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GLOBAL STABILITY OF THE ENDEMIC

EQUILIBRIUM OF MULTIGROUP SIR

EPIDEMIC MODELS

HONGBIN GUO, MICHAEL Y. LI AND ZHISHENG SHUAI

ABSTRACT. For a class of multigroup SIR epidemic mod-
els with varying subpopulation sizes, we establish that the global
dynamics are completely determined by the basic reproduction
number R0. More specifically, we prove that, if R0 ≤ 1, then
the disease-free equilibrium is globally asymptotically stable; if
R0 > 1, then there exists a unique endemic equilibrium and
it is globally asymptotically stable in the interior of the feasi-
ble region. Our proof of global stability utilizes the method of
global Lyapunov functions and results from graph theory.

1 Introduction Multigroup models have been proposed in the lit-
erature to describe the transmission dynamics of infectious diseases in
heterogeneous host populations. Heterogeneity in host population can
be the result of many factors. Individual hosts can be divided into groups
according to different contact patterns such as those among children and
adults for Measles and Mumps, or to distinct number of sexual partners
for sexually transmitted diseases and HIV/AIDS. Groups can be geo-
graphical such as communities, cities, and countries, or epidemiological,
to incorporate differential infectivity or co-infection of multiple strains
of the disease agent. Multigroup models can also be used to investigate
infectious diseases with multiple hosts such as West-Nile virus and vec-
tor borne diseases such as Malaria. For a recent survey of multigroup
models, we refer the reader to [34].

A multigroup model is, in general, formulated by dividing the pop-
ulation of size N(t) into n distinct groups. For 1 ≤ k ≤ n, the k-th
group is further partitioned into three compartments: the susceptibles,
infectious, and recovered, whose numbers of individuals at time t are
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denoted by Sk(t), Ik(t) and Rk(t), respectively. For 1 ≤ i, j ≤ n, the
disease transmission coefficient between compartments Si and Ij is de-
noted by βij , so that the new infection occurred in the k-th group is
given by

(1.1)

n
∑

j=1

βkj SkIj .

The form of incidence in (1.1) is bilinear. Other incidence forms have
been used in the literature, depending on the assumptions made about
the mixing among different groups. The matrix B = (βij)n×n is the
contact matrix, where βij ≥ 0. Within the k-th group, it is assumed that
natural death occurs in Sk, Ik and Rk compartments with rate constants
dS

k , dI
k and dR

k , respectively. Individuals in Ik suffer an additional death
due to disease with rate constant εk. The influx of individuals into
the k-th group is given by a constant Λk, of which a fraction pk is
assumed to be immuned, and remaining fraction 1 − pk is susceptible.
A simple immunization policy is considered where a fraction θk of the
compartment Sk is vaccinated. We assume that individuals in Ik recover
with a rate constant γk, and once recovered they remain permanently
immuned for the disease. Based on these assumptions, the following
system of differential equations can be derived:

(1.2)

S′
k = (1 − pk)Λk − (dS

k + θk)Sk −

n
∑

j=1

βkjSkIj ,

I ′k =

n
∑

j=1

βkjSkIj − (dI
k + εk + γk)Ik ,

R′
k = pkΛk + θkSk + γkIk − dR

k Rk,

where k = 1, 2, . . . , n. The parameters in the model are summarized in
the following list:

βij : transmission coefficient between compartments Si and Ij ,
dS

k , dI
k, dR

k : natural death rates of S, I, R compartments in the k-th
group, respectively,

Λk : influx of individuals into the k-th group,
pk : fraction of new individuals into the k-th group who are

immuned,
θk : fraction of individuals in Sk who are vaccinated,
γk : recovery rate of infectious individuals in the k-th group,
εk : disease-caused death rate in the k-th group.
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All parameter values are assumed to be nonnegative and dS
k , dI

k, dR
k , Λk >

0 for all k.
For each k, adding the three equations in (1.2), gives

(Sk + Ik + Rk)′ = Λk − dS
k Sk − (dI

k + εk)Ik − dR
k Rk

≤ Λk − d∗k(Sk + Ik + Rk),

where d∗k = min{dS
k , dI

k + εk, dR
k }. Hence lim supt→∞(Sk + Ik + Rk) ≤

Λk/d∗k. Similarly, it follows from the first equation in (1.2) that

lim sup
t→∞

Sk ≤
(1 − pk)Λk

dS
k + θk

.

Observe that the variable Rk does not appear in the first two equations
of (1.2). This allows us to consider first the following reduced system
for Sk and Ik

(1.3)

S′
k = (1 − pk)Λk − (dS

k + θk)Sk −

n
∑

j=1

βkjSkIj ,

I ′k =

n
∑

j=1

βkjSkIj − (dI
k + εk + γk)Ik ,

where k = 1, 2, . . . , n, in the feasible region

(1.4) Γ =

{

(S1, I1, · · · , Sn, In) ∈ R
2n
+

∣

∣

∣

∣

Sk ≤
Λk(1 − pk)

dS
k + θk

, Sk + Ik ≤
Λk

d∗k
, k = 1, 2, . . . , n

}

.

Behaviors of Rk can then be determined from the last equation in (1.2).
It can be verified that Γ in (1.4) is positively invariant with respect to

(1.3). Let
◦

Γ denote the interior of Γ. Our results in this paper will be
stated for system (1.3) in Γ, and can be translated straightforwardly to
system (1.2).

System (1.3) always has the disease-free equilibrium

P0 = (S0
1 , 0, S0

2 , 0, . . . , S0
n, 0),
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where

(1.5) S0
k =

Λk(1 − pk)

dS
k + θk

, k = 1, 2, . . . , n,

is the equilibrium of the Sk population in the absence of disease
(I1 = I2 = · · · = In = 0). An endemic equilibrium P ∗ = (S∗

1 , I∗1 , S∗
2 , I∗2 ,

. . . , S∗
n, I∗n) of (1.3) belongs to

◦

Γ, namely, S∗
k > 0, I∗k > 0, k = 1, 2, . . . , n.

Set

(1.6) R0 = ρ(M0),

where

(1.7) M0 = M(S0
1 , S0

2 , . . . , S0
n) =

(

βijS
0
i

dI
i + εi + γi

)

n×n

,

and ρ denotes the spectral radius. As we will show, R0 is the key thresh-
old parameter whose values completely characterize the global dynamics
of (1.3). Furthermore, R0 is the basic reproduction number for sys-
tem (1.3) (see, e.g., [35]).

One of the earliest work on multigroup models is the seminal paper by
Lajmanovich and Yorke [24] on a class of SIS multigroup models for the
transmission dynamics of Gonorrhea. A complete analysis of the global
dynamics is established. The global stability of the unique endemic equi-
librium is proved using a global Lyapunov function. Subsequently, much
research has been done on multigroup models, see, e.g., [1, 2, 7, 11–17,

25, 26, 28, 29, 31, 32, 33] and references therein. Due to the large
scale and complexity of multigroup models, progresses in the mathe-
matical analysis of their global dynamics have been slow. In particular,
the question of uniqueness and global stability of the endemic equilib-
rium, when the basic reproduction number R0 is greater than 1, has
largely been open. Hethcote [15] proved global stability of the endemic
equilibrium for multigroup SIR model without vital dynamics. Beretta
and Capasso [2] derived sufficient conditions for global stability of the
endemic equilibrium for multigroup SIR model with constant popula-
tion in each group. Thieme [33] proved global stability of the endemic
equilibrium of multigroup SEIRS models under certain restrictions. The
most recent result on global stability is Lin and So [27] for a class of
SIRS models with constant group sizes, in which they proved that the
endemic equilibrium is globally asymptotically stable if the cross-group
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contact rates are small or if the recovery rates in each group are small.
The complete resolution of the global stability of endemic equilibrium
when R0 > 1 has been a well-known open problem in mathematical
epidemiology. On the other hand, results in the opposite direction also
exist in the literature. For n-group SIR models with proportionate inci-
dence, uniqueness of endemic equilibria may not hold when R0 > 1 (see
[19, 34]). In light of these results, complete determination of the global
dynamics of these models is essential for their application and further
development. It is also crucial to determine how incidence forms or other
epidemiological factors influence the uniqueness and global stability of
endemic equilibria.

The aim of the present paper is to establish the global dynamics of the
class of n-group SIR models with varying group sizes as defined in (1.2).
In particular, we prove that, when R0 > 1, the endemic equilibrium of
the model is unique and globally asymptotically stable. For this class of
multigroup models, our results completely resolve the open problem on
the uniqueness and global stability of endemic equilibrium. Our proof
relies on the use of a class of global Lyaponuv functions. Lyapunov
functions of this type has been used in the literature (e.g., see [8], [10],
[18], [20]) and was recently rediscovered (e.g., see [22]) and successfully
applied to several classes of epidemic models (see [11, 21]). It has
the potential for a much wider applicability. The key to our analysis
is a complete description of the complicated patterns exhibited in the
derivative of the Lyapunov function, using graph theory.

In the next section, we quote some results from graph theory which
will be used in the proof of our main results. In Section 3, our main
results are stated. In Section 4, the global stability of the disease-free
equilibrium when R0 ≤ 1 is proved. In Section 5, the global stability of
the endemic equilibrium when R0 > 1 is proved. In Section 6, we relate
our definition of R0 to earlier definitions in the literature. Extension
of our results to multigroup models with other forms of incidence are
discussed in Section 7.

2 Preliminaries Let E = (eij)n×n, F = (fij)n×n be nonnegative

matrices, namely, all of their entries are nonnegative. We write E ≥ F
if ekj ≥ fkj for all k and j, and E > F if E ≥ F and E 6= F . For n > 1,
an n × n matrix E is reducible if, for some permutation matrix Q,

QEQT =

[

E1 0
E2 E3

]

,
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where E1 and E3 are square matrices. Otherwise, E is irreducible. The
following properties of nonnegative matrices are standard (e.g., see [4]).

P1. If E is nonnegative, then the spectral radius ρ(E) of E is an eigen-
value, and E has a nonnegative eigenvector corresponding to ρ(E).

P2. If E is nonnegative and irreducible, then ρ(E) is a simple eigenvalue,
and E has a positive eigenvector x corresponding to ρ(E).

P3. If 0 ≤ E ≤ F , then ρ(E) ≤ ρ(F ). Moreover, if 0 ≤ E < F and
E + F is irreducible, then ρ(E) < ρ(F ).

P4. If E is nonnegative and irreducible, and F is diagonal and positive
(namely, all of its entries are positive), then EF is irreducible.

Irreducibility of matrices can be easily tested using the associated di-
rected graphs. A directed graph Gn is a set of n vertices and a set of
directed arcs joining two vertices. A directed graph is strongly connected

if any two distinct vertices are joined by an oriented path. The directed
graph G(E) associated with an n× n matrix E is a directed graph of n
vertices, 1, 2, . . . , n, such that there exists an arc (j, k) leading from j to
k if and only if ekj 6= 0. We have the following property.

P5. Matrix E is irreducible if and only if G(E) is strongly connected.

In Figure 1, examples of reducible and irreducible matrices and their
associated directed graphs are shown.

An oriented cycle in a directed graph is a simple oriented path from
a vertex to itself. A directed tree is a connected directed graph with no
cycles. A directed tree is said to be rooted at a vertex, called root, if
every path between a non-root vertex and the root is oriented towards
the root. We refer the reader to [23, 29] for more details.

Consider the linear system

(2.1) Bv = 0,

where

(2.2) B =















∑

l6=1 β̄1l −β̄21 · · · −β̄n1

−β̄12

∑

l6=2 β̄2l · · · −β̄n2

...
...

. . .
...

−β̄1n −β̄2n · · ·
∑

l6=n β̄nl















,

and β̄ij ≥ 0.
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FIGURE 1: Examples of reducible and irreducible matrices and their

associated directed graphs.

Lemma 2.1. Assume that the matrix (β̄ij)n×n is irreducible and n ≥ 2.
Then the followings hold.

(1) The solution space of system (2.1) has dimension 1.

(2) A basis of the solution space is given by

(2.3) (v1, v2, . . . , vn) = (C11, C22, . . . , Cnn),

where Ckk denotes the cofactor of the k-th diagonal entry of B,

1 ≤ k ≤ n.
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(3) For all 1 ≤ k ≤ n,

(2.4) Ckk =
∑

T∈Tk

∏

(j,h)∈E(T )

β̄jh,

where Tk is the set of all directed trees of n vertices rooted at the

k-th vertex, and E(T ) denotes the set of arcs in a directed tree T .

(4) For all 1 ≤ k ≤ n,

Ckk > 0.

Proof. Since the sum of each column in B equals zero, we have

(2.5) Cjk = Clk, 1 ≤ j, k, l ≤ n,

where Cjk denotes the cofactor of the (j, k) entry of B. Since B is
singular, we know that (C11, C12, . . . , C1n) is a solution of system (2.1).
Therefore, by (2.5), (C11, C22, . . . , Cnn) is also a solution of system (2.1).

For 1 ≤ k ≤ n, in the k-th column of B, the diagonal entry,
∑

l6=k β̄kl,
equals the negative of the sum of nondiagonal entries. By a result on
directed graphs in [29, p. 47, Theorem 5.5], we obtain

Ckk =
∑

T∈Tk

∏

(j,h)∈E(T )

β̄jh.

Since (β̄ij) is irreducible, its associated directed graph is strongly con-
nected, by P5. Thus, for each k, at least one term in

∑

T∈Tk

∏

(j,h)∈E(T )

β̄jh

is positive. Therefore, Ckk > 0 for k = 1, 2, . . . , n. Since C11 is a (n− 1)
minor of B, we know rank(B) = n − 1, and the solution space of (2.1)
has dimension 1, completing the proof of Lemma 2.1.

As an illustration of Ckk , let n = 3 and T1 be the set of all di-
rected trees rooted at the first vertex. Then, as shown in Figure 2,
T1 = {T 1

1 , T 2
1 , T 3

1 }, and E(T 1
1 ) = {(3, 2), (2, 1)}, E(T 2

1 ) = {(2, 1), (3, 1)},
E(T 3

1 ) = {(2, 3), (3, 1)}. Therefore,

(2.6) C11 =
∑

T i
1
∈T1

∏

(j,h)∈E(T i
1
)

β̄jh = β̄32β̄21 + β̄31β̄21 + β̄23β̄31.

A unicyclic graph is a directed graph that is obtained from a collection
of directed rooted trees by joining their roots to form an oriented cycle.
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FIGURE 2: All directed trees with three vertices and rooted at 1.

For 1 ≤ l ≤ n, let D(n, l) denote the number of unicyclic graphs with n
vertices whose cycle has length l. Then

(2.7) D(n, l) =

(

n

l

)

nn−l−1 l!

and

(2.8) nn =

n
∑

l=1

D(n, l)l.

For proofs of these relations, we refer the reader to ([3, Chapter 2]). A
unicyclic graph with an oriented cycle of length l can produce l directed
rooted trees by deleting different arcs in the oriented cycle, and the
vertex from which the deleted arc starts becomes the root. Conversely,
a unicyclic graph is obtained from a directed rooted tree by adding a
directed arc from the root to any non-root vertex, see Figure 3.

3 Main results System (1.3) is said to be uniformly persistent

[6, 36] in
◦

Γ if there exists constant c > 0 such that

lim inf
t→∞

Sk(t) > c and lim inf
t→∞

Ik(t) > c, k = 1, . . . , n,

provided (S1(0), I1(0), . . . , Sn(0), In(0)) ∈
◦

Γ.
Let R0 be defined in (1.6). We have the following results.
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FIGURE 3: Forming a unicyclic graph from a directed tree rooted at

vertex k by adding a directed arc from k to j.

Proposition 3.1. Assume B = (βij) is irreducible. Then the following

hold.

(1) If R0 ≤ 1, then P0 is the unique equilibrium of (1.3) and it is glob-

ally stable in Γ.

(2) If R0 > 1, then P0 is unstable and system (1.3) is uniformly persis-

tent in
◦

Γ.

Results like Proposition 3.1 are known in the literature, at least for
some special classes of model (1.3) (see [15, 27, 34]). We will provide
a proof in the next section for completeness and to demonstrate our
derivation of R0.

Uniform persistence of (1.3), together with uniform boundedness of

solutions in
◦

Γ (follows from the positive invariance of the bounded region

Γ), implies the existence of an equilibrium of (1.3) in
◦

Γ (see Theorem D.3
in [32] or Theorem 2.8.6 in [5]).

Corollary 3.2. Assume B = (βij) is irreducible. If R0 > 1, then (1.3)
has at least one endemic equilibrium.

Denote the endemic equilibrium by

P ∗ = (S∗
1 , I∗1 , S∗

2 , I∗2 , . . . , S∗
n, I∗n),

S∗
k > 0 and I∗

k > 0 for k = 1, 2, . . . , n. We have the following main result
on the uniqueness and global stability of P ∗ when R0 > 1.
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Theorem 3.3. Assume that B = (βij) is irreducible. If R0 > 1, then

there exists a unique endemic equilibrium P ∗, and P ∗ is globally asymp-

totically stable in
◦

Γ.

Proposition 3.1 and Theorem 3.3 completely determine the global
dynamics of (1.3) and those of (1.2). They establish the basic repro-
duction number R0 as a sharp threshold parameter. Biologically, our
results imply that, if R0 ≤ 1, then the disease always dies out from all
groups; if R0 > 1, then the disease always persists at the unique endemic
equilibrium level in all groups, irrespective of the initial conditions.

The proof of Proposition 3.1 will be given in the next section, and
that of Theorem 3.3 in Section 5.

4 Proof of Proposition 3.1 Let S = (S1, S2, . . . , Sn) and S0 =
(S0

1 , S0
2 , . . . , S0

n). Then M0 = M(S0). For 1 ≤ k ≤ n, 0 ≤ Sk ≤ S0
k ,

we have 0 ≤ M(S) ≤ M(S0) = M0. If S 6= S0, then M(S) < M0.
On the other hand, since B is irreducible, we know M(S) and M0 are
irreducible. Furthermore, M(S) + M0 is also irreducible. Therefore,
ρ(M(S)) < ρ(M0) provided S 6= S0, by P3 of Section 2.

If R0 = ρ(M0) ≤ 1 and S 6= S0, then ρ(M(S)) < 1, and

M(S) I = I

has only the trivial solution I = 0. Thus P0 is the only equilibrium of
system (1.3) in Γ if R0 ≤ 1.

Let (ω1, ω2, . . . , ωn) be a left eigenvector of M0 corresponding to
ρ(M0), i.e.,

(ω1, ω2, . . . , ωn) ρ(M0) = (ω1, ω2, . . . , ωn)M0.

Since M0 is irreducible, we know ωk > 0 for k = 1, 2, . . . , n, by P2 of
Section 2. Set

L =

n
∑

k=1

ωk

dI
k + εk + γk

Ik.

Differentiation gives

L′ =

n
∑

k=1

ωk

dI
k + εk + γk

I ′k = (ω1, ω2, . . . , ωn) [M(S) I − I ]

≤ (ω1, ω2, . . . , ωn) [M0 I − I ]
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= [ρ(M0) − 1](ω1, ω2, . . . , ωn) I ≤ 0, if R0 ≤ 1.

If R0 = ρ(M0) < 1, then L′ = 0 ⇔ I = 0. If R0 = 1, then L′ = 0 implies

(4.1) (ω1, ω2, . . . , ωn)M(S)I = (ω1, ω2, . . . , ωn)I.

If S 6= S0, then

(ω1, ω2, . . . , ωn)M(S) < (ω1, ω2, . . . , ωn)M0 = (ω1, ω2, . . . , ωn).

Thus (4.1) has only the trivial solution I = 0. Therefore, L′ = 0 ⇔ I = 0
or S = S0 provided R0 ≤ 1. It can be verified that the only compact
invariant subset of the set where L′ = 0 is the singleton {P0}. By
LaSalle’s Invariance Principle [25], P0 is globally asymptotically stable
in Γ if R0 ≤ 1.

If R0 = ρ(M0) > 1 and I 6= 0, we know that

(ω1, ω2, . . . , ωn)M0 − (ω1, ω2, . . . , ωn)

= [ρ(M0) − 1](ω1, ω2, . . . , ωn) > 0,

and thus L′ = (ω1, ω2, . . . , ωn)[M(S)I − I ] > 0 in a neighborhood of

P0 in
◦

Γ, by continuity. This implies P0 is unstable. Using a uniform
persistence result from [9] and a similar argument as in the proof of
Proposition 3.3 of [26], we can show that, when R0 > 1, the instability
of P0 implies the uniform persistence of (1.3). This completes the proof
of Proposition 3.1.

5 Proof of Theorem 3.3 In this section, we prove that the en-
demic equilibrium P ∗ is globally asymptotically stable when R0 > 1.
In particular, this implies that the endemic equilibrium is unique in the

region
◦

Γ when it exists.

Let (S∗
1 , I∗1 , S∗

2 , I∗2 , . . . , S∗
n, I∗n) ∈

◦

Γ be an endemic equilibrium. Set

(5.1) β̄ij = βijS
∗
i I∗j , 1 ≤ i, j ≤ n, n ≥ 2,

and

(5.2) B =















∑

l6=1 β̄1l −β̄21 · · · −β̄n1

−β̄12

∑

l6=2 β̄2l · · · −β̄n2

...
...

. . .
...

−β̄1n −β̄2n · · ·
∑

l6=n β̄nl















.
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Then, by Lemma 2.1, a basis for the solution space of the linear system

(5.3) Bv = 0

can be written as

(5.4) (v1, · · · , vn) = (C11, · · · , Cnn),

where Ckk denotes the cofactor of the k-th diagonal entry of B, 1 ≤
k ≤ n. By the irreducibility of B, we know that (β̄ij) is irreducible and
vk = Ckk > 0, k = 1, · · · , n, by Lemma 2.1.

For n = 1, i.e., the case of single group SIR model, Theorem 3.3 is well
known (e.g., see [14]). We only consider the case n ≥ 2. Let v1, · · · , vn

be chosen as in (5.4). Set

(5.5) V =

n
∑

k=1

vk

(

Sk − S∗
k ln Sk + Ik − I∗k ln Ik

)

.

Differentiating V and using the equilibrium equations

(5.6) (1 − pk)Λk = (dS
k + θk)S∗

k +
n

∑

j=1

βkjS
∗
kI∗j ,

and

(5.7) (dI
k + εk + γk)I∗k =

n
∑

j=1

βkjS
∗
kI∗j ,

we obtain

V ′ =
n

∑

k=1

vk

(

S′
k −

S∗
k

Sk

S′
k + I ′k −

I∗k
Ik

I ′k

)

=

n
∑

k=1

vk

[

(1 − pk)Λk − (dS
k + θk)Sk −

n
∑

j=1

βkjSkIj

− (1 − pk)Λk

S∗
k

Sk

+ (dS
k + θk)S∗

k +

n
∑

j=1

βkjS
∗
kIj

+
n

∑

j=1

βkjSkIj − (dI
k + εk + γk)Ik

−

n
∑

j=1

βkjSkIj

I∗k
Ik

+ (dI
k + εk + γk)I∗k

]
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=

n
∑

k=1

vk

[

− S∗
k(dS

k + θk)

(

S∗
k

Sk

+
Sk

S∗
k

− 2

)

+

( n
∑

j=1

βkjS
∗
kIj − (dI

k + εk + γk)Ik

)

+

(

2

n
∑

j=1

βkjS
∗
kI∗j −

n
∑

j=1

βkjI
∗
j

(S∗
k)2

Sk

−

n
∑

j=1

βkjSkIj

I∗k
Ik

)]

.

Since
S∗

k

Sk

+
Sk

S∗
k

− 2 ≥ 0,

we have

(5.8) −S∗
k(dS

k + θk)

(

S∗
k

Sk

+
Sk

S∗
k

− 2

)

≤ 0,

and the equal sign holds if and only if Sk = S∗
k . Next, we claim

(5.9)

n
∑

k=1

vk

( n
∑

j=1

βkjS
∗
kIj − (dI

k + εk + γk)Ik

)

= 0,

for all (I1, I2, . . . , In) ∈ R
n
+. To see this, we note that

(5.10)
n

∑

k=1

vk

n
∑

j=1

βkjS
∗
kIj =

n
∑

j=1

vj

n
∑

k=1

βjkS∗
j Ik =

n
∑

k=1

( n
∑

j=1

βjkS∗
j vj

)

Ik.

It suffices to show

n
∑

j=1

βjkS∗
j vj = vk(dI

k + εk + γk), k = 1, 2, . . . , n.

In fact, by (5.2), (5.3) and (5.7), we have











β11S
∗
1I∗1 β21S

∗
2I∗1 · · · βn1S

∗
nI∗1

β12S
∗
1I∗2 β22S

∗
2I∗2 · · · βn2S

∗
nI∗2

...
...

. . .
...

β1nS∗
1I∗n β2nS∗

2I∗n · · · βnnS∗
nI∗n





















v1

v2

...
vn
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=











∑n
j=1 β1jS

∗
1I∗j v1

∑n

j=1 β2jS
∗
2I∗j v2

...
∑n

j=1 βnjS
∗
nI∗j vn











=











(dI
1 + ε1 + γ1)I

∗
1 v1

(dI
2 + ε2 + γ2)I

∗
2 v2

...
(dI

n + εn + γn)I∗nvn











,

and thus










β11S
∗
1 β21S

∗
2 · · · βn1S

∗
n

β12S
∗
1 β22S

∗
2 · · · βn2S

∗
n

...
...

. . .
...

β1nS∗
1 β2nS∗

2 · · · βnnS∗
n





















v1

v2

...
vn











=











(dI
1 + ε1 + γ1)v1

(dI
2 + ε2 + γ2)v2

...
(dI

n + εn + γn)vn











.

Using inequality (5.8), identity (5.9), and notation β̄kj as given in (5.1),
we have

V ′ ≤

n
∑

k=1

vk

(

2

n
∑

j=1

β̄kj −

n
∑

j=1

β̄kj

S∗
k

Sk

−

n
∑

j=1

β̄kj

IjSkI∗k
IkS∗

kI∗j

)

=

n
∑

k,j=1

vkβ̄kj

(

2 −
S∗

k

Sk

−
IjSkI∗k
IkS∗

kI∗j

)

.

(5.11)

Denote

Hn = Hn(S1, I1, S2, I2, . . . , Sn, In)

=

n
∑

k,j=1

vkβ̄kj

(

2 −
S∗

k

Sk

−
IjSkI∗k
IkS∗

kI∗j

)

.

(5.12)

In the following we show Hn ≤ 0 for all (S1, I1, S2, I2, . . . , Sn, In) ∈
◦

Γ.
Since the proof for the general case is rather complicated, we first give
detailed proofs for n = 2 and n = 3. Then major steps of the proof for
arbitrary n ≥ 2 is given.

Case n = 2: We have

H2 = H2(S1, I1, S2, I2) =

2
∑

k,j=1

vkβ̄kj

(

2 −
S∗

k

Sk

−
IjSkI∗k
IkS∗

kI∗j

)

.

From (2.3) we obtain v1 = β̄21 and v2 = β̄12. Expanding H2 gives
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(5.13) H2 = β̄21β̄11

(

2 −
S∗

1

S1
−

I1S1I
∗
1

I1S∗
1I∗1

)

+ β̄21β̄12

(

2 −
S∗

1

S1
−

I2S1I
∗
1

I1S∗
1I∗2

)

+ β̄12β̄21

(

2 −
S∗

2

S2
−

I1S2I
∗
2

I2S∗
2I∗1

)

+ β̄12β̄22

(

2 −
S∗

2

S2
−

I2S2I
∗
2

I2S∗
2I∗2

)

.

Write the subindices of β̄ij ’s in (5.13) in the form

(5.14)

{

2 1
1 1

}

,

{

2 1
1 2

}

,

{

1 2
2 1

}

and

{

1 2
2 2

}

,

respectively. Each expression in (5.14) defines a transformation from
row 1 to row 2. Observe that each transformation in (5.14) possesses
one cycle of length 1 or 2. Moreover, both terms in (5.13) corresponding
to the transformations with a 2-cycle (i.e., a cycle with length 2) have
the same coefficients. Therefore, the sum H2 can be naturally grouped
according to the length of cycles appearing in the subindices of β̄ij ’s.

H2 = β̄21β̄11

(

2 −
S∗

1

S1
−

S1

S∗
1

)

+ β̄12β̄22

(

2 −
S∗

2

S2
−

S2

S∗
2

)

+ β̄21β̄12

(

4 −
S∗

1

S1
−

I2S1I
∗
1

I1S∗
1I∗2

−
S∗

2

S2
−

I1S2I
∗
2

I2S∗
2I∗1

)

.

Note that

β̄21β̄11

(

2 −
S∗

1

S1
−

S1

S∗
1

)

≤ 0,

β̄12β̄22

(

2 −
S∗

2

S2
−

S2

S∗
2

)

≤ 0,

and

(5.15) β̄21β̄12

(

4 −
S∗

1

S1
−

I2S1I
∗
1

I1S∗
1I∗2

−
S∗

2

S2
−

I1S2I
∗
2

I2S∗
2I∗1

)

≤ 0,

we obtain H2(S1, I1, S2, I2) ≤ 0 for all (S1, I1, S2, I2) ∈
◦

Γ. From (5.8),
we know V ′ = 0 if and only if Sk = S∗

k , k = 1, 2, and H2 = 0. Moreover,
irreducibility of matrix B, or equivalently, the strong connectedness of
the directed graph G(B), implies β̄21β̄12 > 0. Consequently, we obtain
from (5.15)

V ′ = 0 ⇐⇒ Sk = S∗
k , Ik = aI∗k , k = 1, 2,
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where a is an arbitrary positive number.

Case n = 3: We have

H3 = H3(S1, I1, S2, I2, S3, I3)

=

3
∑

k,j=1

vkβ̄kj

(

2 −
S∗

k

Sk

−
IjSkI∗k
IkS∗

kI∗j

)

.

(5.16)

From (2.3) we obtain

(5.17)

v1 = β̄32β̄21 + β̄31β̄21 + β̄23β̄31,

v2 = β̄31β̄12 + β̄13β̄32 + β̄12β̄32,

v3 = β̄12β̄23 + β̄21β̄13 + β̄13β̄23.

Substituting expressions of vk in (5.17) into H3, we observe that H3 is
the sum of 33 = 27 terms of forms

(5.18) β̄rlβ̄lkβ̄kj

(

2 −
S∗

k

Sk

−
IjSkI∗k
IkS∗

kI∗j

)

,

or

(5.19) β̄rkβ̄lkβ̄kj

(

2 −
S∗

k

Sk

−
IjSkI∗k
IkS∗

kI∗j

)

,

where {r, l, k} is a permutation of {1, 2, 3}, and 1 ≤ j ≤ 3. Write the
subindices of β̄ij ’s in (5.18) and (5.19) in the form of transformations

(5.20)

{

r l k
l k j

}

and

{

r l k
k k j

}

,

respectively. When j = k, l or r, both transformations in (5.20) possesses
cycles of length 1, 2 or 3. The terms in H3 will be grouped together
according to the length of cycles appearing in (5.20).

When j = k, both transformations in (5.20) have a 1 cycle
{

∗ ∗ k
∗ ∗ k

}

,
and accordingly, the terms in (5.18) and (5.19) satisfy

β̄rlβ̄lkβ̄kk

(

2 −
S∗

k

Sk

−
IkSkI∗k
IkS∗

kI∗k

)

= β̄rlβ̄lkβ̄kk

(

2 −
S∗

k

Sk

−
Sk

S∗
k

)

≤ 0,
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and

β̄rkβ̄lkβ̄kk

(

2 −
S∗

k

Sk

−
IkSkI∗k
IkS∗

kI∗k

)

= β̄rkβ̄lkβ̄kk

(

2 −
S∗

k

Sk

−
Sk

S∗
k

)

≤ 0.

When j = r, the first transformation in (5.20) produces two distinct
3-cycle patterns

{

r l k
l k r

}

and
{

r k l
k l r

}

. There are 6 terms in H3 of a
3-cycle form, three of them correspond to each cycle pattern, and thus
have the same coefficients β̄rlβ̄lkβ̄kr or β̄rkβ̄klβ̄lr. These six terms can
be divided into two groups and each has a sum of form

(5.21) β̄rlβ̄lkβ̄kr

(

2 −
S∗

k

Sk

−
IrSkI∗k
IkS∗

kI∗r

)

+ β̄lkβ̄krβ̄rl

(

2 −
S∗

r

Sr

−
IlSrI

∗
r

IrS∗
r I∗l

)

+ β̄krβ̄rlβ̄lk

(

2 −
S∗

l

Sl

−
IkSlI

∗
l

IlS∗
l I∗k

)

= β̄rlβ̄lkβ̄kr

(

6 −
S∗

k

Sk

−
IrSkI∗k
IkS∗

kI∗r
−

S∗
r

Sr

−
IlSrI

∗
r

IrS∗
r I∗l

−
S∗

l

Sl

−
IkSlI

∗
l

IlS∗
l I∗k

)

≤ 0.

When j = r, the second transformation in (5.20) has a 2-cycle
{

r ∗ k
k ∗ r

}

.

Also, when j = l, both transformations in (5.20) have a 2 cycle
{

∗ l k
∗ k l

}

.
There are altogether 12 terms in H3 corresponding to 2-cycle patterns.
Each 2-cycle pattern corresponds to 2 terms in H3 with the same coef-
ficients (products of β̄’s). These 12 terms can be grouped into 6 pairs
and each has a sum of form

(5.22) β̄rkβ̄lkβ̄kr

(

2 −
S∗

k

Sk

−
IrSkI∗k
IkS∗

kI∗r

)

+ β̄krβ̄lkβ̄rk

(

2 −
S∗

r

Sr

−
IkSrI

∗
r

IrS∗
r I∗k

)

= β̄rkβ̄lkβ̄kr

(

4 −
S∗

k

Sk

−
IrSkI∗k
IkS∗

kI∗r
−

S∗
r

Sr

−
IkSrI

∗
r

IrS∗
r I∗k

)

≤ 0,

or

(5.23) β̄rlβ̄lkβ̄kl

(

2 −
S∗

k

Sk

−
IlSkI∗k
IkS∗

kI∗l

)

+ β̄rlβ̄klβ̄lk

(

2 −
S∗

l

Sl

−
IkSlI

∗
l

IlS∗
l I∗k

)
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= β̄rlβ̄lkβ̄kl

(

4 −
S∗

k

Sk

−
IlSkI∗k
IkS∗

kI∗l
−

S∗
l

Sl

−
IkSlI

∗
l

IlS∗
l I∗k

)

≤ 0.

In summary, each term in H3 corresponds to a transformation in
(5.20) which possesses a unique cycle of length 1, 2 or 3. The number of
transformations in (5.20) with an l-cycle is given by D(n, l)×l, l = 1, 2, 3.
In particular, by (2.7), the number of 1-cycles in (5.20) is D(3, 1)×1 = 9,
the number of 2-cycles is D(3, 2) × 2 = 12, and the number of 3-cycles
is D(3, 3) × 3 = 6. Therefore, by (2.8),

33 = 27 = D(3, 1) × 1 + D(3, 2) × 2 + D(3, 3) × 3.

This shows that all terms in H3 are accounted for in our grouping accord-
ing to cycle patterns and lengths in (5.20). Therefore, we have shown

H3(S1, I1, S2, I2, S3, I3) ≤ 0 for all (S1, I1, S2, I2, S3, I3) ∈
◦

Γ. From (5.8)
we know V ′ = 0 if and only if Sk = S∗

k , k = 1, 2, 3, and H3 = 0. We
claim that if Sk = S∗

k , k = 1, 2, 3, then

(5.24) H3 = 0 ⇐⇒ Ik = aI∗k , k = 1, 2, 3,

where a is an arbitrary positive number. It suffices to show that H3 = 0
implies

(5.25)
Ik

I∗k
=

Ir

I∗r
, 1 ≤ k, r ≤ 3.

If βkr = 0, for some k 6= r, then, by the irreducibility of B = (βij), or
equivalently, the strong connectedness of the G(B), we necessarily have
β̄klβ̄lr 6= 0 for l 6= k, r. Therefore, either a 3-cycle

{

k l r
l r k

}

exists or both

2-cycles
{

k l ∗
l k ∗

}

and
{

l r ∗
r l ∗

}

exist. In either case, (5.25) follows from
H3 = 0, and from relations (5.21), (5.22) and (5.23). If all βij 6= 0, i 6= j,
then β̄klβ̄lr 6= 0 for l 6= k, r, and the same argument shows that (5.25)
holds. We thus obtain

V ′ = 0 ⇐⇒ Sk = S∗
k , Ik = aI∗k , k = 1, 2, 3,

where a is an arbitrary positive number.

Case n ≥ 2: We have

Hn = Hn(S1, I1, S2, I2, . . . , Sn, In)

=

n
∑

k,j=1

vkβ̄kj

(

2 −
S∗

k

Sk

−
IjSkI∗k
IkS∗

kI∗j

)

.

(5.26)
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Here vk = Ckk as given in (2.4) is a sum of nn−2 terms, each of which
is a product of n − 1 β̄ij ’s whose subindices can be represented by all
arcs in a directed tree T rooted at the k-th vertex, by Lemma 2.1(3).
Therefore, vk β̄kj is the sum of nn−2 terms. Each term in vk β̄kj is a
product of n β̄ij ’s whose subindicies define transformations as in (5.14)
and (5.20), and are represented by directed arcs in a unicyclic graph Q.
From our discussion at the end of Section 2, we know Q is formed by
adding an oriented arc (k, j) to the directed tree T . Each unicyclic graph
Q has a unique cycle CQ of length 1 ≤ l ≤ n. Furthermore, there are l
terms in Hn, whose coefficients correspond to all l rotations of the same
l-cycle and thus are the same, are naturally grouped together. We can
show, as in the cases of n = 2, 3, the sum of these l terms is nonpositive.
More specifically, we can group all terms in Hn according to the length
of cycles, and further group the terms of the same cycle length according
to their cycle patterns and using (2.4), as shown in the following.

Hn =
n

∑

k,j=1

vkβ̄kj

(

2 −
S∗

k

Sk

−
IjSkI∗k
IkS∗

kI∗j

)

=

n
∑

l=1

[

∑

Q∈D(n,l)

∑

(r,m)∈E(CQ)

(

∏

(j,h)∈E(Q)

β̄jh

)

×

(

2 −
S∗

r

Sr

−
SrImI∗r
S∗

r IrI∗m

)]

=

n
∑

l=1

[

∑

Q∈D(n,l)

(

∏

(j,h)∈E(Q)

β̄jh

)

×
∑

(r,m)∈E(CQ)

(

2 −
S∗

r

Sr

−
SrImI∗r
S∗

r IrI∗m

)]

,

(5.27)

where D(n, l) presents the set of all unicyclic graphs of n vertices with
an oriented cycle of length l, CQ is the oriented cycle with length l in
a unicyclic graph Q ∈ D(n, l), and E(CQ) and E(Q) represent the sets
of arcs in CQ and Q, respectively. Since the cardinality of E(Q) is n,
the coefficient of each term in (5.27),

∏

(j,h)∈E(Q) β̄jh, is a product of n

β̄ij ’s. The cardinality of the set D(n, l) is

(5.28) D(n, l) =

(

n

l

)

nn−l−1 l!,
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and the cardinality of E(CQ) is the length l of the cycle CQ. By the
identity (2.8)

(5.29) nn =

n
∑

l=1

D(n, l) l,

we see that all terms in Hn are accounted for in our grouping (5.27).
For the oriented cycle CQ in any Q ∈ D(n, l), we have

(5.30)
∑

(r,m)∈E(CQ)

(

2 −
S∗

r

Sr

−
SrImI∗r
S∗

r IrI∗m

)

≤ 0.

By (5.27) and (5.30), we know Hn(S1, I1, S2, I2, . . . , Sn, In) ≤ 0 for all

(S1, I1, S2, I2, . . . , Sn, In) ∈
◦

Γ. Therefore, we have

V ′ ≤ 0.

We claim that if Sk = S∗
k , 1 ≤ k ≤ n, then

(5.31) Hn = 0 ⇐⇒ Ik = aI∗k , k = 1, 2, . . . , n,

where a is an arbitrary positive number. It suffices to show that Ik/I∗k =
Ir/I∗r when β̄kr 6= 0. By the irreducibility of (βij), there exists
1 ≤ m1, m2, . . . , ms ≤ n, 0 ≤ s ≤ n − 2 such that k, r, m1, . . . , ms

are distinct, and the product β̄krβ̄rm1
β̄m1m2

· · · β̄msk 6= 0. Further-
more, there exists a unicyclic graph Q ∈ D(n, l) such that E(CQ) =
{(k, r), (r, m1), . . . , (ms, k)} and

∏

(j,h)∈E(Q)

β̄jh 6= 0. Therefore, from

(5.27) and (5.30), we know Ik/I∗k = Ir/I∗r if Hn = 0.
From (5.8) and (5.31) we know that V ′ = 0 ⇔ Sk = S∗

k , Ik = aI∗k ,
k = 1, 2, . . . , n. Substituting Sk = S∗

k and Ik = aI∗k into the first
equation of system (1.3), we obtain

(5.32) 0 = (1 − pk)Λk − (dS
k + θk)S∗

k − a

n
∑

j=1

βkjS
∗
kI∗j .

Since the right-hand-side of (5.32) is strictly decreasing in a, by (5.6),
we know (5.32) holds if and only if a = 1, namely, at P ∗. Therefore, the
only compact invariant subset of the set where V ′ = 0 is the singleton
{P ∗}. By LaSalle’s Invariance Principle, P ∗ is global asymptotically

stable in
◦

Γ if R0 > 1. This completes the proof of Theorem 3.3.
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6 Basic reproduction number R0 We have derived our thresh-
old parameter

(6.1) R0 = ρ

























β11S0

1

dI
1
+ε1+γ1

· · ·
β1nS0

1

dI
1
+ε1+γ1

...
. . .

...

βn1S0

n

dI
n+εn+γn

· · ·
βnnS0

n

dI
n+εn+γn

























from the stability analysis of the disease-free equilibrium P0 using the
method of Lyapunov functions. We have shown that R0 plays the role
expected of the basic reproduction number, namely, if R0 ≤ 1 the dis-
ease always dies out, and if R0 > 1, the disease persists. In [35], a
method of deriving the basic reproduction number for epidemic models
in heterogeneous populations is proposed. Apply the method of [35] to
our model (1.3), we can derive the basic reproduction number as

(6.2) R0 = ρ

























β11S0

1

dI
1
+ε1+γ1

· · ·
β1nS0

1

dI
n+εn+γn

...
. . .

...

βn1S0

n

dI
1
+ε1+γ1

· · ·
βnnS0

n

dI
n+εn+γn

























,

where the matrix
(

βkjS0

k

dI
j+εj+γj

)

is called the next generation matrix in [7]

(see Example 4.2 in [35]). Biological interpretation of R0 in (6.2) as the
basic reproduction number is given in [7, 35]. It is straightforward to
verify that two expressions of R0 in (6.1) and (6.2) are equivalent.

7 Other incidence forms Our analysis in Sections 4 and 5 com-
pletely determines the global dynamics of multigroup SIR model (1.2).
The same analysis applies to models with certain proportionate inci-
dence forms.

Consider an n-group SIR model

(7.1)

S′
k = dNk(1 − pk) − (d + θk)Sk −

n
∑

j=1

λkj

Sk

Nk

Ij ,

I ′k =
n

∑

j=1

λkj

Sk

Nk

Ij − (d + γk)Ik,

R′
k = dNkpk + θkSk + γkIk − dRk,
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for k = 1, 2, . . . , n. In this model, the incidence is of proportionate form.
It can be verified that the total population in each group Nk = Sk +Ik +
Rk is a constant. Consequently, system (7.1) reduces to system (1.2) if
we choose Λk = dNk and βij = λij/Ni. Therefore, the global dynamics
of (7.1) is completely determined by Proposition 3.1 and Theorem 3.3.

Another class of n-group SIR models that can be reduced to the form
of (1.2) is the following.

(7.2)

S′
k = bNqk(1 − pk) − (d + θk)Sk −

n
∑

j=1

βkj

Sk

N
Ij ,

I ′k =

n
∑

j=1

βkj

Sk

N
Ij − (d + γk)Ik ,

R′
k = bNpkqk + θkSk + γkIk − dRk,

for k = 1, 2, . . . , n, where N =
∑n

k=1(Sk + Ik + Rk) denotes the total
population size, b and d respectively represent the birth and death rate
constants, qk is the ratio of new birth to enter the k-th group, and
∑n

k=1 qk = 1. The differences between (7.2) and (1.2) are in the influx
of susceptibles and the incidence forms.

The total population size N(t) can be determined by the differential
equation

(7.3) N ′ = (b − d)N,

which is derived by adding the equations in (7.2). Let sk = Sk/N ,
ik = Ik/N and rk = Rk/N denote the fractions of the classes Sk, Ik and
Rk in the total population, respectively. It can be verified that sk, ik
and rk satisfy the following system of differential equations

(7.4)

s′k = bqk(1 − pk) − (b + θk)sk −

n
∑

j=1

βkjskij ,

i′k =

n
∑

j=1

βkjskij − (b + γk)ik,

r′k = bpkqk + θksk + γkik − brk.

System (7.4) is a special case of system (1.2). From (1.6), we obtain the
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basic reproduction number for system (7.4)

(7.5) R0 = ρ





















bq1β11(1−p1)
(b+γ1)(b+θ1)

· · · bq1β1n(1−p1)
(b+γ1)(b+θ1)

...
. . .

...

bqnβn1(1−pn)
(b+γn)(b+θn) · · · bqnβnn(1−pn)

(b+γn)(b+θn)





















.

The feasible region for (7.4) is given as follows:

(7.6) ∆ =
{

(s1, i1, r1, s2, i2, r2, . . . , sn, in, rn) ∈ R
3n
+ |

sk + ik + rk = qk, k = 1, 2, . . . , n
}

.

System (7.4) always has the disease-free equilibrium

P0 = (s0
1, 0, r0

1, s
0
2, 0, r0

2 , . . . , s
0
n, 0, r0

n),

where

s0
k =

bqk(1 − pk)

b + θk

, r0
k =

qk(bpk + θk)

b + θk

, k = 1, 2, . . . , n.

An endemic equilibrium P ∗ = (s∗1, i
∗
1, r

∗
1 , s∗2, i

∗
2, r

∗
2 , . . . , s∗n, i∗n, r∗n) of (7.4)

belongs to
◦

∆, namely, s∗k > 0, i∗k > 0, r∗k > 0 for k = 1, 2, . . . , n. Applying
Proposition 3.1 and Theorem 3.3 to system (7.4), we obtain the following
result.

Theorem 7.1. Assume B = (βij) is irreducible. Then the following

results hold for system (7.4).

(1) If R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptot-

ically stable in ∆.

(2) If R0 > 1, then P0 is unstable. There exists a unique endemic

equilibrium P ∗, and P ∗ is globally asymptotically stable in
◦

∆.

Biologically, Theorem 7.1 implies that, if the basic reproduction num-
ber R0 ≤ 1, then the diseases dies out in the sense that infectious frac-
tions go to zero from all the groups, and if R0 > 1, then any initial
infections will lead to endemic disease in the sense that the infectious
fractions tend to a positive constant in all the groups.
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