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We investigate a class of multi-group epidemic models with distributed delays. We es-
tablish that the global dynamics are completely determined by the basic reproduction
number R0. More specifically, we prove that, if R0 � 1, then the disease-free equilibrium
is globally asymptotically stable; if R0 > 1, then there exists a unique endemic equilib-
rium and it is globally asymptotically stable. Our proof of global stability of the endemic
equilibrium utilizes a graph-theoretical approach to the method of Lyapunov functionals.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the literature of mathematical epidemiology, multi-group epidemic models have been proposed to describe the spread
of many infectious diseases in heterogeneous populations, such as measles, mumps, gonorrhea, and HIV/AIDS. A hetero-
geneous host population can be divided into several homogeneous groups according to modes of transmission, contact
patterns, or geographic distributions, so that within-group and inter-group interactions could be modeled separately. One of
the earliest multi-group models is proposed by Lajmanovich and Yorke [15] for the transmission of gonorrhea. For a class
of n-group SIS models, they have completely established the global dynamics and proved the global stability of a unique
endemic equilibrium using a quadratic global Lyapunov function. Various forms of multi-group models have subsequently
been studied. One of main mathematical challenges in the analysis of multi-group models is the global stability of the en-
demic equilibrium [2,11,12,14,17,23,24]. A complete resolution of this problem has been elusive until recently. In [8,9], for
a class of multi-group SEIR models described by ordinary differential equations, a graph-theoretic approach to the method
of global Lyapunov functions was proposed and used to establish the global stability of a unique endemic equilibrium.

In the present paper, a more general multi-group epidemic model than that in [9] is proposed to describe the disease
spread in a heterogeneous host population with general age-structure and varying infectivity. The host population is divided
into several homogeneous groups. Let Sk , Ek , Ik and Rk denote the susceptible, infected but non-infectious, infectious, and
recovered populations in the k-th group, respectively. Let ik(t, r) denote the population of infectious individuals in the k-th
group with respect to the age of infection r at time t , and Ik(t) = ∫ ∞

r=0 ik(t, r)dr. Let hk(r) � 0 be a continuous kernel
function that represents the infectivity at the age of infection r. The disease incidence in the k-th group, assuming a bilinear
incidence form, can be calculated as

n∑
j=1

βkj Sk(t)

∞∫
r=0

h j(r)i j(t, r)dr, (1.1)
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where the sum takes into account cross-infections from all groups and βkj represents the transmission coefficient between
compartments Sk and I j . In the special case hk(r) ≡ 1, the incidence in (1.1) becomes

∑n
j=1 βkj Sk(t)I j(t) as in [9]. Therefore,

the model in [9] can be generalized to the following system of differential equations

S ′
k = Λk −

n∑
j=1

βkj Sk

∞∫
r=0

h j(r)i j(t, r)dr − dS
k Sk,

E ′
k =

n∑
j=1

βkj Sk

∞∫
r=0

h j(r)i j(t, r)dr − (
dE

k + εk
)

Ek,

I ′k = εk Ek − (
dI

k + γk
)

Ik,

R ′
k = γk Ik − dR

k Rk, k = 1,2, . . . ,n. (1.2)

Here Λk represents influx of individuals into the k-th group, dS
k ,dE

k ,dI
k and dR

k represent death rates of S, E, I and R popu-
lations in the k-th group, respectively, εk represents the rate of becoming infectious after a latent period in the k-th group,
and γk represents the recovery rate of infectious individuals in the k-th group. All parameter values are assumed to be
nonnegative and Λk , dS

k , dE
k > 0 for all k. For detailed discussions of the model, we refer the reader to [9,22] and references

therein. Note that(
∂

∂t
+ ∂

∂r

)
ik(t, r) = −(

dI
k + γk

)
ik(t, r),

ik(t,0) = εk Ek(t),

whose solution is

ik(t, r) = ik(t − r,0)e−(dI
k+γk)r = εk Ek(t − r)e−(dI

k+γk)r . (1.3)

Substituting (1.3) into (1.2) we obtain

S ′
k = Λk −

n∑
j=1

βkj Sk

∞∫
r=0

h j(r)ε j E j(t − r)e−(dI
j+γ j)r dr − dS

k Sk,

E ′
k =

n∑
j=1

βkj Sk

∞∫
r=0

h j(r)ε j E j(t − r)e−(dI
j+γ j)r dr − (

dE
k + εk

)
Ek,

I ′k = εk Ek − (
dI

k + γk
)

Ik,

R ′
k = γk Ik − dR

k Rk, k = 1,2, . . . ,n. (1.4)

Since the variables Ik and Rk do not appear in the first two equations of (1.4), we can consider the following reduced system
with distributed time delays and general kernel functions

S ′
k = Λk −

n∑
j=1

βkj Sk

∞∫
r=0

f j(r)E j(t − r)dr − dS
k Sk,

E ′
k =

n∑
j=1

βkj Sk

∞∫
r=0

f j(r)E j(t − r)dr − (
dE

k + εk
)

Ek, k = 1,2, . . . ,n. (1.5)

Here the kernel function fk(r) � 0 is continuous and
∫ ∞

r=0 fk(r)dr = ak > 0. While system (1.5) is derived from a general age
of infection model (1.2), it can also be interpreted as a multi-group model for an infectious disease whose latent period r
in hosts has a general probability density function 1

ak
fk(r), for the k-th group. We will establish the global dynamics of

system (1.5).
The basic reproduction number R0 is defined as the expected number of secondary cases produced in an entirely

susceptible population by a typical infected individual during its entire infectious period [7]. Intuitively, if R0 < 1, the
disease dies out from the host population, and if R0 > 1, the disease will persist. Let S0

k = Λk

dS
k

, ak = ∫ ∞
r=0 fk(r)dr. The next

generation matrix for system (1.5) is

M0 =
(

βkj S0
kak

dE + ε

)
. (1.6)
k k n×n
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Motivated by [7,25,26], we define the basic reproduction number as the spectral radius of M0,

R0 = ρ(M0). (1.7)

In the special case of a single-group model, the definition of R0 in (1.7) agrees with that in [22]. In the special case when
fk(r) is an exponential function, R0 reduces to that for the resulting ODE models as given in [9,25]. For system (1.5), we
will establish that the dynamical behaviors are completely determined by values of R0. More specifically, if R0 � 1, the
disease-free equilibrium is globally asymptotically stable and the disease dies out; if R0 > 1, a unique endemic equilibrium
exists and is globally asymptotically stable, and the disease persists at the endemic equilibrium. Our proof demonstrates
that the graph-theoretical approach developed in [8,9] for systems of ordinary differential equations is applicable to delay
differential systems like (1.5).

The paper is organized as follows. In the next section, we prove some preliminary results for system (1.5). Our main
results are stated in Section 3. In Section 4, the global stability of the disease-free equilibrium is proved. The global stability
of the endemic equilibrium is proved in Section 5. For the convenience of the reader, we include in Appendix A results from
graph theory that are needed for our proof.

2. Preliminaries

We make the following assumption on the kernel function fk(r) in (1.5):

∞∫
r=0

fk(r)eλkr dr < ∞, (2.1)

where λk is a positive number, k = 1,2, . . . ,n. Define the following Banach space of fading memory type (see e.g. [1] and
references therein)

Ck =
{
φ ∈ C

(
(−∞,0],R

)
: φ(s)eλk s is uniformly continuous on (−∞,0], and sup

s�0

∣∣φ(s)
∣∣eλks < ∞

}
, (2.2)

with norm ‖φ‖k = sups�0|φ(s)|eλks . For φ ∈ Ck , let φt ∈ Ck be such that φt(s) = φ(t + s), s ∈ (−∞,0]. Let Sk,0 ∈ R+ and
φk ∈ Ck such that φk(s) � 0, s ∈ (−∞,0]. We consider solutions of system (1.5), (S1(t), E1t , S2(t), E2t , . . . , Sn(t), Ent), with
initial conditions

Sk(0) = Sk,0, Ek0 = φk, k = 1,2, . . . ,n. (2.3)

Standard theory of functional differential equations [13] implies Ekt ∈ Ck for t > 0. We consider system (1.5) in the phase
space

X =
n∏

k=1

(R × Ck). (2.4)

It can be verified that solutions of (1.5) in X with initial conditions (2.3) remain nonnegative. In particular, Sk(t) > 0
for t > 0. From the first equation of (1.5), we obtain S ′

k(t) � Λk − dS
k Sk(t). Hence, lim supt→∞ Sk(t) � Λk

dS
k

. For each k,

adding the two equations in (1.5) gives (Sk(t) + Ekt(0))′ � Λk − d∗
k (Sk(t) + Ekt(0)), where d∗

k = min{dS
k ,dE

k + εk}. Hence,

lim supt→∞(Sk(t) + Ekt(0)) � Λk
d∗

k
. Therefore, the following set is positively invariant for system (1.5),

Θ =
{(

S1, E1(·), . . . , Sn, En(·)) ∈ X
∣∣∣ 0 � Sk � Λk

dS
k

, 0 � Sk + Ek(0) � Λk

d∗
k

, Ek(s) � 0, s ∈ (−∞,0], k = 1, . . . ,n

}
.

(2.5)

All positive semi-orbits in Θ are precompact in X [1], and thus have non-empty ω-limit sets. We have the following result.

Lemma 2.1. All positive semi-orbits in Θ have non-empty ω-limit sets.

Let

Θ̊ =
{(

S1, E1(·), . . . , Sn, En(·)) ∈ X
∣∣∣ 0 < Sk <

Λk

dS
k

, 0 < Sk + Ek(0) <
Λk

d∗
k

, Ek(s) > 0, s ∈ (−∞,0], k = 1, . . . ,n

}
.

(2.6)

It can be shown that Θ̊ is the interior of Θ .
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The equilibria of (1.5) are the same as those of the associated ODE system

S ′
k = Λk −

n∑
j=1

βkja j Sk E j − dS
k Sk,

E ′
k =

n∑
j=1

βkja j Sk E j − (
dE

k + εk
)

Ek, k = 1,2, . . . ,n. (2.7)

System (2.7) is similar to a multi-group SIR model considered in [8] with Ek relabeled as Ik . Results established in [8] can
be readily applied to system (2.7). In the positively invariant region

Γ =
{
(S1, E1, . . . , Sn, En) ∈ R

2n+
∣∣∣ Sk � Λk

dS
k

, Sk + Ek � Λk

d∗
k

, 1 � k � n

}
, (2.8)

system (2.7) has two possible equilibria: the disease-free equilibrium P0 = (S0
1,0, . . . , S0

n,0), where S0
k = Λk

dS
k

, and the en-

demic equilibrium P∗ = (S∗
1, E∗

1, . . . , S∗
n, E∗

n), where S∗
k , E∗

k > 0 and satisfy

Λk =
n∑

j=1

βkja j S∗
k E∗

j + dS
k S∗

k , (2.9)

n∑
j=1

βkja j S∗
k E∗

j = (
dE

k + εk
)

E∗
k . (2.10)

We assume that the transmission matrix B = (βkj) is irreducible. This is equivalent to assuming that for any two distinct
groups k and j, individuals in E j can infect those in Sk directly or indirectly. The following result is proved in [8].

Proposition 2.2. (See Guo, Li, Shuai [8].) Assume that B = (βkj) is irreducible.

(1) If R0 � 1, then P0 is the only equilibrium for system (2.7) and it is globally asymptotically stable in Γ .
(2) If R0 > 1, then P0 is unstable and there exists a unique endemic equilibrium P∗ for system (2.7). Furthermore, P∗ is globally

asymptotically stable in the interior of Γ .

Since the delay system (1.5) and the ODE system (2.7) share the same equilibria, the following result follows from
Proposition 2.2.

Proposition 2.3. Assume that B = (βkj) is irreducible.

(1) If R0 � 1, then P0 is the only equilibrium for system (1.5) in Θ .
(2) If R0 > 1, then there exist two equilibria for system (1.5) in Θ: the disease-free equilibrium P0 and a unique endemic equilibrium

P∗ defined by Eqs. (2.9) and (2.10).

3. Main result

The global dynamics of system (1.5) are completely established in the following result.

Theorem 3.1. Assume that B = (βkj) is irreducible.

(1) If R0 � 1, then the disease-free equilibrium P0 of system (1.5) is globally asymptotically stable in Θ . If R0 > 1, then P0 is
unstable.

(2) If R0 > 1, then the endemic equilibrium P∗ of system (1.5) is globally asymptotically stable in Θ̊ .

Biologically, Theorem 3.1 implies that, if the basic reproduction number R0 � 1, then the disease always dies out from
all groups; if R0 > 1, then the disease always persists in all groups at the unique endemic equilibrium level, irrespective of
the initial conditions. The proof of the first part of Theorem 3.1 will be given in the next section, and the second part in
Section 5.

Theorem 3.1 includes several previous results. Choose the kernel function as

fk(r) = εke−(dI
k+γk)r
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and let Ĩk = ∫ ∞
r=0 fk(r)Ek(t − r)dr. Then (1.5) gives

S ′
k = Λk −

n∑
j=1

βkj Sk Ĩ j − dS
k Sk, E ′

k =
n∑

j=1

βkj Sk Ĩ j − (
dE

k + εk
)

Ek.

Using integration by parts we obtain

Ĩ ′k =
∞∫

r=0

fk(r)
∂ Ek(t − r)

∂t
dr = −

∞∫
r=0

fk(r)
∂ Ek(t − r)

∂r
dr = εk Ek − (

dI
k + γk

)
Ĩk.

System (1.5) is thus reduced to a multi-group SEIR model governed by the system of ordinary differential equations consid-
ered in [9]. Note that

ak =
∞∫

r=0

fk(r)dr = εk

dI
k + γk

,

the basic reproduction number in (1.7) becomes

R0 = ρ

(
βkjεkΛk

(dE
k + εk)(dI

k + γk)dS
k

)
1�k, j�n

,

which agrees with that given in [8,9]. Thus the global stability results in [8,9] are special cases of Theorem 3.1.
In the case n = 1, system (1.5) reduces to a single-group SEIR or SIR model with distributed delays studied in [3–5,18–20,

22]. Theorem 3.1 generalizes the global stability results in [19,20] to multi-group models.

4. Proof of Theorem 3.1(1)

Since B is irreducible, we know that matrix

N =
(

βkj S0
ka j

dE
k + εk

)
n×n

is also irreducible, and has a positive left eigenvector (ω1,ω2, . . . ,ωn) corresponding to the spectral radius ρ(N) > 0. In
particular, ρ(N) = ρ(M0), where M0 is defined in (1.6), and thus ρ(N) = R0 � 1. Let

ck = ωk

dI
k + γk

> 0 and αk(r) =
∞∫

σ=r

fk(σ )dσ .

Consider a Lyapunov functional

L =
n∑

k=1

ck

(
Sk − S0

k − S0
k ln

Sk

S0
k

+ Ek +
n∑

j=1

βkj S0
k

∞∫
r=0

α j(r)E j(t − r)dr

)
. (4.1)

Note that Λk = dS
k S0

k , αk(0) = ∫ ∞
σ=0 fk(σ )dσ = ak , and Sk

S0
k

+ S0
k

Sk
� 2 with equality holding if and only if Sk = S0

k . Differenti-

ating L along the solution of system (1.5) and using integration by parts, we obtain

L′ =
n∑

k=1

ck

(
Λk − dS

k Sk − Λk
S0

k

Sk
+

n∑
j=1

βkj S0
k

∞∫
r=0

f j(r)E j(t − r)dr + dS
k S0

k

− (
dE

k + εk
)

Ek +
n∑

j=1

βkj S0
k

∞∫
r=0

α j(r)
∂ E j(t − r)

∂t
dr

)

=
n∑

k=1

ck

[
dS

k S0
k

(
2 − Sk

S0
k

− S0
k

Sk

)
+

n∑
j=1

βkj S0
k

∞∫
r=0

f j(r)E j(t − r)dr

− (
dE

k + εk
)

Ek +
n∑

j=1

βkj S0
k

∞∫
α j(r)

(
−∂ E j(t − r)

∂r

)
dr

]

r=0
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=
n∑

k=1

ck

[
dS

k S0
k

(
2 − Sk

S0
k

− S0
k

Sk

)
+

n∑
j=1

βkj S0
k

∞∫
r=0

f j(r)E j(t − r)dr

− (
dE

k + εk
)

Ek +
n∑

j=1

βkj S0
k

(
a j E j −

∞∫
r=0

f j(r)E j(t − r)dr

)]

�
n∑

k=1

ωk

dI
k + γk

(
n∑

j=1

βkja j S0
k E j − (

dE
k + εk

)
Ek

)
= (ω1,ω2, . . . ,ωn)(N E − E)

= (
ρ(N) − 1

)
(ω1,ω2, . . . ,ωn)E � 0, if R0 � 1. (4.2)

Here E(t) = (E1(t), E2(t), . . . , En(t))T . Denote

Y = {(
S1, E1(·), . . . , Sn, En(·)

) ∈ Θ
∣∣ L′ = 0

}
,

and Z be the largest compact invariant set in Y . We will show Z = {P0}. From inequality (4.2) and ck > 0, L′ = 0 implies

2 − Sk(t)
S0

k
− S0

k
Sk(t)

= 0 for all 1 � k � n and t � 0, and thus Sk(t) ≡ S0
k = Λk

dS
k

. Hence, from the first equation of (1.5), we obtain

n∑
j=1

βkj

∞∫
r=0

f j(r)E j(t − r)dr = 0,

and thus

βkj

∞∫
r=0

f j(r)E j(t − r)dr = 0,

for 1 � k, j � n. Then, by irreducibility of B , for each j, there exists k 	= j such that βkj 	= 0, thus

∞∫
r=0

f j(r)E j(t − r)dr = 0.

This implies that in Z , E jt(s) = 0, s ∈ (−∞,0], j = 1,2, . . . ,n. Therefore, Z = {P0}.
Using Lemma 2.1 and the LaSalle–Lyapunov Theorem (see [16, Theorem 3.4.7] or [10, Theorem 5.3.1]), we conclude that

P0 is globally attractive in Θ if R0 � 1. Furthermore, it can be verified that P0 is locally stable using the same proof as
one for Corollary 5.3.1 in [10]. In fact, we can show that there exists a nonnegative monotone increasing continuous func-
tion a(r) such that a(|(S1(t), E1(t), . . . , Sn(t), En(t))|) � L(S1(t), E1t , . . . , Sn(t), Ent) � L(S1(0), E1 0, . . . , Sn(0), En0). Therefore,
P0 is globally asymptotically stable if R0 � 1. On the other hand, if R0 > 1, then −L serves as a Lyapunov functional for
system (1.5). The same proof as in Theorem 5.3.3 of [10] can be used to show that P0 is unstable.

5. Proof of Theorem 3.1(2)

The global stability of the endemic equilibrium of the single-group model with delays has been proved in [19,20]. In the
following, we consider the case n � 2. Let P∗ = (S∗

1, E∗
1, . . . , S∗

n, E∗
n) denote the unique endemic equilibrium of system (1.5).

Set

β̄kj = βkja j S∗
k E∗

j , 1 � k, j � n, n � 2, (5.1)

and

B =

⎡
⎢⎢⎢⎢⎣

∑
l 	=1 β̄1l −β̄21 · · · −β̄n1

−β̄12
∑

l 	=2 β̄2l · · · −β̄n2
...

...
. . .

...

−β̄1n −β̄2n · · · ∑
l 	=n β̄nl

⎤
⎥⎥⎥⎥⎦ . (5.2)

Note that B is the Laplacian matrix of the matrix (β̄kj) (see Appendix A). Since (βkj) is irreducible, matrices (β̄kj) and B are
also irreducible. Let Ckj denote the cofactor of the (k, j) entry of B . We know that system B v = 0 has a positive solution
v = (v1, v2, . . . , vn), where vk = Ckk > 0 for k = 1,2, . . . ,n, by Theorem A of Appendix A. Consider a Lyapunov functional
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V = V 1 + V 2, (5.3)

where

V 1 =
n∑

k=1

vk

(
Sk − S∗

k − S∗
k ln

Sk

S∗
k

+ Ek − E∗
k − E∗

k ln
Ek

E∗
k

)
, (5.4)

V 2 =
n∑

k, j=1

vkβkj S∗
k

∞∫
r=0

α j(r)

(
E j(t − r) − E∗

j − E∗
j ln

E j(t − r)

E∗
j

)
dr, (5.5)

and

α j(r) =
∞∫

σ=r

f j(σ )dσ .

Differentiating V 1 along the solution of system (1.5) and using equilibrium equations (2.9) and (2.10), we obtain

V ′
1 =

n∑
k=1

vk

(
Λk − dS

k Sk − Λk S∗
k

Sk
+

n∑
j=1

βkj S∗
k

∞∫
r=0

f j(r)E j(t − r)dr + dS
k S∗

k

− (
dE

k + εk
)

Ek − E∗
k

Ek

n∑
j=1

βkj Sk

∞∫
r=0

f j(r)E j(t − r)dr + (
dE

k + εk
)

E∗
k

)

=
n∑

k=1

vk

[
dS

k S∗
k

(
2 − S∗

k

Sk
− Sk

S∗
k

)
+

n∑
j=1

βkj S∗
k E∗

j

(
a j

(
2 − S∗

k

Sk
− Ek

E∗
k

)

+ 1

E∗
j

∞∫
r=0

f j(r)E j(t − r)dr − Sk E∗
k

S∗
k Ek E∗

j

∞∫
r=0

f j(r)E j(t − r)dr

)]
. (5.6)

Differentiating V 2 along the solution of system (1.5) and using integration by parts, we obtain

V ′
2 =

n∑
k, j=1

vkβkj S∗
k

∞∫
r=0

α j(r)
∂

∂t

(
E j(t − r) − E∗

j − E∗
j ln

E j(t − r)

E∗
j

)
dr

=
n∑

k, j=1

vkβkj S∗
k

∞∫
r=0

α j(r)

[
− ∂

∂r

(
E j(t − r) − E∗

j − E∗
j ln

E j(t − r)

E∗
j

)]
dr

=
n∑

k, j=1

vkβkj S∗
k E∗

j

(
a j E j

E∗
j

− 1

E∗
j

∞∫
r=0

f j(r)E j(t − r)dr −
∞∫

r=0

f j(r) ln
E j(t)

E j(t − r)
dr

)
. (5.7)

Combining (5.6) and (5.7) and using expression (5.1), we have

V ′ =
n∑

k=1

vkdS
k S∗

k

(
2 − S∗

k

Sk
− Sk

S∗
k

)
+

n∑
k, j=1

vkβkj S∗
k E∗

j

[
a j

(
2 − S∗

k

Sk
− Ek

E∗
k

+ E j

E∗
j

)

− Sk E∗
k

S∗
k Ek E∗

j

∞∫
r=0

f j(r)E j(t − r)dr −
∞∫

r=0

f j(r) ln
E j(t)

E j(t − r)
dr

]

�
n∑

k, j=1

vkβkj S∗
k E∗

j

∞∫
r=0

f j(r)

[
E j

E∗
j

− Ek

E∗
k

− ln
S∗

k

Sk
· Sk E∗

k E j(t − r)

S∗
k Ek E∗

j

· E j(t)

E j(t − r)

+
(

1 − S∗
k

Sk
+ ln

S∗
k

Sk

)
+

(
1 − Sk E∗

k E j(t − r)

S∗Ek E∗ + ln
Sk E∗

k E j(t − r)

S∗Ek E∗
)]

dr

k j k j
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�
n∑

k, j=1

vkβ̄kj

(
E j

E∗
j

− Ek

E∗
k

)
−

n∑
k, j=1

vkβ̄kj ln
E∗

k E j

Ek E∗
j

=: H1 − H2. (5.8)

In the above derivation, we have used two facts:
S∗

k
Sk

+ Sk
S∗

k
� 2 with equality holding if and only if Sk = S∗

k , and 1−x+ ln x � 0

for all x > 0 with equality holding if and only if x = 1.
We first show H1 ≡ 0 for all E1, E2, . . . , En > 0. It follows from B v = 0 that

n∑
j=1

β̄ jk v j =
n∑

i=1

β̄ki vk,

or, using β̄ jk = β jkak S∗
j E∗

k ,

n∑
j=1

β jkak S∗
j E∗

k v j =
n∑

i=1

βkiai S∗
k E∗

i vk, k = 1,2, . . . ,n.

This implies that

n∑
k, j=1

vkβkja j S∗
k E j =

n∑
k=1

Ek

n∑
j=1

β jkak S∗
j v j =

n∑
k=1

Ek

E∗
k

n∑
i=1

βkiai S∗
k E∗

i vk =
n∑

k, j=1

vkβkja j S∗
k E∗

j
Ek

E∗
k

,

and thus H1 ≡ 0 for all E1, E2, . . . , En > 0.
Next we show H2 ≡ 0 for all E1, E2, . . . , En > 0. Let G denote the directed graph associated with matrix (β̄kj). G has

vertices {1,2, . . . ,n} with a directed arc (k, j) from k to j iff β̄kj 	= 0. E(G) denotes the set of all directed arcs of G . Using
Kirchhoff’s Matrix-Tree Theorem (see Theorem A in Appendix A), we know that vk = Ckk can be interpreted as a sum of
weights of all directed spanning subtrees T of G that are rooted at vertex k. Consequently, each term in vkβ̄kj is the weight
w(Q ) of a unicyclic subgraph Q of G , obtained from such a tree T by adding a directed arc (k, j) from the root k to
vertex j. Note that the arc (k, j) is part of the unique cycle C Q of Q , and that the same unicyclic graph Q can be formed
when each arc of C Q is added to a corresponding rooted tree T . Therefore, the double sum in H2 can be reorganized as a
sum over all unicyclic subgraphs Q containing vertices {1,2, . . . ,n}, that is,

H2 =
∑

Q

H Q , (5.9)

where

H Q = w(Q ) ·
∑

(k, j)∈E(C Q )

ln
E∗

k E j

Ek E∗
j

= w(Q ) · ln

( ∏
(k, j)∈E(C Q )

E∗
k E j

Ek E∗
j

)
. (5.10)

Since E(C Q ) is the set of arcs of a cycle C Q , we have

∏
(k, j)∈E(C Q )

E∗
k E j

Ek E∗
j

= 1, and thus ln

( ∏
(k, j)∈E(C Q )

E∗
k E j

Ek E∗
j

)
= 0.

This implies H Q = 0 for each Q , and hence H2 ≡ 0 for all E1, E2, . . . , En > 0. Therefore, we obtain V ′ � 0 for all (S1, E1(·),
. . . , Sn, En(·)) ∈ Θ̊ . Furthermore, if βkj 	= 0, then, by (5.8), V ′ = 0 implies(

1 − S∗
k

Sk
+ ln

S∗
k

Sk

)
+

(
1 − Sk E∗

k E j(t − r)

S∗
k Ek E∗

j

+ ln
Sk E∗

k E j(t − r)

S∗
k Ek E∗

j

)
= 0,

for all r ∈ [0,∞) and t > 0. Using the fact that 1 − x + ln x � 0 for all x > 0 with equality holding iff x = 1, we obtain

Sk = S∗
k ,

Ek

E∗
k

= E j(t − r)

E∗
j

, r ∈ [0,∞), t > 0. (5.11)

Now let p and q denote any two distinct groups, namely, two distinct vertices of the directed graph G associated with the
irreducible matrix (β̄kj). Then, by the strong connectivity of G , there exists an oriented path between p and q. Applying
(5.11) to each arc (k, j) of such a path, we can see that

S p = S∗
p,

E p(t − r)

E∗ = Eq(t − r)

E∗ = c, r ∈ [0,∞), t > 0, for all p,q.

p q
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Therefore, V ′ = 0 if and only if

Sk = S∗
k , Ek(t − r) ≡ cE∗

k , k = 1,2, . . . ,n, r ∈ [0,∞), t > 0, (5.12)

where c > 0 is an arbitrary number. Substituting (5.12) into the first equation of system (1.5), we obtain

0 = Λk − c
n∑

j=1

βkja j S∗
k E∗

j − dS
k S∗

k . (5.13)

The right-hand side of (5.13) is strictly decreasing in c. By (2.9), we know that (5.13) holds iff c = 1, namely at P∗. Therefore,
the only compact invariant subset of the set where V ′ = 0 is the singleton {P∗}. By a similar argument as in Section 4, P∗ is
globally asymptotically stable in Θ̊ if R0 > 1. This establishes Theorem 3.1(2).
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Appendix A. Kirchhoff’s Matrix-Tree Theorem

Given a nonnegative matrix A = (aij), the directed graph G(A) associated with A = (aij) has vertices {1,2, . . . ,n} with a
directed arc (i, j) from i to j iff aij 	= 0. It is strongly connected if any two distinct vertices are joined by an oriented path.
Matrix A is irreducible if and only if G(A) is strongly connected [6].

A tree is a connected graph with no cycles. A subtree T of a graph G is said to be spanning if T contains all the vertices
of G . A directed tree is a tree in which each edge has been replaced by an arc directed one way or the other. A directed tree
is said to be rooted at a vertex, called the root, if every arc is oriented in the direction towards to the root. An oriented cycle
in a directed graph is a simple closed oriented path. A unicyclic graph is a directed graph consisting of a collection of disjoint
rooted directed trees whose root are on an oriented cycle. We refer the reader to [21] for more details of these concepts.

For a given nonnegative matrix A = (aij), let

L =

⎡
⎢⎢⎢⎢⎣

∑
l 	=1 a1l −a21 · · · −an1

−a12
∑

l 	=2 a2l · · · −an2

...
...

. . .
...

−a1n −a2n · · · ∑
l 	=n anl

⎤
⎥⎥⎥⎥⎦ (A.1)

be the Laplacian matrix of the directed graph G(A) and Cij denote the cofactor of the (i, j) entry of L. For the linear system

Lv = 0, (A.2)

the following result holds, see [9].

Theorem A (Kirchhoff’s Matrix-Tree Theorem). Assume that n � 2 and that A is irreducible. Then following results hold:

(1) The solution space of system (A.2) has dimension 1, with a basis (v1, v2, . . . , vn) = (C11, C22, . . . , Cnn).
(2) For 1 � k � n,

Ckk =
∑
T ∈Tk

w(T ) =
∑
T ∈Tk

∏
(r,m)∈E(T )

arm > 0, (A.3)

where Tk is the set of all directed spanning subtrees of G(A) that are rooted at vertex k, w(T ) is the weight of a directed tree T ,
and E(T ) denotes the set of directed arcs in T .
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