*, we adopted a general approach of Li and Muldowney [7], which is developed for higher
dimensional systems irrespective if they are competitive. The parameter range produced by our
global-stability analysis are also biologically reasonable. While the approach of Li and Muldow-
ney has been successfully applied to many classes of epidemic models, we demonstrated in the
present paper, for the first time, that this approach is also applicable to in-host HIV models.
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