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Global existence of periodic solutions in a tri-neuron
network model with delays
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Abstract

We consider a delayed differential system that models a network of three neurons with memory. Using a global Hopf bifurcation
theorem for FDE due to J. Wu and a Bendixson’s criterion for high-dimensional ODE due to Li and Muldowney, we obtain
a group of sufficient conditions for the system to have multiple periodic solutions when the sum of delays is sufficiently
large.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, there has been an increasing activity on and interest in the investigation of neuron systems, namely
in the study of equations modeling neural networks and their artificial representations. These systems typically
incorporate time delays since the transmission of information from one neuron to another is not instantaneous.
There is an extensive research on the dynamics of delayed differential equations representing neural networks.
Several papers are devoted to the existence and stability of periodic solutions of delayed neural network models
with two neurons, see[1–10]. Several recent papers investigate the existence and properties of periodic solutions of
delayed multi-neuron neural network models. Baldi and Atiya[11] investigated the effects of delays on the dynamics
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and, in particular on the oscillating properties of the simple neural network models

dui
dt

= − ui

Ti
+ Tii−1fi−1(ui−1(t − τii−1)), i = 1, . . . , n. (1.1)

Wu [12] studied a delayed Hopfield-Cohen-Grossberg model of neural networks

dui(t)

dt
= −ui(t) +

n∑
i=1

Jijf (uj(t − τ)), 1 ≤ i ≤ n, (1.2)

wheref is a sigmoidal function withf (0) = 0, andJ = (Jij) is a symmetric circulant matrix with all diagonal
elements zero. Wu showed that system(1.2) exhibits rich dynamics and various types of oscillations for large
delays. Campbell[13] generalized Baldi and Atiya’s model(1.1) to a network that consists of a ring of neurons
where thejth element receives two time-delayed inputs: one from itself and another from the previous element.
Campbell obtained sufficient conditions for local stability and bifurcations. Campbell, Ruan and Wei[14] studied
Campbell’s model withn = 4. By analyzing the equivalent system of four scalar transcendental equations, they
obtained sufficient conditions for the linear stability of the positive equilibrium, and proved that a Hopf bifurcation
can occur when the positive equilibrium loses stability. Recently, Wei and Velarde[15] studied stability and other
properties of Hopf bifurcation for the Baldi and Atiya’s model (1.1) withn = 3,

u̇1(t) = − a1u1(t) + f1(u3(t − τ1)),

u̇2(t) = − a2u2(t) + f2(u1(t − τ2)),

u̇3(t) = − a3u3(t) + f3(u2(t − τ3)).

(1.3)

By employing the results due to Ruan and Wei[16], they obtained sufficient conditions for the asymptotic stability
of the equilibrium and for the existence of Hopf bifurcations. Applying the normal form theory and the center
manifold theorem, they also obtained a formula that determines the direction and stability of the Hopf bifurcation.

The purpose of this paper is to investigate the global existence of multiple periodic solutions for(1.3). The
method for showing the existence of non-constant periodic solutions is theS1-equivariant degree (see[12,21]).
More precisely, we shall use a global Hopf bifurcation result of Wu[12] for functional differential equations, which
was established using a purely topological argument. Meanwhile, the Bendixson’s criterion for higher dimensional
ordinary differential equations due to Li and Muldowney[17] shall be used to rule out the existence of nonconstant
periodic solution for zero delays. To the best of our knowledge, this paper is the first to deal with the global existence
of non-constant periodic solutions of(1.1) for n = 3. The application of higher dimensional Bendixson’s criterion
in the study of global existence of periodic solutions to delay systems is also new. Other applications to infinite
systems include a recent work of Beretta, Solimano and Takeuchi[18], in which Bendixson’s criterion in higher
dimensions, as developed in Li and Muldowney[17], was used to rule out periodic solutions for systems with
infinite delays.

Our paper is organized as follows: InSection 2, we present the local Hopf bifurcation results of the model by Wei
and Velarde[15], the global Hopf bifurcation theorem of Wu[12], and the higher dimensional Bendixson criterion
of Li and Muldowney[17]. Section 3deals with the nonexistence of periodic solutions when the delays are zero.
The global existence of multiple periodic solutions is discussed inSection 4. As an example, the system

u̇1(t) = −au1(t) + b1 tanhu3(t − τ1),

u̇2(t) = −au2(t) + b2 tanhu1(t − τ2),

u̇3(t) = −au3(t) + b3 tanhu2(t − τ3),

(1.4)

is analyzed and some numerical simulations are presented inSection 5.
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2. Preliminary results

We present some preliminary results to be used in the subsequent sections to establish global existence of
non-constant periodic solutions.

Let x1(t) = u1(t − (τ2 + τ3)), x2(t) = u2(t − τ3), x3(t) = u3(t) andτ = τ1 + τ2 + τ3. Then Eq.(1.3) becomes
the following equivalent system

ẋ1(t) = − a1x1(t) + f1(x3(t − τ)),

ẋ2(t) = − a2x2(t) + f2(x1(t)),

ẋ3(t) = − a3x3(t) + f3(x2(t)).

(2.1)

We make the following assumption.

(H1). For i = 1,2,3, constantsai > 0, fi ∈ C2, fi(0) = 0, and there existsL > 0 such that|fi(x)| ≤ L for x ∈ R.
The origin (0,0,0) is the unique equilibrium of(2.1).

The linearization of(2.1)at (0,0,0) is

ẋ1(t) = − a1x1(t) + f ′
1(0)x3(t − τ),

ẋ2(t) = − a2x2(t) + f ′
2(0)x1(t),

ẋ3(t) = − a3x3(t) + f ′
3(0)x2(t),

(2.2)

whose characteristic equation is

λ3 + (a1 + a2 + a3)λ2 + (a1a2 + a1a3 + a2a3)λ+ a1a2a3 −
3∏
j=1

f ′
j(0)e−λτ = 0. (2.3)

Set

c1 = a2
1 + a2

2 + a2
3, c2 = a2

1a
2
2 + a2

1a
2
3 + a2

2a
2
3,

c3 = a2
1a

2
2a

2
3 −

(∏3
j=1 f

′
j(0)

)2
, c4 = a1a2 + a1a3 + a2a3,

and

d =
3∏
j=1

f ′
j(0).

Letω0 > 0 be the unique positive root of

ω6 + c1ω
4 + c2ω

2 + c3 = 0.

Denote

τ̄j = 1

ω0

[
Arc sin

(
ω3

0 − c4ω0

d

)
+ 2jπ

]
, j = 0,1,2, . . . . (2.4)

The following local result is proved in Wei and Velarde[15, Theorem 3.1].

Proposition 2.1. Suppose



J. Wei, M.Y. Li / Physica D 198 (2004) 106–119 109

(H2). a1a2a3 +∏3
j=1 f

′
j(0)< 0 and

(a2 + a3)(a2
1 + a1a2 + a1a3 + a2a3) +

3∏
j=1

f ′
j(0)> 0.

Then the equilibrium(0,0,0)of (2.1)is asymptotically stablewhenτ ∈ [0, τ̄0),andunstablewhenτ > τ̄0.Moreover,
at τ = τ̄j, j = 0,1,2, . . ., ±iω0 is a pair of simple imaginary roots of(2.3), and(2.1)undergoes Hopf bifurcation
near(0,0,0).

Let λ(τ) = αj(τ) + iωj(τ) be the root of (2.3) satisfying

αj(τ̄j) = 0, ωj(τ̄j) = ω0.

Then, from Lemma 3.3 of Wei and Velarde[15], we have the following transversality condition.

Proposition 2.2. If (H2) is satisfied, then

dαj(τ)

dτ

∣∣∣∣
τ=τ̄j

> 0. (2.5)

To extend the local Hopf branches described inProposition 2.1for large delay values, we apply a global Hopf
bifurcation result of Wu[12], which we briefly explain in the following. LetX be the Banach space of bounded
continuous mappingsx : R → R

n with the supreme norm. Forx ∈ X, t ∈ R, definext ∈ X asxt(s) = x(t + s) for
s ∈ R. Consider a functional differential equation

x′(t) = F (xt, α, T ) (2.6)

parametrized by two real parameters (α, T ) ∈ R × R+, whereF : X× R × R+ → R
n is completely continu-

ous. RestrictF to the subspace of constant functionsx, which is identified withR
n, we obtain a mapping

F̂ = F |Rn×R×R+ : R
n × R × R+ → R

n. Assume

(A1). F̂ isC2.

Let x̂0 ∈ X be the constant mapping with valuex0 ∈ R
n. The point (x̂0, α0, T0) is called astationary solutionof

(2.6) if F̂ (x̂0, α0, T0) = 0. Assume

(A2). DxF̂ (x, α, T )|(x̂0,α0,T0) is an isomorphism at each stationary solution (ˆx0, α0, T0).

UnderAssumptions (A1) and (A2)and by the implicit function theorem, for each stationary solution (ˆx0, α0, T0),
there existsε0 > 0 and aC1 mapping y : Bε0(α0, T0) → R

n such that F̂ (y(α, T ), α, T ) = 0, for (α, T ) ∈
Bε0(α0, T0) = (α0 − ε0, α0 + ε0) × (T0 − ε0, T0 + ε0). Define thecharacteristic matrixat a stationary solution
(x̂0, α0, T0) of (2.6), as

!(x̂0,α0,T0)(λ) = λ Id −DϕF (x̂0, α0, T0)(eλ·Id),

whereDϕF (x̂0, α0, T0) is complexification of the derivative ofF (ϕ, α, T ) with respect toϕ at (x̂0, α0, T0) (see
Assumption (A3)below). The zeros of det!(x̂0,α0,T0)(λ) = 0 are thecharacteristic roots. Note that(A2) is equivalent
to assuming thatλ = 0 is not a characteristic root of any stationary solution. Assume

(A3). F (ϕ, α, T ) is differentiable with respect toϕ. The characteristic matrix!(ŷ(α,T ),α,T )(λ) is continuous in
(α, T, λ) ∈ Bε0(α0, T0) × C.
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A stationary solution (ˆx0, α0, T0) is said to be acenter, if it has purely imaginary characteristic values of the form
im2π/T0 for some positive integerm. A center (x̂0, α0, T0) is isolatedif (i) it is the only center in a neighborhood of
(x̂0, α0, T0), and (ii) it has only finitely many purely imaginary characteristic values of the form im2π/T0 for some
integerm. Let J(x̂0, α0, T0) be the set of all such positive integersmat an isolated center (ˆx0, α0, T0). Assume that
there existsm ∈ J(x̂0, α0, T0) such that the following holds.

(A4). There existε, δ ∈ (0, ε0) such that on [α0 − δ, α0 + δ] × ∂Ωε,T0, det!(ŷ(α,T ),α,T )(u+ im2π/T ) = 0 if and
only if α = α0, u = 0, T = T0, where

Ωε,T0 = {(u, T ) : 0< u < ε, |T − T0| < ε}.

Define

H±
m (x̂0, α0, T0)(u, T ) = det!(ŷ(α0±δ,T ),α0±δ,T )

(
u+ im

2π

T

)
. (2.7)

ThenAssumption (A4)implies thatH±
m (x̂0, α0, T0) �= 0 on∂Ωε,T0. Thus, themth crossing numberγm(x̂0, α0, T0)

of (x̂0, α0, T0) can be defined using topological degree of mappingsH±
m , as

γm(x̂0, α0, T0) = degB(H−
m (x̂0, α0, T0),Ωε,T0) − degB(H+

m (x̂0, α0, T0),Ωε,T0). (2.8)

It is shown in Wu[12, Theorem 3.2] thatγm(x̂0, α0, T0) �= 0 implies the existence of a local bifurcation of periodic
solutions with periods nearT0/m. To extend globally the local bifurcating branch, assume

(A5). All centers of (2.6) are isolated and(A4) holds for each center (ˆx0, α0, T0) and eachm ∈ J(x̂0, α0, T0).

(A6). For each bounded setW ⊆ X× R × R+ there exists constantL > 0 such that,|F (ϕ, α, T ) − F (ψ, α, T )| ≤
L sups∈R |ϕ(s) − ψ(s)|, for (ϕ, α, T ), (ψ, α, T ) ∈ W .

The following is a global Hopf bifurcation result in Wu[12, Theorem 3.3].

Proposition 2.3. Assume that(A1)–(A6) hold. Let∑
(F ) = Cl{(x, α, T ), x is aT -periodic solutions of (2.6)} ⊂ X× R × R+,

N(F ) = {(x̂, α, T ), F (x̂, α, T ) = 0}.

LetC(x̂0, α0, T0) be the connected component in
∑

(F ) of an isolated center(x̂0, α0, T0). Then either

(i) C(x̂0, α0, T0) is unbounded, or
(ii) C(x̂0, α0, T0) is bounded,C(x̂0, α0, T0) ∩N(F ) is finite, and∑

(x̂,α,T )∈C(x̂0,α0,T0)∩N(F )

γm(x̂, α, T ) = 0 (2.9)

for all m = 1,2, . . ., whereγm(x̂, α, T ) is the mth crossing number of(x̂, α, T ) if m ∈ J(x̂, α, T ), or it is zero
otherwise.

By Proposition 2.3, to showC(x̂0, α0, T0) is unbounded, one can show that the sum in(2.9) is nonzero, for a
particular integerm. This will be done for system(2.1) in Section 4.

Another technical issue when applyingProposition 2.3is to prove that(2.1) with τ = 0 has no non-constant
periodic solutions. This will be done by applying a high-dimensional Bendixson’s criterion of Li and Muldowney
[17], which we briefly summarize in the rest of the section.
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Consider a system of ordinary differential equations

ẋ = f (x), x ∈ R
n, f ∈ C1 (2.10)

for any finiten. As shown in[17], to derive a high-dimensional Bendixson criterion, it is sufficient to show that the
second compound equation

z′(t) = ∂f

∂x

[2]

(x(t, x0))z(t), (2.11)

with respect to a solutionx(t, x0) ∈ D to (2.10)is equi-uniformly asymptotically stable, namely, for eachx0 ∈ D,
system(2.11)is uniformly asymptotically stable, and the exponential decay rate is uniform forx0 in each compact
subset ofD, whereD ⊂ R

n is an open connected set. Here∂f/∂x[2] is the second additive compound matrix of the

Jacobian matrix∂f/∂x. It is an

(
n

2

)
×
(
n

2

)
matrix, and thus (2.11) is a linear system of dimension

(
n

2

)
(see

Fiedler[19] and Múldowney[20]). For a 3× 3 matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

its second additive compound matrixA[2] is

A[2] =

 a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 . (2.12)

The equi-uniform asymptotic stability of(2.11)implies the exponential decay of the surface area of any compact
two-dimensional surface inD. If D is simply connected, this precludes the existence of any invariant simple closed
rectifiable curve inD, including periodic orbits. In particular, the following result is proved in Li and Muldowney
[17].

Proposition 2.4. LetD ⊂ R
n be a simply connected region. Assume that the family of linear systems

z′(t) = ∂f

∂x

[2]

(x(t, x0))z(t), x0 ∈ D

is equi-uniformly asymptotically stable. Then

(a) D contains no simple closed invariant curves including periodic orbits, homoclinic orbits, heteroclinic cycles;
(b) each semi-orbit in D converges to a single equilibrium.

In particular, if D is positively invariant and contains an unique equilibrium̄x, then x̄ is globally asymptotically
stable in D.

The required uniform asymptotic stability of the family of linear systems(2.11)can be proved by constructing
a suitable Lyapunov function. For instance,(2.11)is equi-uniformly asymptotically stable if there exists a positive
definite functionV (z), such that, dV (z)/dt |(2.11) is negative definite, andV and dV/dt |(2.11) are both independent
of x0.
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3. Nonexistence of nonconstant periodic solution whenτ = 0

Consider system(2.1)with τ = 0,

ẋ1 = −a1x1 + f1(x3),

ẋ2 = −a2x2 + f2(x1),

ẋ3 = −a3x3 + f3(x2).

(3.1)

We make the following assumption.

(H3). There existα, β > 0 such that

sup
x∈R

{
−(a1 + a2) + α|f ′

1(x)|, −(a1 + a3) + β

α
|f ′

3(x)|,−(a2 + a3) + 1

β
|f ′

2(x)|
}
< 0. (3.2)

Proposition 3.1. If theHypotheses (H1) and (H3) are satisfied, then the system(3.1)has no non-constant periodic
solutions. Furthermore, the unique equilibrium(0,0,0) is globally asymptotically stable inR3.

Proof. We first prove that solutions of(3.1)are bounded. Let

V (x1, x2, x3) = 1
2 [x2

1 + x2
2 + x2

3].

Then the derivative ofV along a solution of(3.1) is

dV

dt

∣∣∣∣
(3.1)

= − a1x
2
1 − a2x

2
2 − a3x

2
3 + x1f1(x3) + x2f2(x1) + x3f3(x2).

Using Assumption (H1) we get

dV

dt

∣∣∣∣
(2.9)

≤ −a1x
2
1 − a2x

2
2 − a3x

2
3 + L|x1| + L|x2| + L|x3|. (3.3)

There existsM > 1 such that
√
x2

1 + x2
2 + x2

3 ≥ M implies

dV

dt

∣∣∣∣
(3.1)

< 0.

This shows that solutions of(3.1)are uniformly ultimately bounded.
Denotex = (x1, x2, x3)T and

f (x1, x2, x3) = (−a1x1 + f1(x3), −a2x2 + f2(x1), −a3x3 + f3(x2))T.

We have

∂f

∂x
=

 −a1 0 f ′
1(x3)

f ′
2(x1) −a2 0

0 f ′
3(x2) −a3

 ,
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and, by(2.12)

∂f

∂x

[2]

=

−(a1 + a2) 0 −f ′
1(x3)

f ′
3(x2) −(a1 + a3) 0

0 f ′
2(x1) −(a2 + a3)

 .

The second compound system ż1

ż2

ż3

 = ∂f

∂x

[2]

 z1

z2

z3

 ,

is

ż1 = − (a1 + a2)z1 − f ′
1(x3(t))z3,

ż2 = − (a1 + a3)z2 + f ′
3(x2(t))z1,

ż3 = − (a2 + a3)z3 + f ′
2(x1(t))z2,

(3.4)

wherex(t) = (x1(t), x2(t), x3(t))T is a solution of the system(3.1)with x(0) = x0 ∈ R
3. Set

W(z) = max{α|z1|, β|z2|, |z3|}, (3.5)

whereα, β > 0 are constants. Then direct calculation leads to the following inequalities

d+

dt
α|z1(t)| ≤ −(a1 + a2)α|z1| + α|f ′

1(x3(t))| |z3|,
d+

dt
β|z2(t)| ≤ −(a1 + a3)β|z2| + β

α
|f ′

3(x2(t))| · α |z1|,
d+

dt
|z3(t)| ≤ −(a2 + a3)|z3(t)| + 1

β
|f ′

2(x1(t))| · β|z2(t)|,

where d+/dt denotes the right-hand derivative. Therefore,

d+

dt
W(z(t)) ≤ µ(t)W(z(t)),

with

µ(t) = max

{
−(a1 + a2) + α|f ′

1(x3(t))|, −(a1 + a3) + β

α
|f ′

3(x2(t))|,−(a2 + a3) + 1

β
|f ′

2(x1(t))|
}
.

Thus, underHypothesis (H3), and by the boundedness of solution to(3.1), there exists aδ > 0 such thatµ(t) ≤
−δ < 0, and thus

W(z(t)) ≤ W(z(s)) e−δ(t−s), t ≥ s > 0.

This establishes the equi-uniform asymptotic stability of the second compound system(3.4), and hence the conclu-
sion ofProposition 3.1follows fromProposition 2.4. �
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Corollary 3.2. The conclusions ofProposition 3.1hold if any of the following conditions holds,

sup
x∈R

{−(a1 + a2) + |f ′
1(x)|,−(a1 + a3) + |f ′

3(x)|,−(a2 + a3) + |f ′
2(x)|} < 0, (3.6)

sup
x∈R

{−(a1 + a2) + |f ′
3(x)|,−(a1 + a3) + |f ′

2(x)|,−(a2 + a3) + |f ′
1(x)|} < 0, (3.7)

sup
x∈R

{−(a1 + a2) + |f ′
2(x)|,−(a1 + a3) + |f ′

1(x)|,−(a2 + a3) + |f ′
3(x)|} < 0, (3.8)

sup
x∈R

{
−
√

(a1 + a2)(a2 + a3) + |f ′
1(x)|,−

√
(a1 + a3)(a2 + a3) + |f ′

2(x)|,

−
√

(a1 + a3)(a1 + a2) + |f ′
3(x)|

}
< 0, (3.9)

sup
x∈R

{
−
√

(a1 + a2)(a1 + a3) + |f ′
1(x)|,−

√
(a1 + a2)(a2 + a3) + |f ′

2(x)|,

−
√

(a1 + a3)(a2 + a3) + |f ′
3(x)|

}
< 0, (3.10)

sup
x∈R

{
−
√

(a2 + a3)(a1 + a3) + |f ′
1(x)|, −

√
(a1 + a3)(a1 + a2) + |f ′

2(x)|,

−
√

(a1 + a2)(a2 + a3) + |f ′
3(x)|

}
< 0. (3.11)

Proof. In the inequality(3.2) of (H3), choosingα = β = 1, α = (a1 + a2)/(a2 + a3), β = (a1 + a3)/(a2 + a3),
andα = (a1 + a2)/(a1 + a3), β = (a1 + a2)/(a2 + a3), we arrive at the first three inequalities, respectively. The
last three inequalities can be derived from(3.2)by choosing, respectively,

α =
√
a1 + a2

a2 + a3
, β =

√
a1 + a3

a2 + a3
,

α =
√
a1 + a2

a1 + a3
, β =

√
a1 + a2

a2 + a3
, and

α = a1 + a2√
(a2 + a3)(a1 + a3)

, β =
√

(a1 + a3)(a1 + a2)

a2 + a3
.

�

4. Global existence of periodic solutions

In this section, we prove that the local Hopf branches of(2.1) obtained inProposition 2.1can be extended for
large values of the total delayτ = ∑3

j=1 τj, by applyingProposition 2.3. Our main result is the following.

Theorem 4.1. Suppose that theHypotheses (H1)–(H3), are satisfied. Then system(2.1)has at least k non-constant
periodic solutions whenτ > τ̄k, k ≥ 1,whereτ̄k is defined by(2.4).



J. Wei, M.Y. Li / Physica D 198 (2004) 106–119 115

Consider the Fuller space∑
= {(x̂, τ, T ) : x is aT -periodic solution of(2.1)} ⊂ X× R × R+.

Note that(2.1)does not depend explicitly onT. We want to verify theAssumptions (A1)–(A6)of Proposition 2.3,
for (2.1). Smoothness conditions in(A1) and (A6)are ensured by our Assumption (H1). Also by (H1), we know
that (0,0,0) is the only equilibrium of(2.1), and thus all stationary solution of(2.1) are of the form (̂0, τ, T ).
By Proposition 2.1, λ = 0 is not a characteristic root of he equilibrium (0,0,0), and thus(A2) is satisfied. The
characteristic function of(2.1) is

q(λ) = 63 +
 3∑
j=1

aj

 λ2 +
 3∑
i�=j

aij

 λ+
3∏
j=1

aj −
 3∏
j=1

f ′
j(0)

e−λτ, (4.1)

andq(λ) is continuous in (τ, T, λ) ∈ R+ × R+ × C. This verifies(A3). A stationary solution (̂0, τ, T ) is a center
if (0,0,0) has purely imaginary eigenvalues of formim2π/T . By Proposition 2.1we know that this occurs if and
only if m = 1, τ = τ̄k andT = 2π/ω0. Therefore, the set of centers is given by{(

0̂, τ̄k,
2π

ω0

)
; k = 0,1,2, . . .

}
,

whereτ̄k is defined by(2.4), and all centers are isolated.
Considerq(λ) with m = 1. By Propositions 2.1 and 2.2, for fixedk, there existε > 0, δ > 0 and a smooth curve

λ : (τ̄k − δ, τ̄k + δ) → C such thatq(λ(τ)) = 0, |λ(τ) − iω0| < ε for all τ ∈ (τ̄k − δ, τ̄k + δ), and

λ(τ̄k) = iω0,
d

dτ
Reλ(τ)

∣∣∣∣
τ=τ̄k

> 0.

Let

Ωε =
{

(v, p) : 0< v < ε,

∣∣∣∣T − 2π

ω0

∣∣∣∣ < ε

}
. (4.2)

Clearly, if |τ − τ̄k| < δ and (v, T ) ∈ ∂Ωε such thatq(v+ i 2π/T ) = 0, thenτ = τ̄k, v = 0 andT = 2π/ω0. This
verifies(A4) for m = 1. Moreover, if we put

H±
m

(
0̂, τ̄k,

2π

ω0

)
(v, T ) = !(0̂,τ̄k±δ,T )

(
v+ im

2π

T

)
,

then, atm = 1, we have

γm

(
0̂, τ̄k,

2π

ω0

)
= degB

(
H−
m

(
0̂, τ̄k,

2π

ω0

)
,Ωε

)
− degB

(
H+
m

(
0̂, τ̄k,

2π

ω0

)
,Ωε

)
= −1.

Thus the connected componentC(0̂, τ̄k,2π/ω0) through (̂0, τ̄k,2π/ω0) in
∑

is nonempty. Since the first crossing
number of each center is always−1, byProposition 2.3, we conclude thatC(0̂, τ̄k,2π/ω0) is unbounded. We thus
have proved the following lemma.

Lemma 4.2. C(0̂, τ̄k,2π/ω0) is unbounded for each centerC(0̂, τ̄k, 2π
ω0

).

Next, we prove the following results.
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Lemma 4.3. Periodic solutions of(2.1)are uniformly bounded.

Proof. Let a = min {a1, a2, a3}, M ≥ max{1, L(a1 + a2 + a3)/a} andr(t) =
√
x2

1(t) + x2
2(t) + x2

3(t). Differen-
tiating r(t) along a solution of(2.1)we have

ṙ(t) = 1
r(t) [x1(t)ẋ1(t) + x2(t)ẋ2(t) + x3(t)ẋ3(t)]

= 1
r(t) [−(a1x

2
1(t) + a2x

2
2(t) + a3x

2
3(t)) + a1x1(t)f1(x3(t − τ)) + a2x2(t)f2(x1(t)) + a3x3(t)f3(x2(t))]

≤ 1
r(t) [−a(x2

1(t) + x2
2(t) + x2

3(t)) + L(a1|x1(t)| + a2|x2(t)| + a3|x3(t)|)].

If there existst0 > 0 such thatr(t0) = A ≥ M, then we have

ṙ(t0) ≤ 1
A

[−aA2 + AL(a1 + a2 + a3)] = −aA+ L(a1 + a2 + a3) < 0.

It follows that if x(t) = (x1(t), x2(t), x3(t))T is a periodic solution of(2.1), thenr(t) < M for all t. This shows that
the periodic solutions of(2.1)are uniformly bounded. �

Lemma 4.4. The periods of periodic solution of(2.1)are uniformly bounded.

Proof. Note that ifx(t) = (x1(t), x2(t), x3(t))T is a τ-periodic solution of system(2.1), thenx(t) is τ-periodic
solution of the ordinary differential Eq.(3.1). ApplyingProposition 2.4we know that, underHypothesis (H3), system
(3.1)has no non-constant periodic solutions. Therefore, system(2.1)has no non-constantτ-periodic solutions.

By the definition ofτ̄k in (2.4), we know that

ω0τ̄k > 2π, k = 1,2, . . .

and hence

2π

ω0
< τ̄k, k = 1,2, . . .

FromProposition 2.1, we know that̄τ0 > 0. Hence forτ > τ̄k, there exists an integermsuch thatτ/m < 2π/ω0 < τ.
Since system(2.1)has noτ-periodic solution, it has noτ/n-periodic solution for any integern. This implies that the
periodT of a periodic solution on the connected componentC(0̂, τ̄k,2π/ω0) satisfiesτ/m < T < τ. So we know
that the periods of the periodic solutions of the system(2.1)onC(0̂, τ̄k,2π/ω0) are uniformly bounded. �

Proof of Theorem 4.1. By Lemma 4.2, we know thatC(0̂, τ̄k,2π/ω0) is nonempty and unbounded. ByLemmas
4.3 and 4.4, the projections ofC(0̂, τ̄k,2π/ω0) onto thex- andT-space are bounded. This implies that the projection
of C(0̂, τ̄k,2π/ω0) onto theτ-space must be unbounded. �

Applying Proposition 2.4again, we know that system(2.1)has no non-constant periodic solutions whenτ = 0.
Thus, the projection ofC(0̂, τ̄k,2π/ω0) onto theτ-space must be an interval [τ̄,∞) with 0< τ̄ ≤ τ̄k. This shows
that, for eachτ > τ̄k (k ≥ 1), system(2.1) has a non-constant periodic solution onC(0̂, τ̄k,2π/ω0) . Therefore, if
τ > τ̄k ≥ τ̄1, system(2.1)has at leastk periodic solutions. This completes the proof ofTheorem 4.1.

The following corollary follows from theTheorem 4.1andCorollary 3.2.

Corollary 4.5. The conclusions ofTheorem 4.1hold if (H1), (H2) and any of the inequalities(3.6)–(3.11)are
satisfied.
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From Proposition 2.4we know that, under theHypotheses (H1) and (H3), the unique equilibrium (0,0,0) of
system(2.1)with τ = 0 is globally asymptotically stable inR3. However, under theHypotheses (H1)–(H3), system
(2.1)has at leastknon-constant periodic solutions whenτ > τ̄k(k ≥ 1). This demonstrates how time delays influence
the dynamics of system(2.1).

5. An example

Consider a tri-neuron network model without self-connection

u̇1(t) = −u1(t) + b1f (u3(t − τ1)),

u̇2(t) = −u2(t) + b2f (u1(t − τ2)),

u̇3(t) = −u3(t) + b3f (u2(t − τ3)).

(5.1)

To the best of our knowledge, there are no previous works on the global existence of non-constant periodic solutions
of the system(5.1). Applying the results ofSections 2 and 3, we establish the global existence of periodic solutions
for the system(5.1). We make the following assumptions onf (x).

(P1). f ∈ C2, xf (x) > 0 for x �= 0, and (0,0,0) is the unique equilibrium of(5.1).

(P2). There existsL > 0 such that|f (x)| ≤ L for x ∈ R, and

−2<

 3∏
j=1

bj

1/3

f ′(0)< −1

(P3). |bjf ′(x)| < 2 for x ∈ R, j = 1,2,3.

Letω0 > 0 be the positive root of the equation

ω6 + 3ω4 + 3ω2 +

1 −
 3∏
j=1

bj

2

f ′6(0)

 = 0

and

τ̃k = 1

ω0

[
Arc sin

(
ω3

0 − 3ω0

(
∏3
j=1 bj)f

′3(0)

)
+ 2kπ

]
, k = 0,1,2, . . . . (5.2)

Setτ = ∑3
j=1 τj. By Corollary 4.5, we have the following result.

Theorem 5.1. Suppose that(P1)–(P3) are satisfied. Then system(5.1)has at least k non-constant periodic solutions
whenτ > τ̃k, k ≥ 1.

Applying Theorem 5.1to f (x) = tanh(x) we have the following corollary.

Corollary 5.2. For the neural network model with three neurons

u̇1(t) = −u1(t) + b1 tanh [u3(t − τ1)]

u̇2(t) = −u2(t) + b2 tanh [u1(t − τ2)]

u̇3(t) = −u3(t) + b3 tanh [u2(t − τ3)],

(5.3)
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if

−2<

 3∑
j=1

bj

1/3

< −1

is satisfied, then system(5.3) has at least k non-constant periodic solutions whenτ > τ̃k and k ≥ 1, whereτ =∑3
j=1 τj, and τ̃k is defined in(5.2)with f ′(0) = 1.

5.1. Numerical experiments

To demonstrate the global Hopf bifurcation results inTheorem 4.1, we carry out numerical simulations on
system(5.3). The simulations are done using Mathematica with different values ofbi andτi, and different initial
values forui. The simulations consistently show global existence of periodic solution: existence of large amplitude
periodic solutions for values ofτ = τ1 + τ2 + τ3 far away fromτ̃k. In Fig. 1, we show one of the simulations
usingb = b1 = b2 = b3 = −2 such thatbi satisfy the condition inCorollary 5.2. In this case it can be calculated
that ω0 = 1.517 and, fork = 0,1,2, . . ., τ̃k = 0.12,4.26,8.40,12.54,16.68,20.82, . . .. The delays are chosen

Fig. 1. Mathematica simulations of a periodic solution to system(5.3) with τ1 = 6.56, τ2 = 4.56, τ3 = 7.56 andb = −2. The total delay
τ = τ1 + τ2 + τ3 = 18.68 is between the two Hopf bifurcation valuesτ̃4 = 16.68 andτ̃5 = 20.82.
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asτ1 = 6.56, τ2 = 4.56, τ3 = 7.56 so thatτ = τ1 + τ2 + τ3 = 18.68 is between the two Hopf bifurcation values
τ̃4 = 16.68 andτ̃5 = 20.82. Periodic solutions of amplitude 2 are shown inFig. 1.
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