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1. Introduction

We are concerned with the following neutral differential equation:

d

dt

[
x(t) + px(t − τ )

]= −ax(t) + b tanh x(t − τ ), t � 0, (E)

where a, b, p, τ are real numbers with τ , a > 0 and |p| < 1. With each solution x(t) of Eq. (E) we assume the initial
condition:

x(t) = φ(t), t ∈ [−τ ,0], φ ∈ C
([−τ ,0],R

)
.

Delay differential equations of various types that contain (E) as a special case have been proposed by many authors for
the study of the dynamical characteristics of neural networks of Hopfield type (see [5,8,21–23] and the references cited
therein). A majority of results on Eq. (E) deal with stability, oscillatory, non-oscillatory as well as asymptotic behaviors
of solutions such as global attractability of zero. An earlier result of El-Morshedy and Gopalsamy [5] proved, under the
assumption 0 < −peaτ < 1 and ap + b < 0 that solutions of (E) oscillate about the zero if either one of the following
conditions is satisfied:

(i) −(ap + b)τeaτ+1 > 1 + peaτ (1 − (ap+b)τeaτ

1+peaτ ),

(ii) −(ap + b)τeaτ+1 > (1 + peaτ )2.

A question of mathematical and biological interest is whether stable and sustained oscillations are possible for Eq. (E). In
the present paper, we provide a detailed analysis of this question. By applying the local Hopf bifurcation theory (see [12]
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and also [25,26,31,33]), we investigate the existence of stable periodic oscillations for Eq. (E). More specially, we prove that,
the equilibrium x = 0 loses its stability as τ increases, and a sequence of Hopf bifurcations occurs at the origin. Whereafter,
based on the normal form and center manifold theory due to [3,14], by using the method introduced in Wang and Wei [25],
we derive a sufficient condition for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic
solutions. Furthermore, the existence of periodic solutions for τ far away from the Hopf bifurcation values is also established,
by using a global Hopf bifurcation result due to Krawcewicz, Wu and Xia [16] (also see [34,36]). A key step in establishing
the global extension of the local Hopf branch at the first critical value τ = τ0 is to verify that Eq. (E) has no non-constant
periodic solutions of period 4τ . This is accomplished by applying a higher dimensional Bendixson’s criterion for ordinary
differential equations given by Li and Muldowney [18].

For the neutral differential equation

d

dt

[
x(t) + px(t − τ )

]= f (xt), (1.1)

it can be interpreted as a combination of the difference equation

x(t) + px(t − τ ) = 0 (1.2)

and a delay differential equation. The most of theory on delay differential equations can be paralleled to this type of
equation, including the decomposition of phase space, formal adjoint equation, representation of the solution operator
and so on. However, the solution operator T (t) of the linearization of Eq. (1.1) is the sum of an operator involving the
solution operator of Eq. (1.2) and a completely continuous operator, which implies T (t) is not compact any more when time
exceeding delay. This is also the crucial role which the difference equation (1.2) plays in the dynamical behaviors of Eq. (1.1).

The assumption |p| < 1 is to ensure that the zero solution of Eq. (1.2) is asymptotically stable. Therefore, the essential
spectrum radius of T (t) can be estimated since it is an α-contraction (the spectrum of T (t) is completely determined by
its infinitesimal generator). This allows to restrict Eq. (1.1) on an invariant manifold to an ordinary differential equation
that might totally determine the local dynamics of original equation. Such a reduction will simply Eq. (1.1) essentially and
has been adopted in many applications especially in the case of investigating Hopf bifurcation problems. However, it is
not the case if |p| > 1 as it is toughly to measure the essential spectrum radius of T (t). This indicates one cannot tell
where the solution near the equilibrium goes in general even if all the spectrum of infinitesimal generator is confirmed. For
example, all roots of the characteristic equation with negative real parts will not be leading to the asymptotical stability of
the equilibrium. Likewise, the restricted equation on the invariant manifold may not have the decisive effect on the original
equation. Based on the above mentioned facts, we assume that |p| < 1 in Eq. (E).

When p = 0, Eq. (E) becomes a retarded type differential equation, the generalization of which is in the following form:

dx(t)

dt
= −μx(t) + f

(
x(t − τ )

)
. (1.3)

Eq. (1.3) has been studied widely. For example, Walther [24], and Liz and Röst [19,20] have investigated the structure of
tractor under certain conditions, Wei [28] has studied the bifurcation of Eq. (1.3).

We would like to mention that, as far as we know, there are a few articles on the global existence of periodic solutions
for neutral differential equations, we refer to Krawcewicz, Wu and Xia [16,34,36] and Wei and Ruan [31]. Recently, several
interesting articles on the stability, bifurcation theory and numerical solutions of neutral differential equations, and the
fundamental theory of the neutral type differential equations and inclusions, have been published, we refer to [1,9,10,15,
25–27,2] and [11,13,17], respectively. The present paper is the first to study the global existence of periodic solutions of
neutral differential equations by combining the global Hopf bifurcation theory of neutral equations due to Krawcewicz, Wu
and Xia and the higher dimensional Bendixson’s criterion for ordinary differential equations due to Li and Muldowney. On
the study of global existence of periodic solutions of delay differential equations by using the combination of the global
Hopf bifurcation theory of delay equations due to Wu [35] and a higher dimensional Bendixson’s criterion for ordinary
differential equations given by Li and Muldowney [18], we refer to [6,28–30,32].

The rest of this paper is organized as follows: in Section 2, taking b and τ as parameters, we give the analysis of stability
and bifurcations at equilibria. Section 3 is devoted to establish the direction and stability of Hopf bifurcation. Finally, a global
Hopf bifurcation is established and some numerical simulations are carried out to illustrate the analytic results in Section 4.

2. Stability and bifurcation analysis

In this section, we shall investigate the stability and bifurcations of the equilibria by taking b and τ as bifurcation
parameters.

Obviously, x = 0 is always an equilibrium of Eq. (E). The linearization of Eq. (E) at x = 0 is given by

d

dt

[
x(t) + px(t − τ )

]= −ax(t) + bx(t − τ ),

whose characteristic equation is

�(λ) = λ
(
1 + pe−λτ

)+ (
a − be−λτ

)= 0. (2.1)
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Case 1. Choose b as parameter.

For convenience, we give two claims at first.

Claim 2.1. All the roots of Eq. (2.1) with b = 0 have negative real parts for any τ � 0.

Proof. When b = 0 and τ = 0, Eq. (2.1) becomes λ(1 + p) + a = 0, and the only root is λ = −a
1+p < 0.

iv0 (v0 > 0) is a zero of �(λ) with b = 0 if and only if v0 solves

iv0(1 + p cos v0τ − ip sin v0τ ) + a = 0.

Separating the real and imaginary parts gives that 1 + p cos v0τ = 0, which contradicts with |p| < 1. Then the conclusion
follows Wei and Ruan [31] and the proof is complete. �
Claim 2.2. Eq. (2.1) has at least one positive root when b > a.

In fact, the conclusion follows from �(0, τ ) = a − b < 0 and limλ→∞ �(λ, τ ) = ∞.
When b �= 0, iv(v > 0) is a root of Eq. (2.1) if and only if v satisfies

b sin vτ = −v(1 + p cos vτ ),

b cos vτ = a + pv sin vτ . (2.2)

It follows that

pv + a sin vτ + v cos vτ = 0,

and

b2 = v2(1 − p2)+ a2.

Denote G(v) = pv + a sin vτ + v cos vτ . It is straightforward that

G

(
(2m − 1)π

τ

)
= (p − 1)

(2m − 1)π

τ
< 0, G

(
2mπ

τ

)
= (p + 1)

2mπ

τ
> 0, m ∈ Z

+

and

G ′(v) = p + (aτ + 1) cos vτ − vτ sin vτ ,

G ′′(v) = −(aτ 2 + 2τ
)

sin vτ − vτ 2 cos vτ .

Then G ′′(v) = 0 if and only if tan vτ = − vτ
aτ+2 . Now, we can distinguish two cases. First, b > 0. For one thing, the zeros

of G(v) should be restricted on the intervals (
(2m−1)π

τ , 2mπ
τ ), m ∈ Z

+ by (2.2). For anther, G ′′(v) has only one zero on

(
(2m−1)π

τ , 2mπ
τ ), say v∗

m ∈ (
(2m− 1

2 )π

τ , 2mπ
τ ). This, combined with G ′′( (2m−1)π

τ ) > 0 and G ′′( 2mπ
τ ) < 0, gives

G ′′(v)

{
> 0, v ∈ (

(2m−1)π
τ , v∗

m),

< 0, v ∈ (v∗
m, 2mπ

τ ).

Then, using the information G ′( (2m−1)π
τ ) < 0 and G ′( 2mπ

τ ) > 0, one can easily show that there exists a unique value of v ,

denoted by v+
m , satisfying (2.2) on the interval (

(2m−1)π
τ , 2mπ

τ ), m ∈ Z
+ . Second, b < 0. With the similar process as above, it

is obtained that the only value of v , denoted by v−
m , solves (2.2) on each interval (

2(m−1)π
τ ,

(2m−1)π
τ ), m ∈ Z

+ .
Define

b+
m =

√
v+2

m
(
1 − p2

)+ a2 and b−
m = −

√
v−2

m
(
1 − p2

)+ a2, m ∈ Z
+. (2.3)

b±
m make sense since |p| < 1, and b+

m and b−
m are all dependent on τ . Hence, ±iv+

m(±iv−
m) are a pair of purely imaginary

roots of Eq. (2.1) with b = b+
m(b−

m).
Let λ(b) be the root of Eq. (2.1) satisfying λ(b±

m) = iv±
m . By substitution λ(b) into Eq. (2.1), it follows that(

dλ

db

)−1

= eλτ + p − λτ p + bτ .

This implies that

Re

(
dλ

db

)−1∣∣∣∣ ±
= a(b±

m + pa) + b±
mτ (a2 + v±2

m )

a2 + v±2
,

b=bm m
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where cos v±
mτ = ab−pv±2

m

a2+v±2
m

is used. Thus, we have the transversal condition

Sign Re

(
dλ

db

)∣∣∣∣
b=b±

m

=
{

1, b = b+
m,

−1, b = b−
m,

m ∈ Z
+. (2.4)

Accordingly, a Hopf bifurcation at x = 0 occurs when b = b±
m .

Moreover, it is fulfilled that b−
m+1 < b−

m < 0 < b+
m < b+

m+1, following the fact that 0 < v−
1 < v+

1 < v−
2 < v+

2 < · · · < v−
m <

v+
m < · · · , m ∈ Z

+ .
Summarizing the discussion above and applying Claims 1 and 2, we have the following.

Lemma 2.1. Assume that a > 0 and |p| < 1. Then there exist a sequence values of b defined by (2.3) such that all the roots of Eq. (2.1)
have negative real parts when b ∈ (b−

1 ,a), and Eq. (2.1) has at least one root with positive real part when b ∈ (−∞,b−
1 ) ∪ (a,+∞),

a pair of purely imaginary roots when b = b±
m (m ∈ Z

+).

Lemma 2.2. Eq. (E) undergoes a pitchfork bifurcation at x = 0 when b = a.

Proof. Let F (x) = −ax + b tanh x. Then we have F (0) = 0, F (±∞) = ∓∞ and F (−x) = −F (x). On the other hand, from
F ′(x) = −a + 4b

(ex+e−x)2 , we have F ′(0) = b − a > 0, and F ′′(x) = −8b(ex−e−x)

(ex+e−x)3 < 0. Thus, Eq. (E) has exactly a pair of non-

zero equilibria x = ±c (c ∈ R
+) besides zero as b > a, and only one steady-state x = 0 when b � a. Accordingly, pitchfork

bifurcation at x = 0 described as Fig. 1 occurs. This completes the proof. �
The conclusion of Lemma 2.2 has been obtained in El-Morshedy and Gopalsamy [5, Theorem 2.3]. From the above lemma,

it is known that there are two fixed points x = ±c (c > 0) of (E) bifurcating from zero when b > a. In the following, we will
investigate the stability of x = c (x = −c has similar results).

The linearization of Eq. (E) at x = c is

d

dt

[
x(t) + px(t − τ )

]= −ax(t) + bqx(t − τ ),

whose characteristic equation is

�c(λ, τ ) = λ
(
1 + pe−λτ

)+ (
a − qbe−λτ

)= 0, (2.5)

where q = 4
(ec+e−c)2 ∈ (0,1). In particular,

�c(λ,0) = λ(1 + p) + (a − qb) = 0,

which implies

λ = qb − a

1 + p
= F ′(c)

1 + p
< 0,

where F ′(x) is given in the proof of Lemma 2.2.
Eq. (2.5) has no zero root. In fact, if zero is a root of Eq. (2.5), then qb − a = F ′(c) = 0, which is a contradiction.
In order to prove that x = c is asymptotically stable for all τ ∈ R

+ , what we need is to verify that Eq. (2.5) has no purely
imaginary roots. Let iη (η > 0) be the root of �c(λ, τ ), then η solves

a cosητ − η sinητ = bq,

η cosητ + a sinητ = −ηp.

This leads to

η2 = b2q2 − a2

1 − p2
= (bq + a)F ′(c)

1 − p2
< 0.

The assertion follows.

Lemma 2.3. The zero solution of Eq. (E) is asymptotically stable when b = a.

Proof. Assume b = a. It is known from (2.1) that this characteristic equation has a simple zero root. Particularly, all the
other roots except λ = 0 have negative real parts. In order to investigate the stability of x = 0 for Eq. (E), what we need is
to employ the center manifold theory and normal form method (see [3,7,12]). Next, we will use the method presented in
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Wang and Wei [26] based on the method of computing normal forms for FDEs with parameters introduced by Faria et al.
[7], to carry out the study of stability of the zero solution x = 0.

Following the same algorithms as that in [26], let Λ = {0} and respectively B = 0. Clearly, the non-resonance conditions
relative to Λ are satisfied. Therefore, there exists a 1-dimensional ODE which governs the dynamics of Eq. (E) near the
origin (see [3] or [26]).

Introducing a new parameter b = a + μ, μ ∈ R, Eq. (E) is written as

d

dt
[Dxt] = L0xt + (Lμ − L0)xt + F (xt,μ), (2.6)

where, for any φ ∈ C := C([−τ ,0],R),

Dφ = φ(0) + pφ(−τ ), Lμ(φ) = −aφ(0) + (a + μ)φ(−τ )

and

F (φ,μ) = −1

3
(a + μ)φ3(−τ ) + 2

15
(a + μ)φ5(−τ ) + · · · .

Choosing

μ0(θ) =
{

p, θ = −τ ,

0, θ ∈ (−τ ,0] and η0(μ, θ) =
{−(a + μ), θ = −τ ,

0, θ ∈ (−τ ,0),

−a, θ = 0,

thus we obtain

Dφ = φ(0) −
0∫

−τ

dμ0(θ)φ(θ) and L0φ =
0∫

−τ

dη0(θ)φ(θ),

where η0(θ) = η0(0, θ).
Using the formal adjoint theory for NFDEs (see [12]), we decompose C by Λ as C = P ⊕ Q , where P = span{Φ(θ)} with

Φ(θ) = 1 is the center space for d
dt [Dxt] = L0xt . Choose a basis Ψ for the adjoint space P∗ , such that 〈Ψ,Φ〉 = 1, where 〈·,·〉

is the bilinear form on C∗ × C defined by

〈ψ,φ〉 = ψ(0)φ(0) −
0∫

−τ

d

[ θ∫
α=0

ψ(θ − α)dμ0(α)

]
φ(θ) −

0∫
−τ

s∫
θ=0

ψ(θ − s)dη0(s)φ(θ)dθ,

with C∗ := C([0, τ ],R
∗). Thus Ψ (s) = 1

1+p+τa .
Taking the enlarged phase space,

BC =
{
φ: [−τ ,0] → C, φ is continuous on [−τ ,0) and lim

θ→0
φ(θ) exists

}
,

we obtain the abstract ODE in the following form

d

dt
xt = Axt + X0G(xt ,μ), (2.7)

where for any φ ∈ C([−τ ,0],R), μ ∈ R,

Aφ = φ(θ)′ + X0
[
L0φ − Dφ′],

G(φ,μ) = (Lμ − L0)φ + F (φ,μ)

= μφ(−τ ) − 1

3
(a + μ)φ3(−τ ) + 2

15
(a + μ)φ5(−τ ) + · · · ,

and X0 = X0(θ) is given by

X0(θ) =
{

I, θ = 0,

0, θ ∈ [−τ ,0).

Consider the projection

π : BC → P , π(φ + X0α) = Φ
[
(Ψ,φ) + ψ(0)α

]
,

which leads to the decomposition BC = P ⊕ Kerπ . Then, using the decomposition xt = Φx(t) + y, x(t) ∈ C, y = y(θ) ∈ Q 1,
we decompose (2.7) as
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Fig. 1. Pitchfork bifurcation at x = 0.

ẋ = Bx + Ψ (0)G(Φx + y,μ),

ẏ = A Q 1 y + (I − π)X0G(Φx + y,μ). (2.8)

Note that

Ψ (0)G(Φx + y,μ)

= 1

1 + p + τa

{
μ
(
x + y(−τ )

)− 1

3
(a + μ)

(
x + y(−τ )

)3 + 2

15
(a + μ)

(
x + y(−τ )

)5 + · · ·
}
. (2.9)

Therefore, the locally invariant manifold for Eq. (E) tangent to P at zero satisfies y(θ) = 0 and the flow on this manifold is
given by the following 1-dimensional ODE

ẋ = 1

1 + p + τa

{
μx − 1

3
(μ + a)x3 + 2

15
(μ + a)x5 + · · ·

}
. (2.10)

Clearly, the zero solution of Eq. (2.10) is asymptotically stable when μ = 0, thus the zero solution of Eq. (E) is asymptotically
stable when b = a. The proof is complete. �

Applying Lemmas 2.1, 2.2 and 2.3, we have the following results.

Theorem 2.4. Assume that a > 0 and |p| < 1. Then

(i) The zero solution of Eq. (E) is asymptotically stable when b−
1 < b � a, and unstable when b ∈ (−∞,b−

1 (τ )) ∪ (a,∞). Moreover,
x = 0 is globally asymptotically stable when b2 < a2(1 − p2) (see [5, Theorem 3.1]).

(ii) Eq. (E) undergoes a pitchfork bifurcation at x = 0 when b = a. More precisely, a pair of new equilibria with opposite sign bifurcate
from zero and they are both asymptotically stable for τ > 0 when b > a.

(iii) Eq. (E) undergoes a Hopf bifurcation at x = 0 when b = b±
m(τ ), m ∈ Z

+ .

The conclusions of Theorem 2.4 are illustrated in Fig. 1.

Case 2. Regard τ as parameter.

First of all, we know that the root of Eq. (2.1) with τ = 0 satisfies that λ = b−a
1+p > 0 when b > a, and λ = b−a

1+p < 0 when
b < a.

Let iω(ω > 0) be a root of Eq. (2.1), then it follows that

sinωτ = −ω(pa + b)

a2 + ω2
and cosωτ = ab − ω2 p

a2 + ω2
. (2.11)

This leads to ω2 = b2−a2

1−p2 . ω0
def=
√

b2−a2

1−p2 makes sense when |b| > a. Define

τ j
def=

⎧⎪⎨
⎪⎩

1
ω0

(arccos
ab−ω2

0 p

a2+ω2
0

+ 2 jπ), b < −a,

1
ω0

(−arccos
ab−ω2

0 p

a2+ω2
0

+ 2( j + 1)π), b > a,

j = 0,1,2, . . . . (2.12)

Then iω0 is a purely imaginary root of Eq. (2.1) with τ = τ j defined by (2.12).
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Fig. 2. Bifurcation set on b–τ plane.

Let λ(τ ) = α(τ ) + i�(τ ) be the root of (2.1), satisfying

α(τ j) = 0 and �(τ j) = ω0.

Differentiating both sides of (2.1) gives that(
dλ

dτ

)−1

= eλτ + p

λ(λp − b)
− τ

λ
.

Therefore,

Re

(
dλ

dτ

)−1∣∣∣∣
τ=τ j

= 1 − p2

ω2
0 p2 + b2

> 0.

This implies that α′(τ j) > 0, j = 0,1,2, . . . .
Summarizing the discussions above, one can obtain the following.

Lemma 2.5.

(i) If |b| < a, then all roots of Eq. (2.1) have negative real parts.
(ii) If |b| > a, then there exist a sequence values of τ defined by (2.12) such that Eq. (2.1) has a pair of purely imaginary roots ±iω0

when τ = τ j . Additionally, if b < −a, then all roots of Eq. (2.1) have negative real parts when τ ∈ [0, τ0), all roots of Eq. (2.1),
except ±iω0 , have negative real parts when τ = τ0 , and Eq. (2.1) has at least a pair of roots with positive real parts when τ > τ0;
if b > a, then Eq. (2.1) has at least one positive root.

Spectral properties in Lemma 2.5 immediately lead to the dynamics near the origin described by the following theorem.

Theorem 2.6. For (E), the following hold.

(i) If b > a, then for all τ > 0, x = 0 is always unstable;
(ii) If |b| < a, then x = 0 is asymptotically stable for all τ ∈ R

+;
(iii) If b < −a, then x = 0 is asymptotically stable when 0 < τ < τ0 = τ0(b), and unstable when τ > τ0;
(iv) If |b| > a, then (E) undergoes a Hopf bifurcation at x = 0 when τ = τ j , j = 0,1,2, . . . .

The conclusions are illustrated in the following bifurcation set on the (b, τ )-plane (see Fig. 2). Here, τ0(b), τ1(b), τ2(b),

. . . , τ j(b), . . . are Hopf bifurcation curves and b = a is pitchfork bifurcation curve. When

(b, τ ) ∈ D := {
(b, τ )

∣∣ b < −a, 0 � τ � τ0(b)
}∪ {(b, τ )

∣∣−a � b � a, τ � 0
}
,

x = 0 is asymptotically stable, and when (b, τ ) ∈ {(b, τ ) | Dc, τ � 0}, the zero solution is unstable, where Dc denotes the
complement of D on the set {(b, τ ) ∈ R

2 | τ � 0}.
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Remark 2.1. Denote the curves τ = τ0(b) and b = a by l1 and l2, respectively. Clearly, l1 and l2 are two parts of the boundary
of D . Theorem 2.4(i) shows that the zero solution of Eq. (E) is asymptotically stable when (b, τ ) ∈ l2. We shall prove that
the zero solution of Eq. (E) is also asymptotically stable when (b, τ ) ∈ l1 in the next section (see Remark 3.1).

Remark 2.2. Proceeding as in Case 2, p or a can also be chosen as bifurcation parameters to obtain the similar results on
stability and Hopf bifurcation of (E) at x = 0. However, b is the only parameter to make (E) undergoes pitchfork bifurcation
apart from Hopf bifurcation.

3. Properties of Hopf bifurcation

Theorem 2.4(iii) and Theorem 2.6(iv) in the previous section give the sufficient conditions for (E) to undergo Hopf
bifurcations with b and τ as bifurcation parameters. In this section, we shall investigate the direction of Hopf bifurcation
and stability of the bifurcating periodic solutions, following the same algorithms as Wang and Wei’s recent work and using
a computation process similar to that in [25] (see also [27]). We should mention that we will choose τ as bifurcation
parameter and the similar results follow when choosing other coefficients as bifurcation parameters.

Let y(t) = x(τ t), then (E) becomes

d

dt

[
y(t) + py(t − 1)

]= −aτ y(t) + bτ tanh y(t − 1), (E0)

whose characteristic equation around y = 0 is

(aτ + z)ez + (zp − bτ ) = 0. (3.1)

Comparing (3.1) with (2.1), it is found that z = λτ for τ �= 0. Therefore, combining this fact with Lemma 2.5, one has

Lemma 3.1. Assume |b| > a.

(i) If τ = τ j , j = 0,1,2, . . . , then (3.1) has a pair of purely imaginary roots ±iω0τ j , where τ j and ω0 are defined by (2.12);
(ii) Let z(τ ) = γ (τ ) + iζ(τ ) be the root of (3.1), satisfying

γ (τ j) = 0 and ζ(τ j) = ω0τ j,

then

γ ′(τ j) = τ jα
′(τ j) > 0, j = 0,1,2, . . . ; (3.2)

(iii) (3.1) has at least a pair of roots with positive real parts when τ = τ j for j � 1, and it has a positive root when b > a and τ = τ0 .
All roots of (3.1) with τ = τ0 , except ±iω0τ0 , have negative real parts when b < −a.

For convenience, denote τ = τ j + ν . Then we know that Eq. (E0) undergoes a Hopf bifurcation at the origin when ν = 0.
For φ ∈ C([−1,0],R), let

D(φ) = φ(0) + pφ(−1), L(ν,φ) = −a(τ j + ν)φ(0) + b(τ j + ν)φ(−1)

and

F (ν,φ) = −1

3
b(τ j + ν)φ3(−1) + 2

15
b(τ j + ν)φ5(−1) + · · · . (3.3)

By the Riesz Representation Theorem, there exist functions η(θ) and μ(θ) such that

D(φ) = φ(0) −
0∫

−1

dμ(θ)φ(θ), L(ν,φ) =
0∫

−1

dη(θ)φ(θ).

In fact, we can choose

μ(θ) =
{

p, θ = −1,

0, θ ∈ (−1,0] and η(θ) =
⎧⎨
⎩

−b(τ j + ν), θ = −1,

0, θ ∈ (−1,0),

−a(τ j + ν), θ = 0.

Define

A(ν)φ =
{

dφ(θ)/dθ, θ ∈ [−1,0),

φ′(0) − Dφ′(θ) + Lφ, θ = 0
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and

R(ν)φ =
{

0, θ ∈ [−1,0),

F (ν,φ), θ = 0.

Then (E0) can be written as

ẏt = A(ν)yt + R(ν)yt . (3.4)

Clearly, Eq. (3.4) is an abstract ODE on the phase space BC′ (see [26]) of Eq. (E0), where

BC′ =
{
φ: [−1,0] → C, φ is continuous on [−1,0) and lim

θ→0
φ(θ) exists

}
.

The adjoint operator Ã∗ is defined by Ã∗ψ = − dψ
ds with domain

D
(

Ã∗)=
{
ψ ∈ C ′ def= C

([0,1],R
)
:

dψ

ds
∈ C ′; D

dψ

ds
= −Lψ

}
.

For (ψ,ϕ) ∈ C ′ × C , define a bilinear form:

(ψ,φ) = ψ̄(0)φ(0) −
0∫

−1

d

[ θ∫
α=0

ψ̄(θ − α)dμ(α)

]
φ(θ) −

0∫
−1

s∫
θ=0

ψ̄(θ − s)dη(s)φ(θ)dθ.

It is not difficult to verify that q(θ) = eiω0τ jθ (θ ∈ [−1,0]) and q∗(s) = l̄eiω0τ j s (s ∈ [0,1]) are the eigenvectors of A(0)

and A∗ corresponding to the eigenvalues iω0τ j and −iω0τ j , respectively, where

l = 1

1 + pe−iω0τ j + bτ je−iω0τ j

and (q∗,q) = 1.
Now we compute the center manifold C0 at ν = 0. Define

z(t) = (q∗, yt), W (t, θ) = yt(θ) − 2 Re
{

z(t)q(θ)
}
,

then we have

ż(t) = iω0τ j z + q̄∗(0)F (0, yt). (3.5)

Eq. (3.5) can be written in the abbreviated form as

ż(t) = iω0τ j z + g(z, z̄) (3.6)

with

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ · · · . (3.7)

Noting that yt(θ) = W (t, θ) + z(t)q(θ) + z̄(t)q̄(θ), we have

yt(−1) = ze−iω0τ j + z̄eiω0τ j + W20(−1)
z2

2
+ W11(−1)zz̄ + W02(−1)

z̄2

2
+ · · · .

Therefore, from (3.3), we have

F (0, yt) = −1

3
bτ j

[
ze−iω0τ j + z̄eiω0τ j + W20(−1)

z2

2
+ W11(−1)zz̄ + W02(−1)

z̄2

2
+ · · ·

]3

+ · · ·

def= F z2
z2

2
+ F zz̄zz̄ + F z̄2

z̄2

2
+ F z2 z̄

z2 z̄

2
+ · · · .

Substituting the expression of F (0, yt) into (3.5) and comparing its coefficients with that of (3.6) gives that

g20 = g02 = g11 = 0,

and

g21 = q̄∗(0) · F z2 z̄ = −2bτ jle
−iω0τ j .
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It is well known that the coefficient c1(0) of third degree term of Poincaré normal form of Eq. (3.5) is given by (see [14])

c1(0) = i

2ω0τ j

(
g20 g11 − 2‖g11‖2 − 1

3
‖g02‖2

)
+ g21

2
. (3.8)

Consequently,

c1(0) = −lbτ je
−iω0τ j = − bτ j

eiω0τ j + p + bτ j
. (3.9)

From (2.1) we know that

eiω0τ j = b − ipω0

a + iω0
= ab − pω2

0 − iω0(b + ap)

a2 + ω2
0

.

Substituting this into (3.9) yields that

c1(0) = − 1

�

[
bτ j

(
a2 + ω2

0

)(
bτ j

(
a2 + ω2

0

)+ ab + a2 p
)+ iω0bτ j

(
a2 + ω2

0

)
(b + ap)

]
and hence

Re c1(0) = − 1

�
bτ j

(
a2 + ω2

0

)[
bτ j

(
a2 + ω2

0

)+ ab + a2 p
]
, (3.10)

where

� = (
bτ j

(
a2 + ω2

0

)+ ab + a2 p
)2 + ω2

0(b + ap)2.

Notice that |b| > a and |p| < 1, it follows that Sign(ab + a2 p) = Sign b. Hence, from (3.10), we obtain

Re c1(0) < 0.

Therefore, from γ ′(τ j) > 0 as well as

μ2 = −Re c1(0)

γ ′(τ j)
and β2 = 2 Re c1(0)

we have, respectively,

μ2 > 0 and β2 < 0.

Summarizing the above analysis, we have the theorem as follows.

Theorem 3.2. Assume |b| > a. Then the direction of the Hopf bifurcation at the origin when τ = τ j ( j = 0,1, . . .) is forward, that is the
bifurcating periodic solutions exist for τ > τ j ( j = 0,1, . . .) and close to τ j . And the bifurcating periodic solutions are asymptotically
stable at the first bifurcation value τ0 when b < −a.

Remark 3.1. The zero solution of Eq. (E0) (or Eq. (E)) is asymptotically stable when (b, τ ) ∈ l1, where l1 is defined in
Remark 2.1.

In fact, we have known that the normal form of the restriction of Eq. (E) with τ = τ0 on the center manifold is given by

ż(t) = iω0τ j z + c1(0)z2 z̄ + · · · (3.11)

and Re c1(0) < 0. It is not difficult to obtain that the zero solution of Eq. (3.11) is asymptotically stable via Liapunov’s second
method, and hence the zero solution of Eq. (E) does.

4. Global Hopf bifurcation analysis

Our objective in this section is to obtain the global continuation of periodic solutions bifurcating from the point (0, τ j),
j = 0,1,2, . . . for Eq. (E) by using a global Hopf bifurcation theorem given by Krawcewicz et al. [16]. For the reader’s
convenience, we copy Eq. (E0), which is equivalent to (E), as follows

d

dt

[
y(t) + py(t − 1)

]= −aτ y(t) + bτ tanh y(t − 1). (E0)

We have known that Eq. (E0) undergoes a local Hopf bifurcation at the origin when τ = τ j ( j = 0,1, . . .) and the bifurcation
is supercritical. Now we begin to show that each bifurcation branch can be continued with respect to the parameter τ
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under certain conditions. To bring out the ideas in the results of subsequent part, it is convenient to introduce the following
notations:

X = C
([−1,0],R

)
,

Σ = Cl
{
(y, τ , T ): y is a T-periodic solution of (E0)

}⊂ X × R+ × R+,

N = {
( ŷ, τ , T ): aŷ = b tanh ŷ

}
.

Denote C(0, τ j,2π/(τ jω0)) the connected component of (0, τ j,2π/(τ jω0)) in Σ , where ω0 =
√

b2−a2

1−p2 and τ j ( j =
0,1,2, . . .) are defined by (2.12).

Lemma 4.1. If p ∈ (− 1
2 ,0), then all periodic solutions of (E0) are uniformly bounded. Precisely, if x(t) is a periodic solution of (E0),

then x(t) ∈ [− |b|
a(1+2p)

,
|b|

a(1+2p)
].

Proof. Let x(t) be a periodic solution of (E0). Then there exist t1 and t2 such that

x(t1) + px(t1 − 1) = max
t∈R

[
x(t) + px(t − 1)

]
,

x(t2) + px(t2 − 1) = min
t∈R

[
x(t) + px(t − 1)

]
, (4.1)

together with T 0 and T0 such that

x
(
T 0)= max

t∈R+ x(t) and x(T0) = min
t∈R+ x(t).

Employing the way used by Krawcewicz, Wu and Xia [16, p. 211] or Wei and Ruan [31], one can obtain that for p ∈
(−1,0),

x(t2) + px(t2 − 1)

1 + p
� x(t) � x(t1) + px(t1 − 1)

1 + p
. (4.2)

By (4.1), we have from (E0) that

x(ti) = b

a
tanh x(ti − 1) ∈

[
−|b|

a
,
|b|
a

]
, i = 1,2, (4.3)

and

x(t1) + px(t1 − 1) � x
(
T 0)+ px

(
T 0 − 1

)
. (4.4)

Hence, (4.2), (4.3) and (4.4) yield that

x
(
T 0)+ px

(
T 0 − 1

)
� x(t1) + px(t1 − 1)

� |b|
a

+ p

1 + p

[
x(t2) + px(t2 − 1)

]
� |b|

a
+ p

1 + p

[
−|b|

a
+ px(t2 − 1)

]
.

Noting the meaning of T 0, we arrive at

(1 + p)x
(
T 0)� |b|

a(1 + p)
+ p2

1 + p
x
(
T 0).

Hence,

x
(
T 0)� |b|

a(1 + 2p)
.

Similarly, one can prove that

x(T0) � − |b|
a(1 + 2p)

.

Thus the proof is complete. �
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Lemma 4.2. If b ∈ (−√
2a,−a), then there exists a p0 ∈ (− 1

2 ,0) such that Eq. (E0) has no periodic non-constant solution of period 4
when p ∈ (p0,0].

Proof. Let y(t) be a periodic solution to Eq. (E0) of period 4. Set

u j(t) = y
(
t − ( j − 1)

)
, j = 1,2,3,4.

Then u(t) = (u1(t), u2(t), u3(t), u4(t)) is a periodic solution to the following system of ordinary differential equations:

u̇1(t) + pu̇2(t) = −aτu1(t) + bτ tanh u2(t)
def= f1,

u̇2(t) + pu̇3(t) = −aτu2(t) + bτ tanh u3(t)
def= f2,

u̇3(t) + pu̇4(t) = −aτu3(t) + bτ tanh u4(t)
def= f3,

u̇4(t) + pu̇1(t) = −aτu4(t) + bτ tanh u1(t)
def= f4, (4.5)

which is equivalent to

u̇1(t) = 1

1 − p4

(
f1 − pf2 + p2 f3 − p3 f4

)
,

u̇2(t) = 1

1 − p4

(
f2 − pf3 + p2 f4 − p3 f1

)
,

u̇3(t) = 1

1 − p4

(
f3 − pf4 + p2 f1 − p3 f2

)
,

u̇4(t) = 1

1 − p4

(
f4 − pf1 + p2 f2 − p3 f3

)
, (4.6)

where · denotes d
dt . Denote

G =
{

u ∈ R
4: u j ∈

[
− |b|

a(1 + 2p)
,

|b|
a(1 + 2p)

]
, j = 1,2,3,4

}
.

Lemma 4.1 shows that the periodic solutions of Eq. (E0) belong to the region G . To rule out the 4-periodic solution to
Eq. (E0), it suffices to prove the nonexistence of non-constant periodic solutions of (4.6) in the region G . To do the latter, we
use a general Bendixson’s criterion in higher dimensions developed by Li and Muldowney [18]. More specifically, we shall
apply Corollary 3.5 in [18]. The Jacobian matrix J = J (u) of (4.6), for u ∈ R

4, is

J (u) = τ

1 − p4

⎛
⎜⎝

−a − bp3 F (u1) ap + bF (u2) −ap2 − bpF (u3) ap3 + bp2 F (u4)

ap3 + bp2 F (u1) −a − bp3 F (u2) ap + bF (u3) −ap2 − bpF (u4)

−ap2 − bpF (u1) ap3 + bp2 F (u2) −a − bp3 F (u3) ap + bF (u4)

ap + bF (u1) −ap2 − bpF (u2) ap3 + bp2 F (u3) −a − bp3 F (u4)

⎞
⎟⎠ ,

where F (υ) = 4
(eυ+e−υ )2 ∈ (0,1].

The second additive compound matrix J [2](u) of J (u) is

J [2](u) = τ

1 − p4

(
A11 A12
A21 A22

)
,

where

A11 =
(−2(a + bp3(F1 + F2)) ap + bF3 −ap2 − bpF4

ap3 + bp2 F2 −2(a + bp3(F1 + F3)) ap + bF4
−ap2 − bpF2 ap3 + bp2 F3 −2(a + bp3(F1 + F4))

)
,

A12 =
(ap2 + bpF3 −ap3 − bp2 F4 0

ap + bF2 0 −ap3n − bp2 F4
0 ap + bF2 −ap2 − bpF3

)
,

A21 =
(ap2 + bpF1 ap3n + bp2 F1 0

−ap − bF1 0 ap3 + bp2 F1
0 −ap − bF1 −ap2 − bpF1

)
,

A21 =
(−2(a + bp3(F2 + F3)) ap + bF4 ap2 + bpF4

ap3 + bp2 F3 −2(a + bp3(F2 + F4)) ap + bF3
ap2 + bpF2 ap3 + bp2 F2 −2(a + bp3(F3 + F4))

)
.

Here Fi = F (ui), i = 1,2,3,4.
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Choose a vector norm in R
6∣∣(x1, x2, x3, x4, x5, x6)

∣∣= max
{√

2|x1|, |x2|,
√

2|x3|,
√

2|x4|, |x5|,
√

2|x6|
}
.

Then the Lozinskii measure μ( J [2](u)) of J [2](u) with respect to this norm is (see [4])

μ
(

J [2](u)
)= τ

1 − p4
max E,

where E is a set with 6 elements as follows:

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−2[a + bp3(F1 + F2)] + (
√

2 − p)|ap + bF3| − p(1 − √
2p)|ap + bF4|,

−2[a + bp3(F1 + F3)] +
√

2
2 (1 + p2)(|ap + bF2| + |ap + bF4|),

−2[a + bp3(F1 + F4)] + (
√

2 − p)|ap + bF2| − p(1 − √
2p)|ap + bF3|,

−2[a + bp3(F2 + F3)] + (
√

2 − p)|ap + bF4| − p(1 − √
2p)|ap + bF1|,

−2[a + bp3(F2 + F4)] +
√

2
2 (1 + p2)(|ap + bF1| + |ap + bF3n|),

−2[a + bp3(F3 + F4)] + (
√

2 − p)|ap + bF1| − p(1 − √
2p)|ap + bF2|}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

By Corollary 3.5 in [18], system (4.6) has no periodic orbits in the region G if μ( J [2](u)) < 0 for all u ∈ G .
In fact, when b < −a, using the fact that Fi = F (ui) ∈ (0,1], one can acquire the inequality as below,

μ
(

J [2](u)
)
<

τ

1 − p4

{−2a + (ap + b)
[
2p − √

2
(
1 + p2)]}.

Denote

H(p) = −2a + (ap + b)
[
2p − √

2
(
1 + p2)].

It is easy to see that

H(0) = −2a − √
2b < 0, H

(
−1

2

)
=
(

−3

2
+ 5

8

√
2

)
a −

(
1 + 5

4

√
2

)
b > 0

and H ′(p) < 0 for p ∈ (−1,0]. Thus, there exists unique zero p0 of H(p) on (− 1
2 ,0) such that μ( J [2](u)) < 0 when p ∈

(p0,0], which completes the proof. �
Lemma 4.3. The following hold:

(i) Eq. (E0) has no periodic non-constant solution of period 1;
(ii) If either b < −a and p ∈ (−1,0] or b > a and p ∈ (−a/b,0] is satisfied, then Eq. (E0) has no periodic non-constant solution of

period 2 (see also [16, Lemma 6.3]).

Proof. The assumption that Eq. (E0) has no non-constant periodic solution of period 1 is equivalent to the fact that Eq. (E)
with τ = 0 has no non-constant periodic solution. It is well known that the first order autonomous ODE has no non-constant
periodic solutions. Eq. (E) with τ = 0 is the first order autonomous ODE, and the proof of (i) is complete.

As in the proof of Lemma 4.2, let u(t) be a periodic solution of (E0) of period 2, then u1(t) = u(t) and u2(t) = u(t − 1)

are periodic solutions of the system of ordinary differential equations

u̇1(t) + pu̇2(t) = −aτu1(t) + bτ tanh u2(t),

u̇2(t) + pu̇1(t) = −aτu2(t) + bτ tanh u1(t),

which is equivalent to

u̇1(t) = τ

1 − p2

[−a
(
u1(t) − pu2(t)

)+ b
(
tanh u2(t) − p tanh u1(t)

)] def= P (u1, u2),

u̇2(t) = τ

1 − p2

[−a
(
u2(t) − pu1(t)

)+ b
(
tanh u1(t) − p tanh u2(t)

)] def= Q (u1, u2). (4.7)

Then

∂ P

∂u1
+ ∂ Q

∂u2
= − 2τ

1 − p2

[
a + 2bp

(
1

(eu1 + e−u1)2
+ 1

(eu2 + e−u2)2

)]
< 0

when either b < −a and p ∈ (−1,0] or b > a and p ∈ (−a/b,0] holds. Thus the classical Bendixson’s negative criterion
implies that (4.7) has no non-constant periodic solution and thus the proof of lemma is complete. �
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Lemma 4.4. If b > a and p ∈ (−1,0], then τ0ω0 ∈ ( 3π
2 ,2π). If b < −a and p ∈ ( a

b ,0], then τ0ω0 ∈ ( π
2 ,π). Here τ0 and ω0 are

defined as in (2.12).

Proof. From (2.11), we have that sinω0τ0 = −ω0(pa+b)

a2+ω2
0

and cosω0τ0 = ab−ω2
0 p

a2+ω2
0

. b > a and p ∈ (−1,0] imply that τ0ω0 ∈
( 3π

2 ,2π).
Now we verify the second conclusion. Using (2.11) again, we have that if b < −a, then sinω0τ0 > 0 and thus τ0ω0 ∈

(0,π). From cosω0τ0 = ab−ω2
0 p

a2+ω2
0

and ω2
0 = b2−a2

1−p2 , it follows that

ab − ω2
0 p = 1

1 − p2

[
ab − abp2 − (

b2 − a2)p
]
.

Denote

g(p)
def= ab − abp2 − (

b2 − a2)p.

One can obtain that g(p) < 0 when p ∈ ( a
b ,0]. This implies that cosω0τ0 < 0 and completes the proof. �

Up to now, we have prepared sufficiently to state the following global Hopf bifurcation results.

Theorem 4.5. Let τ j ( j = 0,1,2, . . .) be defined by (2.12).

(i) If |b| > a and p ∈ (− 1
2 ,0], then for each τ > τ j ( j � 1), Eq. (E0) has at least one periodic solution.

(ii) If b ∈ (−√
2a,−a), then there exists a p0 ∈ (− 1

2 ,0) such that, for p ∈ (p0,0], Eq. (E0) has at least one periodic solutions for
τ > τ j ( j � 0) and at least two periodic solutions for τ > τ j ( j � 1).

(iii) If b > a and p ∈ (− a
b ,0] ∩ (− 1

2 ,0], then Eq. (E0) has at least one periodic solution for τ > τ j ( j � 0) and at least two periodic
solutions for τ > τ j ( j � 1).

Proof. First note that for any τ j , the stationary points (0, τ j,
2π

τ jω0
) of (E0) are nonsingular and isolated centers (see

Krawcewicz, Wu and Xia [16]) under the assumption |b| > a, then the hypothesis (H2) in [16] is satisfied. By (3.2), there
exist ε > 0, δ > 0 and a smooth curve λ : (τ j − δ, τ j + δ) → C, such that

�0
(
λ(τ )

)= �0(0,τ ,T )

(
λ(τ )

)= 0,
∣∣λ(τ ) − iτ jω0

∣∣< ε,

for all τ ∈ [τ j − δ, τ j + δ], where �0 is defined as (3.1), and

λ(τ j) = iτ jω0,
d Re(λ(τ ))

dτ

∣∣∣∣
τ=τ j

> 0.

Denote p j = 2π
τ jω0

and let

Ωε = {
(0,q): 0 < u < ε, |q − p j| < ε

}
.

Clearly, if |τ − τ j | � δ and (u,q) ∈ Ωε such that �0(0,τ ,T )(u + 2π i
q ) = 0, then τ = τ j , u = 0 and q = p j . Moreover, putting

H±
(

0, τ j,
2π

τ jω0

)
(u,q) = �0(0,τ j±δ,T )

(
u + i

2π

q

)
,

we have the crossing number

γ1

(
0, τ j,

2π

τ jω0

)
= degB

(
H−
(

0, τ j,
2π

τ jω0

)
, Ωε

)
− degB

(
H+
(

0, τ j,
2π

τ jω0

)
, Ωε

)
= −1.

By the local Hopf bifurcation theorem for NFDE [16, Theorem 5.6], we conclude that the connected component C(0, τ j,
2π

τ jω0
)

through (0, τ j,
2π

τ jω0
) in Σ is nonempty. Meanwhile, we have∑

( ŷ,τ ,T )∈C(0,τ j,
2π

τ jω0
)

γ1( ŷ, τ , T ) < 0

and thus C(0, τ j,
2π

τ jω0
) is unbounded by the global Hopf bifurcation theorem given by Krawcewicz, Wu and Xia [16, Theo-

rem 5.14].
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Fig. 3. Matlab simulations of (E) with a = 3, b = −3.2, p = −0.1, where (a) with τ = 2.4 < τ0 = 2.4568, (b) with τ = 5 ∈ (τ0, τ1), (c) with τ = 10 ∈ (τ1, τ2)

and (d) with sufficiently large τ = 50.

Lemma 4.1 implies that the projection of C(0, τ j,
2π

τ jω0
) onto the y-space is bounded. Meanwhile, Eq. (E) with τ = 0

has no periodic non-constant solutions since it is the first order autonomous ordinary differential equation. Therefore, the
projection of C(0, τ j,

2π
τ jω0

) onto the τ -space is bounded below.

By the definition of τ j given in (2.12), we know that

2π < τ jω0 < 2( j + 1)π, j � 1,

under the assumptions that |b| > a and p ∈ (−1,0], which implies

1

j + 1
<

2π

τ jω0
< 1.

Applying Lemma 4.3(i), one has that 1
j+1 < T < 1 if (x, τ , T ) ∈ C(0, τ j,2π/(τ jω0)) for j � 1, when p ∈ (− 1

2 ,0] and |b| > a.
This and Lemma 4.1 show that in order for C(0, τ j,2π/(τ jω0)) to be unbounded, its projection onto the τ -space must be
unbounded. Consequently, the projection of C(0, τ j,2π/(τ jω0)) onto the τ -space include [τ j,∞) for j � 1 if p ∈ (− 1

2 ,0]
and |b| > a. The conclusion of (i) follows.

For (ii), b ∈ (−√
2a,−a) implies that b > −√

2a > −2a and thus a
b < − 1

2 . This leads to (− 1
2 ,0] ⊆ ( a

b ,0] when

b ∈ (−√
2a,−a). Consequently, we know by Lemma 4.4 that when b ∈ (−√

2a,−a) and p ∈ (− 1
2 ,0],

π

2
< τ0ω0 < π,

which implies

2 <
2π

τ0ω0
< 4.

Applying Lemmas 4.2 and 4.3(ii), we have that 2 < T < 4 when

(x, τ , T ) ∈ C
(
0, τ0,2π/(τ0ω0)

)
,

when b ∈ (−2
√

a,−a) and p ∈ (p0,0]. This and Lemma 4.1 show that in order for C(0, τ0,2π/(τ0ω0)) to be unbounded,
its projection onto the τ -space must be unbounded. Thus, the projection of C(0, τ0,2π/(τ0ω0)) onto the τ − space in-
clude [τ0,∞). Besides, the number of periodic solutions will be explained in the consequent remark. The proof of (ii) is
complete. �

In the same way, one can prove the result in (iii), we omit the proof here.

Remark 4.1. From the proof of the Theorem 4.5, we know that the first global Hopf branch contains periodic solutions
of period between 2 and 4. They are the slowly oscillating periodic solutions. The j-th branches, for j � 1, contain fast-
oscillating periodic solutions, since the periods are less than 1.
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Next we carry out some numerical simulations for Eq. (E).
Assume that a = 3,b = −3.2 ∈ (−3

√
2,−3) and p = −0.1. From Lemma 4.3, it is obtained that the zeros of H(p) on

(− 1
2 ,0) is p0 ≈ −0.1229, thus p ∈ (p0,0). Moreover, we compute that ω0 ≈ 1.1192 and τ j ≈ 2.4568 + 5.6140 j ( j = 0,

1,2, . . .). Accordingly, it is known that x = 0 is asymptotically stable for τ ∈ (0, τ0) and unstable for τ > τ0, and Hopf
bifurcation at x = 0 occurs when τ = τ0. By Theorem 3.1, the direction of the Hopf bifurcation at τ = τ0 is forward, and
the bifurcating periodic solutions are asymptotically stable. Furthermore, according to Theorem 4.5, Eq. (E) with this set of
parameters has at least one periodic solution when τ > τ0.

Notice also that, under this data the precondition 0 < −peaτ < 1 appeared in H. El-Morshedy and K. Gopalsamy [5] for
the oscillatory of (E) implies 0 < τ < 0.7675. However, out of this range, all the theorem in [5] for judging oscillation of (E)
cannot work, therefore, we cannot know the existence of oscillatory solutions. Here, from our analysis as well as simulations
(see Fig. 3), it is obviously that there exist periodic oscillatory solutions when τ � 2.4568.
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