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A GRAPH-THEORETIC APPROACH TO THE METHOD
OF GLOBAL LYAPUNOV FUNCTIONS
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(Communicated by Carmen C. Chicone)

Abstract. A class of global Lyapunov functions is revisited and used to re-
solve a long-standing open problem on the uniqueness and global stability of
the endemic equilibrium of a class of multi-group models in mathematical epi-
demiology. We show how the group structure of the models, as manifested in
the derivatives of the Lyapunov function, can be completely described using
graph theory.

1. Introduction

Let a function x !→ f(x) ∈ RN be defined in an open region D ⊂ RN such that
the differential equation

(1.1) x′ = f(x), x ∈ D,

has a unique solution x(t, x0) for each initial point x0 ∈ D. An equilibrium x̄ ∈ D is
globally stable in D if it is locally stable and x(t, x0) → x̄ as t → ∞ for all x0 ∈ D.
A function x !→ V (x) ∈ R1 is said to be a global Lyapunov function of (1.1) for D
if

•
V (x) = gradV (x) · f(x) ≤ 0, x ∈ D.

A classical theorem of Lyapunov states that if (1) V (x) ≥ 0 for x ∈ D and V (x) = 0

iff x = x̄, and (2)
•
V (x) ≤ 0 for x ∈ D and

•
V (x) = 0 iff x = x̄, then x̄ is globally

stable in D. Lyapunov’s theorem was further extended as the LaSalle Invariance
Principle [12]: if V (x) is a global Lyapunov function in D, then all omega limit
sets of (1.1) are contained in the maximal compact invariant subset K of G =

{x ∈ D :
•
V (x) = 0}. In particular, if D is positively invariant and K = {x̄}, then

x(t, x0) → x̄ as t → ∞. We note that this also implies the local stability of x̄, since
otherwise K would contain a non-constant full orbit.

In the literature of ecological models, the region D is typically in the positive
cone of RN , and a class of Lyapunov functions

(1.2) V (x) =
N∑

k=1

ak(xk − x̄k ln xk)

Received by the editors November 8, 2006.
2000 Mathematics Subject Classification. Primary 34D23, 92D30.
Key words and phrases. Lyapunov functions, multi-group epidemic models, global stability,

graph theory.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

2793



2794 HONGBIN GUO, MICHAEL Y. LI, AND ZHISHENG SHUAI

has proven useful; see e.g. [3, 9] and the references therein. Recently, this form of
Lyapunov functions was applied to several single-group epidemic models and used
to prove the global stability of a unique endemic equilibrium [4, 10]. In the present
paper, to further demonstrate the applicability of this form of Lyapunov functions,
we apply them to a class of n-group (n ≥ 2) epidemic models of SEIR type with
bilinear incidence, described by the following system of equations:

(1.3)






S′
k = Λk − dS

k Sk −
n∑

j=1

βkjSkIj ,

E′
k =

n∑

j=1

βkjSkIj − (dE
k + εk)Ek, k = 1, 2, · · · , n,

I ′k = εkEk − (dI
k + γk)Ik.

Here Sk, Ek, and Ik denote the population in the k-th group that are susceptible
to the disease, infected but non-infectious, and infectious, respectively. The pa-
rameters in the model are non-negative constants and summarized in the following
list:

βkj : transmission coefficient between compartments Sk and Ij ,
dS

k , dE
k , dI

k : natural death rates of S, E, I compartments in the k-th group,
respectively,

Λk : influx of individuals into the k-th group,
εk : rate of becoming infectious after latent period in the k-th group,
γk : recovery rate of infectious individuals in the k-th group.

In particular, βkj ≥ 0, and βkj = 0 if there is no transmission of the disease between
compartments Sk and Ij . The matrix B = (βkj) encodes the patterns of contact
and transmission among groups that are built into the model. Associated to B, one
can construct a directed graph L = G(B) whose vertex k represents the k-th group,
k = 1, · · · , n. A directed edge exists from vertex k to vertex j if and only if βkj > 0.
Throughout the paper, we assume that B is irreducible. This is equivalent to G(B)
being strongly connected (see Section 2). Biologically, this is the same as assuming
that any two groups k and j have a direct or indirect route of transmission. More
specifically, individuals in Ij can infect ones in Sk directly or indirectly. We also
assume that εk > 0 and d∗k > 0, where d∗k = min{dS

k , dE
k , dI

k+γk}. For more detailed
discussions of the model and interpretations of parameters, we refer the reader to
[16].

For each k, adding the three equations in (1.3) gives (Sk + Ek + Ik)′ ≤ Λk −
d∗k(Sk +Ek +Ik). Hence lim supt→∞(Sk +Ek +Ik) ≤ Λk/d∗k. Similarly, from the Sk

equation we obtain lim supt→∞ Sk ≤ Λk/dS
k . Therefore, omega limit sets of system

(1.3) are contained in the following bounded region in the non-negative cone of R3n:
(1.4)

Γ=
{
(S1, E1, I1, · · · , Sn, En, In)∈R3n

+ | Sk≤
Λk

dS
k

, Sk+Ek+Ik ≤ Λk

d∗k
, 1 ≤ k ≤ n

}
.

It can be verified that region Γ is positively invariant. System (1.3) always has the
disease-free equilibrium P0 = (S0

1 , 0, 0, · · · , S0
n, 0, 0) on the boundary of Γ, where

S0
k = Λk/dS

k . An equilibrium P ∗ = (S∗
1 , E∗

1 , I∗1 , · · · , S∗
n, E∗

n, I∗n) in the interior
◦
Γ

of Γ is called an endemic equilibrium, where S∗
k , E∗

k , I∗k > 0 satisfy the equilibrium
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equations

Λk = dS
k S∗

k +
n∑

j=1

βkjS
∗
kI∗j ,(1.5)

(dE
k + εk)E∗

k =
n∑

j=1

βkjS
∗
kI∗j , εkE∗

k = (dI
k + γk)I∗k ,(1.6)

and

(1.7)
(dE

k + εk)(dI
k + γk)

εk
I∗k =

n∑

j=1

βkjS
∗
kI∗j ,

which follows from (1.6).
Let

(1.8) R0 = ρ(M0)

denote the spectral radius of the matrix

M0 =
(

βkjεkS0
k

(dE
k + εk)(dI

k + γk)

)

1≤k,j≤n

.

The parameter R0 is referred to as the basic reproduction number. Its biological
significance is that if R0 < 1 the disease dies out while if R0 > 1 the disease becomes
endemic ([16, 17]). A long-standing open question in mathematical epidemiology is
whether a multi-group model such as system (1.3) has a unique endemic equilibrium
P ∗ when R0 > 1, and whether P ∗ is globally stable when it is unique [16]. We prove
the following theorem, which settles this open problem for system (1.3), as well as
other multi-group models that can be converted to the same form.

Theorem 1.1. Assume that B = (βkj) is irreducible. If R0 > 1, then system (1.3)

has a unique endemic equilibrium P ∗, and P ∗ is globally stable in
◦
Γ.

One of the earliest results on multi-group models is by Lajmanovich and Yorke
[11] on a class of n-group SIS models for gonorrhea. The global stability of the
unique endemic equilibrium is proved using a quadratic global Lyapunov function.
Global stability results also exist for other types of multi-group models; see e.g.,
[1, 5, 6, 13, 15]. The most recent result is Lin and So [13] for a class of SIRS models,
in which the endemic equilibrium is shown to be globally stable if all βkj , k )= j, are
small or if all γk, 1 ≤ k ≤ n, are small. Results in the opposite direction also exist
in the literature. For a class of n-group SIR models with proportionate incidence,
uniqueness of endemic equilibria may not hold when R0 > 1 [7, 16].

Our proof of Theorem 1.1 uses the form of global Lyapunov functions given in
(1.2). Compared to results in [4, 10], the group structure in system (1.3) greatly
increases the complexity exhibited in the derivatives of the Lyapunov function V .
The key to our analysis is a complete description of the patterns exhibited in the

derivative
•
V using graph theory. As structured models are used to describe more

complicated biological problems, we expect that this class of Lyapunov functions,
together with our graph theoretical analysis, will have much wider applicability.
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2. Preliminaries

A non-negative matrix E is reducible if, for some permutation matrix Q,

QEQT =
[

E1 0
E2 E3

]
,

and E1, E3 are square matrices. Otherwise, E is irreducible. Irreducibility of E
can be checked using the associated directed graphs. The directed graph G(E)
associated with E = (ekj) has vertices {1, 2, · · · , n} with a directed arc (k, j) from
k to j iff ekj )= 0. It is strongly connected if any two distinct vertices are joined by
an oriented path. Matrix E is irreducible if and only if G(E) is strongly connected.

A tree is a connected graph with no cycles. A subtree T of a graph G is said to
be spanning if T contains all the vertices of G. A directed tree is a tree in which
each edge has been replaced by an arc directed one way or the other. A directed
tree is said to be rooted at a vertex, called the root, if every arc is oriented in the
direction towards the root. An oriented cycle in a directed graph is a simple closed
oriented path. A unicyclic graph is a directed graph consisting of a collection of
disjoint rooted directed trees whose roots are on an oriented cycle. We refer the
reader to [8, 14] for more details.

When a directed arc from the root to any non-root vertex is added to a directed
rooted tree, we obtain a unicyclic graph. See Figure 1. When we perform this
operation in all possible ways to all possible directed rooted trees on a given set of
vertices, we obtain all possible unicyclic graphs on these vertices with each unicyclic
graph counted separately for each cyclic arc it contains. This observation will play
a crucial role in the proof of Theorem 1.1.

Now consider the linear system

(2.1) Bv = 0,

where

(2.2) B =





∑
l '=1 β̄1l −β̄21 · · · −β̄n1

−β̄12
∑

l '=2 β̄2l · · · −β̄n2

...
...

. . .
...

−β̄1n −β̄2n · · ·
∑

l '=n β̄nl




,

and β̄kj ≥ 0, 1 ≤ k, j ≤ n. Let L = G(B) denote the directed graph associated with
matrix B (and (β̄kj)), and Cjk denote the cofactor of the (j, k) entry of B.

Figure 1. A unicyclic graph formed by adding a directed arc (k, j)
to a directed tree rooted at k.
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Lemma 2.1. Assume (β̄kj)n×n is irreducible and n ≥ 2. Then the following results
hold:

(1) The solution space of system (2.1) has dimension 1, with a basis (v1, v2, · · · ,
vn) = (C11, C22, · · · , Cnn).

(2) For 1 ≤ k ≤ n,

(2.3) Ckk =
∑

T∈Tk

∏

(r,m)∈E(T )

β̄rm > 0,

where Tk is the set of all directed spanning subtrees of L that are rooted at
vertex k, and E(T ) denotes the set of directed arcs in a directed tree T .

Proof. Since the sum of each column in B equals zero, we have Cjk = Clk, 1 ≤
j, k, l ≤ n. From det(B) = 0, we know that (C11, C12, · · · , C1n), and thus (C11, C22,
· · · , Cnn), is a solution of (2.1). By the Matrix-Tree Theorem ([14, Theorem 5.5] or
[8, page 378]), the expansion of each (n− 1) principal minor of B can be expressed
as

Ckk =
∑

T∈Tk

∏

(r,m)∈E(T )

β̄rm.

Since (β̄kj) is irreducible, its associated directed graph L is strongly connected. For
each k, at least one term in

∑
T∈Tk

∏
(r,m)∈E(T )

β̄rm is positive, and thus Ckk > 0. This

implies rank(B) = n − 1, and the solution space of (2.1) has dimension 1. !
As an illustration of (2.3), let n = 3 and T1 = {T 1

1 , T 2
1 , T 3

1 } be the set of all
directed trees with vertices {1, 2, 3} rooted at vertex 1. See Figure 2. Then, E(T 1

1 ) =
{(3, 2), (2, 1)}, E(T 2

1 ) = {(2, 1), (3, 1)}, E(T 3
1 ) = {(2, 3), (3, 1)}. Therefore,

C11 = det
∣∣∣∣
β̄21 + β̄23 −β̄32

−β̄23 β̄31 + β̄32

∣∣∣∣

= β̄32β̄21 + β̄21β̄31 + β̄23β̄31

=
∑

T i
1∈T1

∏

(r,m)∈E(T i
1)

β̄rm.

Let R0 be defined in (1.8). The following result for system (1.3) is known in the
literature, at least for some special classes of system (1.3), and its proof is standard
(see [6, 15, 17]).

Proposition 2.2. Assume B = (βkj) is irreducible. Then the following statements
hold:

Figure 2. Three-vertex directed trees that are rooted at 1.
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(1) If R0 ≤ 1, then P0 is the unique equilibrium and it is globally stable in Γ.
(2) If R0 > 1, then P0 is unstable and system (1.3) is uniformly persistent in

◦
Γ.

Uniform persistence of (1.3), together with uniform boundedness of solutions in
◦
Γ, implies the existence of an equilibrium of (1.3) in

◦
Γ ([2, Theorem 2.8.6]).

Corollary 2.3. Assume B = (βkj) is irreducible. If R0 > 1, then (1.3) has at least
one endemic equilibrium.

3. Proof of Theorem 1.1

Let P ∗ = (S∗
1 , E∗

1 , I∗1 , · · · , S∗
n, E∗

n, I∗n), S∗
k , E∗

k , I∗k > 0 for 1 ≤ k ≤ n, denote an
endemic equilibrium whose existence is established in Corollary 2.3. We prove that
P ∗ is globally stable when R0 > 1. In particular, this implies that the endemic

equilibrium is unique in
◦
Γ when it exists. Choose

(3.1) β̄kj = βkjS
∗
kI∗j , 1 ≤ k, j ≤ n, n ≥ 2,

and matrix B as given in (2.2). Since B = (βkj) is irreducible, we know matrix
(β̄kj) is irreducible. Let {v1, · · · , vn}, vk > 0, be a basis for system (2.1), B̄v = 0,
as described in Lemma 2.1. Set

(3.2) V =
n∑

k=1

vk

[
(Sk − S∗

k ln Sk) + (Ek − E∗
k ln Ek) +

dE
k + εk

εk
(Ik − I∗k ln Ik)

]
.

Differentiating V along solutions to (1.3) and using (1.5), (1.6), (1.7), we obtain

•
V =

n∑

k=1

vk

[
Λk − dS

k Sk −
n∑

j=1

βkjSkIj − Λk
S∗

k

Sk
+ dS

k S∗
k +

n∑

j=1

βkjS
∗
kIj

+
n∑

j=1

βkjSkIj − (dE
k + εk)Ek −

n∑

j=1

βkj
E∗

kSkIj

Ek
+ (dE

k + εk)E∗
k

+ (dE
k + εk)Ek − (dE

k + εk)(dI
k + γk)

εk
Ik − (dE

k + εk)
I∗kEk

Ik

+
(dE

k + εk)(dI
k + γk)

εk
I∗k

]

=
n∑

k=1

vk

[
dS

k S∗
k

(
2 − S∗

k

Sk
− Sk

S∗
k

)
+

( n∑

j=1

βkjS
∗
kIj −

(dE
k + εk)(dI

k + γk)
εk

Ik

)

+
(
3

n∑

j=1

βkjS
∗
kI∗j −

n∑

j=1

βkjI
∗
j
(S∗

k)2

Sk
−

n∑

j=1

βkjSkIj
E∗

k

Ek
−(dE

k + εk)Ek
I∗k
Ik

)]

≤
n∑

k=1

vk

[( n∑

j=1

βkjS
∗
kIj −

(dE
k + εk)(dI

k + γk)
εk

Ik

)

+
(
3

n∑

j=1

βkjS
∗
kI∗j −

n∑

j=1

βkjI
∗
j
(S∗

k)2

Sk
−

n∑

j=1

βkjSkIj
E∗

k

Ek
− (dE

k +εk)Ek
I∗k
Ik

)]
,

(3.3)
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since S∗
k/Sk + Sk/S∗

k ≥ 2, with equality holding if and only if Sk = S∗
k .

To simplify this we observe that since Bv = 0, it follows readily that
n∑

j=1

β̄jkvj =
n∑

i=1

β̄kivk

or, appealing to (3.1) and (1.7), that
n∑

j=1

βjkS∗
j I∗kvj =

n∑

i=1

βkiS
∗
kI∗i vk =

(dE
k + εk)(dI

k + γk)
εk

I∗kvk

for 1 ≤ k ≤ n. This implies that
n∑

k=1

vk

n∑

j=1

βkjS
∗
kIj =

n∑

k=1

Ik

n∑

j=1

βjkS∗
j vj =

n∑

k=1

(dE
k + εk)(dI

k + γk)
εk

Ikvk.

Consequently, the contributions from the first two double sums in the right-hand-
side of (3.3) cancel, so it follows from (3.3), appealing again to relation (3.1), that

•
V ≤

n∑

k=1

vk

(
3

n∑

j=1

β̄kj−
n∑

j=1

β̄kj
S∗

k

Sk
−

n∑

j=1

β̄kj
SkIjE∗

k

S∗
kI∗j Ek

−(dE
k + εk)Ek

I∗k
Ik

)

=
n∑

k,j=1

vkβ̄kj

(
3−S∗

k

Sk
− SkIjE∗

k

S∗
kI∗j Ek

−EkI∗k
E∗

kIk

)
=: Hn(S1, E1, I1, · · · , Sn, En, In).

(3.4)

In the following, we show Hn ≤ 0 for all (S1, E1, I1, · · · , Sn, En, In) ∈
◦
Γ.

The products of factors β̄rm in the expression for vk given in (2.3) can be inter-
preted as weights of directed spanning subtrees T of L that are rooted at vertex k.
Consequently, each product in vkβ̄kj can be interpreted as the weight of a unicyclic
graph Q obtained from such a tree T by adding an arc (k, j) directed from the root
vertex k to vertex j; see Figure 1. Such a product can be written as

∏

(r,m)∈E(Q)

β̄rm,

where the product is over the arcs (r, m) in Q, and the same product is obtained
for each arc (k, j) in the unique cycle CQ of Q. It is not difficult to see that the
double sum in Hn can be interpreted as a sum over all the arcs in the cycles of all
the unicyclic subgraphs Q of L. Hence Hn can be rewritten as

Hn =
∑

Q

Hn,Q,

where

Hn,Q =
∏

(r,m)∈E(Q)

β̄rm ·
∑

(k,j)∈E(CQ)

(
3 − S∗

k

Sk
− SkIjE∗

k

S∗
kI∗j Ek

− EkI∗k
E∗

kIk

)

=
∏

(r,m)∈E(Q)

β̄rm ·
(
3l −

∑

(k,j)∈E(CQ)

(S∗
k

Sk
− SkIjE∗

k

S∗
kI∗j Ek

− EkI∗k
E∗

kIk

) )
,

and where l = l(Q) denotes the number of arcs in CQ.
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It is not difficult to see that
∏

(k,j)∈E(CQ)

S∗
k

Sk
· SkIjE∗

k

S∗
kI∗j Ek

· EkI∗k
E∗

kIk
=

∏

(k,j)∈E(CQ)

IjI∗k
I∗j Ik

= 1

for each unicyclic graph Q. Therefore,

∑

(k,j)∈E(CQ)

(S∗
k

Sk
+

SkIjE∗
k

S∗
kI∗j Ek

+
EkI∗k
E∗

kIk

)
≥ 3l,

and thus Hn,Q ≤ 0 for each Q, and

(3.5) Hn,Q = 0 ⇐⇒ S∗
k

Sk
=

SkIjE∗
k

S∗
kI∗j Ek

=
EkI∗k
E∗

kIk
, (k, j) ∈ E(CQ).

Therefore,

Hn =
∑

Q

Hn,Q ≤ 0.

We have shown that
•
V ≤ 0 for all (S1, E1, I1, · · · , Sn, En, In) ∈

◦
Γ, and that

•
V = 0 iff Sk = S∗

k and Hn = 0. We claim that if Sk = S∗
k , 1 ≤ k ≤ n, then

(3.6) Hn = 0 ⇐⇒ Ek = aE∗
k , Ik = aI∗k , k = 1, 2, · · · , n,

where a is an arbitrary positive number. We first note that it follows from (3.5)
that

(3.7)
Ik

I∗k
=

Ek

E∗
k

=
Ij

I∗j

for every arc (k, j) that belongs to the cycle of some unicyclic subgraph Q of L.
But L is strongly connected, so, clearly, every arc (k, j) of L belongs to the cycle of
at least one such subgraph Q and, hence, (3.7) holds for every arc (k, j). Now let p
and q denote any two distinct vertices of the graph. Then, by strong connectivity,
there exists an oriented path from p to q. If we apply (3.7) to the arcs of this path
consecutively, we find that Ip

I∗
p

= Iq

I∗
q
; then it follows from (3.7) that Ep

E∗
p

= Ip

I∗
p

= Iq

I∗
q

=
Eq

E∗
q

as well. Since p and q are arbitrary, this suffices to prove (3.6).

From (3.3) and (3.6), we know that
•
V = 0 iff Sk = S∗

k , Ek = aE∗
k , Ik = aI∗k , k =

1, 2, · · · , n. Substituting Sk = S∗
k , Ek = aE∗

k , and Ik = aI∗k into the first equation
of system (1.3), we obtain

(3.8) 0 = Λk − dS
k S∗

k − a
n∑

j=1

βkjS
∗
kI∗j .

Since the right-hand-side of (3.8) is strictly decreasing in a, we know, by (1.5), that
(3.8) holds iff a = 1, namely at P ∗. Therefore, the only compact invariant subset

of the set where
•
V = 0 is the singleton {P ∗}. By the LaSalle Invariance Principle,

P ∗ is globally stable in
◦
Γ if R0 > 1. This completes the proof of Theorem 1.1.
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