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A concept of phase asymptotic semiflow is defined. It is shown that any Lagrange
stable orbit at which the semiflow is phase asymptotic limits to a stable periodic
orbit. A Lagrange stable solution of a C 1 differential equation is considered. When
the second compound of the variational equation with respect to this solution is
uniformly asymptotically stable and the omega limit set contains no equilibrium,
then the semiflow is phase asymptotic at the orbit of the solution and the omega
limit set is a stable periodic orbit. Analogous results are obtained for discrete semi-
flows and periodic differential equations. � 1996 Academic Press, Inc.

1. Introduction

The classical Poincare� -Bendixson theorem [10] states that a positive
Lagrange stable orbit in a two dimensional continuous semiflow has as its
limit set a periodic orbit provided the limit set contains no equilibrium.
Some results for higher dimensional systems which are in this spirit are due
to Fiedler and Mallet-Paret [8], Hirsch [12], Mallet-Paret and H. L.
Smith [18], Pliss [26], Sell [29], H. L. Smith [30], and R. A. Smith [31,
32, 34]. All give stability conditions for an orbit to have a limit cycle. In
[26] it is shown that a type of orbital asymptotic stability with asymptotic
phase of a Poincare� stable orbit implies that the orbit is periodic and a
wide variety of applications is given. In [29] a similar type of asymptotic
phase stability is shown to imply that an orbit which is also Lagrange and
uniform Lyapunov stable limits to a periodic orbit. The papers [12, 30]
demonstrate that 3-dimensional order-preserving flows have the classical
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Poincare� -Bendixson property. A higher dimensional theory is developed in
[31, 32, 34] where conditions are formulated in terms of guiding functions
which guarantee that the positive Lagrange stable motions in the semiflow
behave in a sufficiently 2-dimensional fashion that a Poincare� -Bendixson
result can be obtained. The versatility of the theory is demonstrated by an
analysis of the feedback control equation and of a fourth order scalar equa-
tion; a detailed study of the delayed Goodwin equations which model certain
biochemical reactions is given in [34]. Other work on special high order
systems which exhibit the Poincare� -Bendixson behaviour may be found in
[8] and [18] where the scalar reaction diffusion equation and monotone
cyclic feedback systems respectively are shown to have this property.

In 92 of the present paper we consider semiflows which satisfy a strong
asymptotic phase condition with respect to certain orbits and show that
these limit to periodic orbits. The result pertains to both discrete and con-
tinuous systems. Section 3 develops a preliminary technical result concern-
ing dichotomies for linear nonautonomous equations. The results of 92, 3
are applied to autonomous differential equations in Rn in Section 4. A con-
dition is imposed on orbits of these equations which when applied to a
periodic orbit with n=2 reduces to the Poincare� condition ([5, p. 85; 10,
p. 220, 11, p. 256]) for the orbital asymptotic stability of the orbit. It is
shown that, when an orbit satisfies this generalized Poincare� condition and
the omega limit set contains no equilibrium, the orbit has the asymptotic
phase property of Section 2 and therefore limits to a periodic orbit. In 95
analogous results are formulated for discrete systems and applied to non-
autonomous periodic differential equations.

Throughout this paper terms such as stable, uniformly stable, asymptoti-
cally stable and uniformly asymptotically stable as they pertain to solutions
of differential equations and of recursions are used in the usual sense as in,
for example, [5, Chap. III]. Some concepts of stability for semiflows are
discussed in the next section.

2. Phase Asymptotic Semiflows

Let [X, d] be a metric space and T=R+ or T=Z+. A map . from
T_X to X is a semiflow on X if

(i) .(0, x)=x, x # X
(ii) .(t+s, x)=.(t, .(s, x)), t, s # T, x # X

(iii) the map (t, x) [ .(t, x) is continuous.

Definitions. (a) For any x # X, the positive orbit of x is 1+(x)=
�t�0 .(t, x) and the omega limit set is 0(x)=�s�0 cl �t�s .(t, x) where
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cl denotes the topological closure. 1+(x) is periodic with period | if
.(t+|, x)=.(t, x) for some |>0 in T.

(b) The semiflow . is positive Lagrange stable at x if cl 1+(x) is
compact.

(c) The semiflow . is positive Lyapunov stable at S/X if, for each
=>0, there is a $>0 such that x0 # S, t # T, x # X and d[x0 , x]<$ implies
d[.(t, x0), .(t, x)]<=. When S is an orbit 1+ , this is the usual concept
of uniform Lyapunov stability of 1+ .

(d) The semiflow . is positive phase asymptotic at S/X provided
there exist \, '>0 such that, for each x0 # S, there is a real-valued phase
function x [ h(x) with '>|h(x)| # T and d[x0 , x]<\ implies

lim
t � �

d[.(t+h(x), x), .(t, x0)]=0. (2.1)

Throughout this paper only behaviour for t � � is considered and the
qualification positive is usually omitted from the descriptions of these topics.

The concept of phase asymptotic flow is not the subject of [1] 1.3.29 or
[24] Chapter V 9.01 where a positively asymptotic orbit 1 (x) is one such
that 1+(x) & 0(x) is empty. The use of the word asymptotic here is to
indicate that certain orbits attract nearby orbits as in the case of
asymptotic stability. It is to be noted that, while \, ' are independent of
x0 # S in (2.1), the phase function h( } ) in general depends on x0 but this
dependence is suppressed in the notation.

When S is a periodic orbit of a differential equation satisfying the
Poincare� stability condition, the proofs in the well-known textbooks [4],
[5], [10] of asymptotic orbital stability with asymptotic phase of S in fact
show the stronger conclusion that the semiflow is positive Lyapunov stable
and phase asymptotic at S. Indeed it is shown in these works that the rate
of convergence in (2.1) is exponential. The existence of bounded phase
functions h( } ) follows from the fact that, if h(x) satisfies (2.1), then so also
does h(x)+| where | is any period of S.

Theorem 2.1. Suppose the semiflow . is Lagrange stable at x
*

. Then
the statements (a), (b), (c) are equivalent. The phrases in parentheses may be
either all included or all excluded.

(a) The semiflow is phase asymptotic (and Lyapunov stable) at
1+(x

*
).

(b) The semiflow is phase asymptotic (and Lyapunov stable) at some
x0 # 0(x

*
).

(c) 0(x
*

) is a periodic orbit and the semiflow is phase asymptotic (and
Lyapunov stable) at cl 1+(x

*
).

427stable limit cycles
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This result, in particular, establishes the absence of chaotic behaviour
near a Lagrange stable orbit which is phase asymptotic.

Theorem 2.1 generalizes results of Sell [29] and Pliss [26]. A detailed
discussion of Sell's work is contained in Cronin [2, Chap. 6] and in
Saperstone [27, Chap. III]. In [29, Theorem 1] it is shown that a
positive Lagrange stable motion which is asymptotically stable has as its
omega limit set an asymptotically stable periodic orbit. Asymptotic
stability in the sense of Sell [29] is called phase asymptotic stability by
Cronin [2]. In the terms used here it requires that the semiflow be
Lyapunov stable and phase asymptotic at 1+(x

*
) without the requirement

that the phase functions be bounded. However, for orbits which are
Lagrange stable, the existence of bounded phase functions is implied by the
hypotheses since the omega limit set is a periodic orbit which is asymptoti-
cally stable. The proof in [29] uses properties of minimal sets of almost
periodic motions. Theorem 2.1 also generalizes Theorem 1.6 of Pliss [26]
where a condition is given that a positive Poisson stable motion .(t, x0) be
periodic. There is no assumption of Lyapunov stability but rather a strong
form of the condition that the semiflow be phase asymptotic at x0 . This
requires a uniformity with respect to x of the convergence in (2.1) and
further that the bound ' on the phase h(x) can be made arbitrarily small
by choosing \ sufficiently small. Since the motion is Poisson stable,
x0 # 0(x0) and Pliss' result is implied by the statement that (b) implies (c)
in Theorem 2.1 with the parenthetic phrases excluded. The proof in [26]
uses Brouwer's fixed point theorem.

Proof of Theorem 2.1. We first prove that (a) implies (b). Suppose the
semiflow is phase asymptotic at 1+(x

*
) and x0 # 0(x

*
). Choose

x1 # 1+(x
*

) such that d[x0 , x1]< \�2 and therefore d[x, x1]< \ when
d[x, x0]< \�2. Thus d[x, x0]< \�2 implies

lim
t � �

d[.(t+h(x), x), .(t, x1)]=0,

lim
t � �

d[.(t+h(x0), x0), .(t, x1)]=0

and hence limt � � d[.(t+h(x)&h(x0), x), .(t, x0)]=0. Thus, with the
phase function x [ h(x)&h(x0), the semiflow is phase asymptotic at x0

with \, ' replaced by \�2, 2' since |h(x)&h(x0)|<2'. Indeed, since x0 is
arbitrary, we have proved that the semiflow is phase asymptotic at 0(x

*
).

A similar argument shows that the semiflow is Lyapunov stable at
x0 # 0(x

*
) if it has this property at 1+(x

*
).

To prove that (b) implies (c), we begin by proving that, if . is phase
asymptotic at x0 # 0(x

*
), then 0(x

*
) is a periodic orbit at which the semi-

flow is phase asymptotic. Since x0 # 0(x
*

), there exist x1 , x2 # 1+(x
*

) with
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F
ile

:5
05

J
30

25
05

.B
y:

B
V

.D
at

e:
14

:0
2:

96
.T

im
e:

08
:3

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

34
17

Si
gn

s:
20

52
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

d[xi , x0]< \, i=1, 2 and .(t2 , x1)=x2 , t2�2'. Thus limt � � d[.(t+h(xi),
xi), .(t, x0)]=0 and hence limt � � d[.(t+h(x2), x2), .(t+h(x1), x1)]=0
which in turn implies limt � � d[.(t+t2+h(x2), x1), .(t+h(x1), x1)]
=0 or equivalently limt � � d[.(t+|, x1), .(t, x1)]=0, where |=
t2+h(x2)&h(x1)>0 since t2�2'. Now choose a sequence tn # T, tn � �,
such that xn=.(tn, x1) � x0 (n � �). It follows that limn � � d[.(|, xn), xn]
=limn � � d[.(tn+|, x1), .(tn , x1)]=0 and therefore .(|, x0)=x0: the
semiflow is periodic at x0 and 1+(x0)/0(x

*
) since 0(x

*
) is invariant

([35, Lemma 1.1]). Moreover, since 1+(x0) is compact and attracts all
orbits which intersect the ball B(x0 , \), including 1+(x

*
), it follows that

0(x
*

)/1+(x0) and hence 0(x
*

)=1+(x0).
Next we show that the semiflow is phase asymptotic at 0(x

*
). This

is clear if 0(x
*

)=[x0]. In the nonequilibrium case, let the periodic
orbit 1+(x0)=0(x

*
) have least period |>0. Then, since . is uniformly

continuous on [0, |]_1+(x0), there exists \1 , 0< \1�\, such that
x1 # 1+(x0) and d[x1 , x]< \1 implies d[.(t1 , x), x0]< \, where
.(t1 , x1)=x0 , t1 # [0, |). Since . is phase asymptotic at x0 ,

lim
t � �

d[.(t+h(.(t1 , x)), x), .(t, x1)]

= lim
t � �

d[.(t+t1+h(.(t1 , x)), x), .(t+t1 , x1)]

= lim
t � �

d[.(t+h(.(t1 , x)), .(t1 , x)), .(t, .(t1 , x1))]

= lim
t � �

d[.(t+h(.(t1 , x)), .(t1 , x)), .(t, x0)]

=0.

Thus . is phase asymptotic at the periodic orbit 1+(x0)=0(x
*

); the phase
function associated with x1 # 1(x0) is x [ h� (x)=h(.(t1 , x)) where
.(t1 , x1)=x0 and h is the phase function associated with x0. The phase func-
tion h� associated with x1 has the same bound as the phase function h associated
with x0 and the bound is therefore independent of x1 # 0(x

*
) as required.

To complete the proof that . is phase asymptotic at cl 1+(x
*

), let \1 ,
h� , x1 be as in the preceding paragraph. There exists y0=.(t0 , x

*
) # 1+(x

*
)

such that d[.(t, y0), 0(x
*

)]< \1 �2 if t # T. Thus, if y1 # 1+( y0)/1+(x
*

),
then d[x1 , y1]< \1 �2 by some x1 # 0(x

*
). It follows that d[ y1 , x]< \1 �2

implies d[x1 , x]< \1 so that, since . is phase asymptotic at 0(x
*

) and
x1 # 0(x

*
),

lim
t � �

d[.(t+h� (x), x), .(t, x1)]=0

and lim
t � �

d[.(t+h� ( y1), y1), .(t, x1)]=0

429stable limit cycles
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and therefore

lim
t � �

d[.(t+h� (x)&h� ( y1), x), .(t, y1)]

= lim
t � �

d[.(t+h� (x), x), .(t+h� ( y1), y1)]=0.

This shows that . is phase asymptotic at 1+( y0)/1+(x
*

). The phase
function associated with y1 # 1+( y0) is x [ h� (x)&h� ( y1) and has a bound
independent of y1 since the bound on h� ( } ) is independent of its associated
point x1 # 0(x

*
). As in the case of the periodic orbit 1+(x0)=0(x

*
), the

fact that . is phase asymptotic at y0 may be used to establish that it also
has this property at 1+(x

*
)"1+( y0)=[.(t, x

*
): t # [0, t0]] hence at

1+(x
*

). Combined with the result of the preceding paragraph, this shows
that . is phase asymptotic at cl 1+(x

*
)=1+(x

*
) _ 0(x

*
) completing the

proof that (b) implies (c). The parenthetic assertion on Lyapunov stability
is proved similarly.

The fact that (c) implies (a) is obvious, concluding the proof of
Theorem 2.1. K

3. A Linear Result

Let A denote the n_n matrix for which the entry in the i-row and
j-column is a j

i . Then A(2), A[2] denote N_N matrices, N=( n
2), the second

multiplicative compound and second additive compound of A respectively,
which are defined as follows. For any integer i=1, ..., N, let (i )=(i1 , i2) be
the i-th member in the lexicographic ordering of integer pairs (i1 , i2) such
that 1�i1<i2�n. Then the entry in the i-row and j-column of A(2) is a j 1 j2

i 1 i2
,

the minor of A determined by the rows i1 , i2 and the columns j1 , j2 . The
entry in the i-row and j-column of A[2] is

ai1
i1

+ai2
i2

, if ( j )=(i )

(&1)r+s a js
i r

, if exactly one entry ir of (i ) does not occur in ( j )

and js does not occur in (i )

0, if neither entry from (i ) occurs in ( j ).

The compounds have the properties

(AB)(2)=A(2)B(2), (A+B)[2]=A[2]+B[2]

and

D(I+hA)(2) |h=0=A[2],

430 li and muldowney
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where D denotes differentiation with respect to h. Consequently, if Y( } ) is
a fundamental matrix for a linear system

y* =A(t) y, (3.1)

with A( } ) a continuous real n_n matrix-valued function, then
Z( } )=Y(2)( } ) is a fundamental matrix for the system

z* =A[2](t) z. (3.2)

From this it follows that z( } )=y1( } ) 7 y2( } ), where � denotes the exterior
product, is a solution of (3.2) whenever y1( } ), y2( } ) are solutions of (3.1).

If *1 , ..., *n are the eigenvalues of A, then *i *j and *i+*j , 1�i< j �n,
are the eigenvalues of A(2) and A[2] respectively. The numbers
_1�_2� } } } �_n�0 are called the singular values of A if _2

1 , ..., _2
n are the

eigenvalues of A*A. It follows that the singular values of A(2) are _i_j ,
1�i< j �n. Therefore,

|A|=_1 , |A(2)|=_1 _2 (3.3)

where | } | denotes the norm on Rn or RN defined by |x|=(x*x)1�2 and the
matrix norm which it induces.

For a more detailed discussion of these and other compound matrices
and their applications, the reader is referred to [9, 14, 19, 21, 23, 28].

In the following proposition, it is required by condition (a) that the
equation (3.2) be uniformly asymptotically stable. The solution space of
(3.1) is required by (b) to have a 1-dimensional strongly stable subspace
and (c) specifies that solutions have bounded growth. Under these cir-
cumstances (3.1) has a dichotomy which splits its solution space into the
strongly stable subspace and a complementary (n&1)-dimensional sub-
space which is uniformly asymptotically stable. This is closely related to a
result in [21] on the dimension of the set of solutions y( } ) of (3.1) which
satisfy limt � � y(t)=0.

Proposition 3.1. Suppose that the conditions (a), (b), (c) are satisfied:

(a) There exist constants K, :>0 such that

|z(t)|<K |z(s)| e&:(t&s), 0�s�t

for each solution z( } ) of (3.2).

(b) There is a constant L>1 and a nonzero solution y1( } ) of (3.1)
such that

| y1(t)|�L | y1(s)|, 0�s, t.

431stable limit cycles



F
ile

:5
05

J
30

25
08

.B
y:

B
V

.D
at

e:
14

:0
2:

96
.T

im
e:

08
:3

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

29
70

Si
gn

s:
17

61
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

(c) There exist constants M, ; such that

| y(t)|�M | y(s)| e;(t&s), 0�s�t

for each solution y( } ) of (3.1).

Then, if Y( } ) is a fundamental matrix of (3.1), there exist supplementary
projections P1 , P2 on Rn, rkP1=1, rkP2=n&1 and a constant C such that

|Y(t) P1Y &1(s)|�C, 0�s, t

and

|Y(t) P2Y &1(s)|�Ce&:(t&s), 0�s�t.

In particular, (3.1) is uniformly stable.

Proof. A fundamental matrix for (3.2) is Z( } )=Y(2)( } ) and therefore
Z(t) Z&1(s)=(Y(t) Y &1(s))(2). Thus the conditions (a), (b), (c) imply
from (2.3) that _1 _2(s, t)�Ke&:(t&s), _1(s, t)�Me;(t&s), 0�s�t and
1�L�_1(s, t), 0�s, t, where _1(s, t)�_2(s, t)� } } } �_n(s, t)>0 are the
singular values of Y(t)Y &1(s). It follows that _2(s, t)�LKe&:(t&s),
0�s�t. Let $>0 and choose T sufficiently large that t=s+T implies

_1 _2(s, t)<$, _2(s, t)<$, (3.4)

for each s�0. Consider the two solution subspaces Y1 , Y2 for (3.1) defined
by Y1=span[ y1( } )], Y2=span[ y2( } ), ..., yn( } )], where yi ( } ) is a solution
of (3.1) with yi (s) an eigenvector of Y*&1(s) Y*(t) Y(t) Y &1(s) corre-
sponding to the eigenvalue _i (t, s)2, i=2, ..., n. Then y( } ) # Y2 implies
| y(t)|�| y(s)| _2(t, s), t=s+T, and, if T is chosen sufficiently large to
allow $<1�L in (3.4), then Y1 , Y2 are supplementary subspaces, from (b).
Then also y( } ) # Y2 implies

0<1�L&$� } y1(t)
| y1(s)|

&
y(t)

| y(s)| }� } y1(s)
| y1(s)|

&
y(s)

| y(s)| } _1(s, t)

if t=s+T and the angular separation, inf |( y1(s)�| y1(s)| )&( y(s)�| y(s)| )|,
y( } ) # Y2 , between the spaces of initial values [y(s): y( } ) # Yi ], i=1, 2, is at
least (1&L$)�L_1(s, t). Therefore the supplementary projections Pi (s),
i=1, 2, on Rn onto these initial value subspaces satisfy (cf. [7, p. 156])

|Pi (s)|�#_1(s, t), i=1, 2 (3.5)

where #=(2L�1&L$). The space Y1 is independent of (s, t) while Y2 is not
necessarily so. If s0�0 and sk=s0+kT, k=0, 1, ..., let Y2, k denote the

432 li and muldowney
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space Y2 corresponding to (s, t)=(sk , sk+1). Let y( } )=y1, k( } )+y2, k( } ) be
any solution of (3.1) y1, k( } ) # Y1 , y2, k( } ) # Y2, k , k=0, 1, 2, .... Then

yi, k(sk)=Pi (sk) y(sk)=Pi (sk) y1, k&1(sk)+Pi (sk) y2, k&1(sk),

i=1, 2 so that, for k=1, 2, ...,

y1, k(sk)=y1, k&1(sk)+P1(sk) y2, k&1(sk) (3.6)

y2, k(sk)=P2(sk) y2, k&1(sk) (3.7)

Now, from (3.5) and the definition of Y2, k&1 ,

|Pi (sk) y2, k&1(sk)|�#_1(sk , sk+1) | y2, k&1(sk)|

�#_1(sk , sk+1) _2(sk&1 , sk) | y2, k&1(sk&1)|,

i=1, 2, k=0, 1, .... Similarly | y2, 0(s0)|=|P2(s0) y(s0)|�#_1(s0 , s1) | y(s0)|.
Hence, by induction, we find

|Pi (sk) y2, k&1(sk)|�#k+1_1(sk , sk+1) `
k

j=1

_1_2(sj&1 , sj) | y(s0)|

�#k+1$kMe;T | y(s0)|,

from (c) and (3.4). Since y1, k( } )=ck y1( } ) for some constant ck ,
(3.6) implies ck=ck&1+2k , where |2k |�#k+1$kMe;T | y(s0)|�| y1(sk)|,
k=1, 2, ... and |c0 |�#Me;T | y(s0)|�| y1(s0)|. Therefore |ck |�(#Me;T�
m1(1&#$)) | y(s0)|, if T is chosen so that #$<1, and | y1, k(sk)|�
(#M1 Me;T�m1(1&#$)) | y(s0)| with m1=inf | y1(s)|, M1=sup | y1(s)|, s�0.
Also | y2, k(sk)|�#Me;T | y(s0)|. This gives

| y(sk)|�| y1, k(sk)|+| y2, k(sk)|�#Me;T _ M1

m1(1&#$)
+1& | y(s0)|

and, since | y(t)|�Me;T | y(sk)|, sk�t�sk+1 from (c), we find

| y(t)|�H | y(s0)|, 0�s0�t (3.8)

where H=#M 2e2;T[M1�m1(1&#$))+1]. We conclude that (3.1) is
uniformly stable since H is independent of s0 .

From (a) and the uniform stability of (3.1) now established, by a result
in [21] and [23], there exists a (n&1)-dimensional subspace of solutions
y( } ) of (3.1) such that limt � � y(t)=0. Let Y2 now denote this subspace
and Y1=span[ y1( } )] as before. From the theory of dichotomies, [6, Chap.
2], Proposition 3.1 will be established if we can demonstrate:
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I The subspace Y2 is uniformly asymptotically stable.

II If y( } ) # Y2 is nonzero, the angle %(t) between y1(t) and y(t) is
bounded away from 0 uniformly with respect to t�0 and y( } ) # Y2 .

Since z( } )=y1( } ) 7 y( } ) is a solution of (3.2) and |z(t)|=
|sin %(t)| | y1(t)| | y(t)| ([35], page 254), (a) implies |sin %(t)| | y1(t)| | y(t)|
�K |sin %(s)| | y1(s)| | y(s)| e&:(t&s) so that

| y(t)|�KL | y(s)| e&:(t&s)�|sin %(t)|

and II implies I. To prove II, it is sufficient to show that
2 |sin 1�2%(t)|=|( y1(t)�| y1(t))|&( y(t)�| y(t)| )| is bounded away from 0.
Choose t>s sufficiently large that | y(t)|<1�2L | y(s)|; then (3.8) implies

0<
1
2

L<L&
| y(t)|
| y(s)|

� } y1(t)
| y1(s)|

&
y(t)

| y(s)| }�H } y1(s)
| y1(s)|

&
y(s)

| y(s)| }
so that 0<(L�2H)<2 |sin 1�2%(s)| completing the proof of Proposition 3.1.

K

4. The Poincare� Condition and Existence of Limit Cycles

Let D be an open subset of Rn and x [ f (x) a C 1 function from D to Rn.
We consider a solution x=.( } ) of the autonomous differential equation

x* =f (x) (4.1)

such that .(t) exists for all t�0. Let 1+=[.(t): t�0]. The variational
equation of (4.1) at 1+ is

y* =
� f
�x

(.(t)) y, (4.2)

where (�f��x)(x) is the Jacobian matrix of f at x # D. It governs the
evolution of infinitesimal oriented line segments y along 1+ subject to
the dynamics of (1.1). The equation which governs the evolution of
infinitesimal oriented 2-dimensional areas z is

z* =
� f [2]

�x
(.(t)) z, (4.3)

where (� f [2]��x)(x) is the second additive compound of (� f ��x)(x)
discussed in Section 3.
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When n=2, the Poincare� stability condition ([5, 10, 11]) states that a
periodic solution .( } ) of (4.1) with least period |>0 is asymptotically
orbitally stable with asymptotic phase if �|

0 div f (.(t)) dt<0 or, equiv-
alently, if the Liouville equation y* =div f (.(t)) y is uniformly asymptoti-
cally stable in the sense of Liapunov. In [23], it was shown that the same
conclusion holds with n>2 if (4.3) is uniformly asymptotically stable. Since
(4.3) is the Liouville equation when n=2, this provides an extension to
higher dimensions of the Poincare� stability condition for periodic orbits.

In this section we investigate the implications of the Poincare� condition,
uniform asymptotic stability of (4.3), when periodicity of the solution .( } )
is replaced by positive Lagrange stability of 1+ (cl 1+ is a compact subset
of D). When n=2, the Poincare� �Bendixson theory ensures that, if the
omega limit set 0 of 1+ contains no equilibrium, then 0 is a periodic
orbit. Continuity considerations show that, if the Liouville equation is
uniformly asymptotically stable, then the periodic orbit satisfies the
Poincare� condition so that it is asymptotically orbitally stable and thus,
together with 1+, attracts all nearby orbits. When n>2, the Poincare� -
Bendixson theory is no longer generally applicable. However, by showing
that the semiflow corresponding to (4.1) is phase asymptotic at x0 # 0, we
deduce from Theorem 2.1 that 0 is still a stable periodic orbit which
attracts all nearly orbits. We also discuss the implications for an equi-
librium x0 # 0; in this case it can no longer be concluded that 0 attracts
all nearly orbits.

We recall that the semiflow of (4.1) is defined locally by .(t, x0)=x(t),
where x( } ) is the solution such that x(0)=x0 and satisfies the requirements
set out in Section 2 if x(t) exists for all t�0 as it does when x0 # 1+.

Theorem 4.1. Suppose 1+ is positive Lagrange stable with omega limit
set 0 and that (4.3) is uniformly asymptotically stable.

(a) If 0 contains no equilibrium, then it is a periodic orbit and there
exist positive constants H, #, \ such that

|.(t+h, x)&.(t, x0)|�H |x&x0 | e&#t

for some real h, if x0 # 0 and |x&x0 |< \.

(b) If 0 contains an equilibrium x0 , then either x0 is asymptotically
stable or it has a (n&1)-dimensional stable manifold together with a
1-dimensional centre manifold or a 1-dimensional unstable manifold.

(c) If 0 contains an equilibrium x0 and (4.2) is uniformly stable, then
0=[x0].

When 0 contains no equilibrium, the uniform asymptotic stability of
(4.3) will be seen to imply the uniform stability of (4.2). This is not the case

435stable limit cycles
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when there is an equilibrium in 0 as illustrated by Example 4.3 with
0<*<1.

In [3] Cronin gives conditions on a C3 function f which ensure that
Lagrange stable solutions of (4.1) are phase asymptotically stable
(asymptotically stable in the sense of Sell [29]) and therefore limit to a
phase asymptotically stable periodic solution. While it is clear that this
result does not imply Theorem 4.1, we are unable to determine whether the
converse statement is true: Do Cronin's conditions imply that the second
compound equation (4.3) is uniformly asymptotically stable? Several of her
conditions are technical restrictions on the spectrum of the Jacobian matrix
(� f ��x) in D which are difficult to verify. Examples of readily verifiable
conditions for the uniform asymptotic stability of (4.3) are given by the
formula (4.4).

Let x [ +(x) be defined by any of the expressions

(i) +=sup {� fr

�xr
+

� fs

�xs
+ :

q{r, s \}
� fq

�xr }+ } � fq

�xs }+ : 1�r<s�n=
(ii) +=sup {� fr

�xr
+

� fs

�xs
+ :

q{r, s \}
� fr

�xq }+ }� fs

�xq }+ : 1�r<s�n=
(iii) +=*1+*2

where *1�*2� } } } �*n are the eigenvalues of 1�2((� f ��x)*+(�f��x)). If
there exist T, :>0 such that, for one of these functions,

|
t

s
(+ b .)�&:(t&s), if t&s�T (4.4)

and if 1+ is positive Lagrange stable, then (4.3) is uniformly asymptoti-
cally stable; this follows by consideration of |z|=supi |zi |, �i |zi |, (z*z)1�2

respectively as a Lyapunov function for (4.3). We therefore have the
following corollary. When n=2, each of the expressions (i), (ii), (iii) gives
+=(�f1��x1)+(�f2��x2)=div f and (4.4) is then the Poincare� condition.

Corollary 4.2. If (4.4) is satisfied by a solution .( } ) of (4.1) whose
orbit is positive Lagrange stable, then the conclusion of Theorem 4.1 holds
for the omega limit set 0 of .( } ).

Even when n=2, application of the Poincare� condition to establish orbi-
tal stability may involve considerable subtlety as, for example, in the case
the stability of a limit cycle in the Lie� nard equation, [5, p. 86]. For
example, it was shown in [15] that, if one of the expressions (i), (ii), (iii)
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is negative throughout a convex open set D, then the only nonwandering
points are equilibria so that there are no nontrivial periodic solutions and
Theorem 4.1(a) would hold only vacuously. It was also shown that any
omega limit set is a single equilibrium with a stable manifold of dimension
n&1 at least. Theorem 4.1 and Corollary 4.2 can thus be regarded as
extending this discussion to situations where + is negative only in an
averaged sense along an orbit.

Before proving Theorem 4.1, we discuss some examples.

Example 4.3. When the equation (4.1) is

x* 1=*x1 , x* 2=&x2

with n=2, .(t)=(0, e&t) and 0=[(0, 0)], then (4.3) is the Liouville
equation z* =(*&1) z which is uniformly asymptotically stable if *&1<0.
All three possibilities of Theorem 4.1(b) are exhibited here. If *<0, the
equilibrium 0=[(0, 0] is asymptotically stable; if 0�*<1 there is a
1-dimensional stable manifold together with a 1-dimensional centre mani-
fold when *=0 and a 1-dimensional unstable manifold when 0<*<1.

The preceding example shows that, in contrast with Theorem 4.1(a),
when 0 contains an equilibrium the semiflow is not necessarily phase
asymptotic at any point of cl 1+ . In the example, the orbit 1+ is in the
stable manifold of its omega limit set but this need not be the case: 1+

could be in a centre manifold of 0 as in Example 4.4. The example also
shows that, when 0 contains an equilibrium, (4.2) may be unstable.

Example 4.4. Let (4.1) be the equation

x* 1=&x2
1 , x* 2=&x2

with n=2, .(t)=((t+1)&1, 0), t>&1, and 0=[(0, 0)]. Here equation
(4.3) is z* =&(2(t+1)&1+1) z which is uniformly asymptotically stable. In
this case 1+ is in the centre manifold [0]_R of 0. While the semiflow is
phase asymptotic at each point of 1+ , this is not the case at cl 1+ since
(0, 0) is unstable. Any positive orbit in the stable manifold R_[0] of (0, 0)
also satisfies the conditions of Theorem 4.1(b): in this case the semiflow is
not phase asymptotic at any point of the orbit.

In Example 4.4, if we consider the semiflow restricted to the right half-
plane x1�0, it is phase asymptotic at each positive orbit and each such
orbit limits to the now stable periodic orbit 0=[(0, 0)], as asserted by
Theorem 2.1 with X=[(x1 , x2): x1�0].
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Example 4.5. Consider the 3-dimensional system

x* =y|(z)+(1&x2&:y2) x, y* =&x|(z)+(1&x2&:y2) y,

z* =;(x+y)&#z (4.5)

where z [ |(z){0 is C1 and 1�:�2, #>0, ; are real constants. The
stable manifold of the equilibrium (0, 0, 0) is the z-axis [(0, 0)]_R. There
is a 2-dimensional unstable manifold which, when ;=0, is the (x, y )-plane
R2_[0]. In this case it is an easy exercise, using the Poincare� -Bendixson
Theorem and the Poincare� stability condition, that there is a unique non-
constant periodic orbit which attracts all orbits not in the stable manifold
of (0, 0, 0). Here we will investigate values of the parameters for which this
phenomenon persists if ;{0. With

E=x2+y2, F=|z|,

we find

D+ E=2(x2+y2)(1&x2&:y2), D+F�; |x+y |&# |z|.

where D+ denotes the derivative from the right with respect to t. Therefore
D+ E>0, if 0<x2+:y2<1; D+E<0, if 1<x2+:y2; D+ F<0, if
# |z|>- 2 ;(x2+y2)12. Thus all orbits except those in the stable manifold
[(0, 0)]_R ultimately enter and remain in the toroidal region

D0={(x, y, z):
1
:

�x2+y2�1, # |z|�- 2 ;(x2+y2)1�2=
which contains no equilibrium if |(z){0. We consider an arbitrary solu-
tion .( } ) of (4.5), .(t)=(x(t), y(t), z(t)), whose positive orbit is in D0 .
From 93 or, more explicitly, [15, Fig. 1], the equation corresponding to
(4.3) in this case is

u* 2&4(x2+:y2) &x|$(z) &y|$(z) u

_ v* &=_ ; 1&#&(3x2+:y2) |(z)&2:xy &_ v& ,

w* &; &|(z)&2xy 1&#&(x2+3:y2) w
(4.6)

(x, y, z)=.(t). We consider the Liapunov function G=sup[ |u|, (v2+w2)12].
Then, since .(t) # D0 ,

D+ |u|�(2&4(x2+:y2)) |u|+||$(z)| ( |x| |v|+| y | |w| )

�(2+||$(z)|&4�:) |u| , if (v2+w2)1�2�|u|;
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D+(v2+w2)1�2=(v2+w2)&1�2 v[;u+(1&#&3x2&:y2) v

+(|(z)&2:xy ) w]

+(v2+w2)&1�2 w[&;u&(|(z)+2xy ) v

+(1&#&x2&3:y2) w]

�(- 2 |;|+ 1
2 (:+3)&(#+1�:))(v2+w2)1�2,

if |u|�(v2+w2)1�2.

We conclude that (4.6) is uniformly asymptotically stable if, for
(x, y, z) # D0 ,

2+||$(z)|<4�:, - 2 |;|+ 1
2 (:+3)<#+1�:. (4.7)

Theorem 4.1(a) then shows that (4.7) implies each orbit of (4.1), other than
those in the z-axis, together with neighbouring orbits tends to an omega
limit cycle 0 in D0 . The subset of D=[(x, y, z): (x, y ){(0, 0)] attracted
to a given limit cycle 0 is open and does not intersect the subset attracted
to any other limit cycle. Therefore, since D is connected, there is a unique
limit cycle which is the global attractor in D. The uniqueness of the limit
cycle could also be deduced directly from (4.7). This is a higher dimen-
sional Dulac condition for D0 (cf. [14, Sect. 3]) and, in the spirit of a result
of Lloyd [17] for nonsimply connected regions in the plane, implies that
D0 contains at most one periodic orbit. In summary, if (4.7) is satisfied, the
semiflow is phase asymptotic at every compact subset of D with a unique
limit cycle in D0 .

The following proof is an adaptation of one given for periodic orbits in
[4, p. 323] and [5, p. 82].

Proof of Theorem 4.1. If Y( } ) is a fundamental matrix for (4.2), then
Z( } ) is a fundamental matrix for (4.3). Furthermore, if x=.(s),

Y(t) Y&1(s)=
�.
�x

(t&s, x), Z(t) Z&1(s)=
�.
.x

(2)

(t&s, x). (4.8)

The uniform asymptotic stability of (4.3), the generalized Poincare� Condi-
tion, is therefore equivalent to the existence of constants K, :>0 such
that

}�.
�x

(2)

(t, x) }�Ke&:t (4.9)

439stable limit cycles
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if x # 1+ and t�0. Since K, : are independent of x, t, it follows that (4.9)
is satisfied if x # cl 1+ and t�0. Therefore any orbit in the omega limit set
0 also satisfies the stability conditions imposed on 1+ and we may assume
without loss of generality that .(t)=.(t, x0), x0 # 0 and thus 1+/0.

From (4.8) and (4.9), |z(t)|�K |z(s)| e&:(t&s), 0�s�t, for all solutions
z( } ) of (4.3). Observe that y1( } )=.* ( } ) is a solution of (4.2). Since
.* (t)=f (.(t)) and 1+ is positive Lagrange stable, | y1(t)|=|.* (t)| is
bounded, 0�t<�. Furthermore, if 0 contains no equilibrium, 1�| y1(t)| is
also bounded. Therefore there exists a constant L>1 such that | y1(t)|�
L | y1(s)|, 0�s, t. Lagrange stability of 1+ also implies that |(� f��x)(.(t))|
is bounded so that there exist constants M, ; such that | y(t)|�
M | y(s)| e;(t&s), 0�s�t for all solutions y( } ) of (4.2). The conditions of
Theorem 4.1(a) therefore imply that all the hypotheses of Proposition 3.1
are satisfied when A(t)=(� f��x)(.(t)). Therefore (4.2) is uniformly stable
and there exist supplementary projections P1 , P2 on Rn, rkP1=1,
rkP2=n&1 and a constant C>0 such that Y(t)=(�.��x)(t, x0) satisfies

|Y(t) P1 Y&1(s)|�C, 0�s, t;

|Y(t) P2 Y&1(s)|�Ce&:(t&s), 0�s�t. (4.10)

Substituting x=z+.(t), we find that (4.1) is equivalent to

z* =
� f
�x

(.(t)) z+F(t, z), F(t, z)=f (z+.(t))&f (.(t))&
� f
�x

(.(t)) z.

Since f is of class C1 and cl 1+ is compact, for each =>0 there exists $>0
such that |z1 |�$, |z2 |�$ implies

|F(t, z2)&F(t, z1)|�= |z2&z1 |. (4.11)

If 0<#<:, consider the Banach space

B#=[z # C([0, �) � Rn): &z&<�],

where &z&=supt�0 e#t |z(t)|. If z # B# , &z&�$ and ! # Rn, let T!z be
defined by

T!z(t)=Y(t)P2!+|
t

0
Y(t) P2Y &1(s) F(s, z(s)) ds

&|
�

t
Y(t) P1Y &1(s) F(s, z(s)) ds. (4.12)
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Now, from (4.10), (4.11) and (4.12)

|T!z(t)|�C _ |P2!| e&:t+= &z& |
t

0
e&:(t&s) e&#s ds+|

�

t
e&#s ds&

�C _ |P2!| e&:t+= &z& \ e&#t

:&#
+

e&#t

# +&
=C |P2!| e&:t+% &z& e&#t, %=C=

:
#(:&#)

. (4.13)

Choose = and ! so that 0<%<1 and C |P2!|�(1&%)$ and therefore

e#t |T! z(t)|�(1&%) $+%$=$.

Let z, zi # B# , &z&�$, &zi&�$, i=1, 2, and ! # Rn, |!|�(1&%) $�C |P2 | ).
Then T! z # B# and &T!z&�$. A similar estimate shows &T!z2&T!z1 &�
% &z2&z1 & so that T! is a uniform contraction on B# with respect to the
domain specified for !; see Hale [10, p. 6]. It follows that T! has a unique
fixed point z( } , !) # B# which is continuous in !. From (4.12) z(t, 0)=0,
z(t, !)=z(t, !2) where !2=P2! and the function

(t, !2) [ x(t, !2) :=.(t)+z(t, !2)=.(t, x0+z(0, !2)) (4.14)

is a solution of (4.1). Note that z(t, !2), originally defined only for t�0, is
defined by (4.14) and continuous on a neighbourhood of (t, !2)=(0, 0).
The preceding discussion shows that, for |t|, |s|, |!2 |, |'2 | close to zero,

x(t, !2)&x(s, '2)=f (x0)(t&s)+(!2&'2)+o(1) |t&s|+o(1) |!2&'2 |.

(4.15)

Since P1 f (x0)=f (x0), P2 f (x0)=0, and P1+P2=I, from Proposition 3.1,
this implies that the continuous map (4.14) is one-to-one on a
neighbourhood U of (0, 0). By the Invariance of Domain Theorem, [15, p.
50], x(U ) is a neighbourhood of x(0, 0)=x0 . Thus there exists \>0 such
that |x&x0 |< \ implies x=x(s, !2) where (s, !2) # U. Then .(t&s, x)=
.(t&s, .(s, x0+z(0, !2))=.(t, x0+z(0, !2))=.(t)+z(t, !2) so that, with
h(x)=&s, limt � � |.(t+h(x), x)&.(t)|=limt � � |z(t, !2)|=0 since
z( } , !2) # B# . This shows that the semiflow is phase asymptotic at x0 and
therefore, from Theorem 2.1(b), 0 is a periodic orbit. To complete the
proof of Part (a), let |(t, !2)| = (t2 + |!2 | 2)12. The function (t, !2) [
x(t, !2) is bi-lipschitzian in a neighbourhood of (0, 0), from (4.15), so that
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|!2 |�|(s, !2)&(0, 0)|�N |x&x0 |, where N is a lipschitz constant
associated with the inverse of this function. Now (4.12) and (4.13) imply

|.(t+h, x)&.(t, x0)|=|z(t, !2)|�
C

1&%
|!2 | e&#t

�
CN

1&%
|x&x0 | e&#t�H |x&x0 | e&#t

as asserted. The constants H, \ may be chosen independent of x0 # 0 since
0 is compact and x [ .(t, x) is a diffeomorphism for each t.

To prove Theorem 4.1(b), suppose x0 # 0 is an equilibrium. Since (4.9)
is satisfied with x=x0 , all of the eigenvalues *i of the Jacobian matrix
(� f ��x)(x0) satisfy Re *i<0 with at most one exception. This establishes
the asserted stability character of the semiflow at x0 . Moreover, x0 # 0,
f (x0)=0 implies lim inft � � |.* (t)|=lim inft � � | f (.(t))|=0 for any solu-
tion .( } ) whose omega limit set contains x0 . Then limt � � | f (.(t))|=
limt � � |.* (t)|=0, if (4.2) is uniformly stable, since .* ( } ) is a solution of
(4.2). Therefore f (x0)=0 for each x0 # 0. If there is more than one point
in 0, then with each x0 # 0 there is associated a (n&1)-dimensional stable
manifold and a 1-dimensional centre manifold which contains a continuum
of equilibria in 0, each with a stable manifold of dimension n&1. The
Centre Manifold Theorem, [13, p. 48], implies that every orbit which
intersects a neighbourhood of x0 is asymptotic to an orbit in the centre
manifold. Therefore limt � � .(t)=x0 so that, in fact, 0=[x0] when (4.2)
is uniformly stable. K

5. Discrete Semiflows, Periodic Systems and Massera's Theorem

Let (t, x) [ f (t, x) be a continuous function from R_U to Rn where
U/Rn is open. Suppose |>0, f (t+|, x)=f (t, x), if (t, x) # R_U, and
that solutions of

x* =f (t, x) (5.1)

are uniquely determined by initial conditions. In [18, Theorem 1] Massera
shows that, when n=1, the existence of a bounded solution (U=R)
implies the existence of a |-periodic solution. This is clearly related to the
Poincare� -Bendixson Theorem from which it can be readily deduced if we
consider an autonomous 2-dimensional system r* =f (%, r), %* =1 in polar
coordinates with |=2?. When n=2, [20, Theorem 2] shows that same
conclusion holds if the additional assumption is made that each solution of
(5.1) exists on a ray of the form (t0 , �). However this result does not hold
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without additional hypotheses for n>2. Many interesting results provide
examples of additional hypotheses which yield higher dimensional versions
of Massera's Theorem. Massera shows in [20] Theorem 4, with a proof
which he attributes to Bohnenblust, that when f (t, x)=A(t) x+b(t), where
A( } ) and b( } ) are n_n and n_1 continuous, |-periodic matrix-valued
functions respectively, the existence of bounded solution of (5.1) implies the
existence of a periodic solution. Smith provides an analogue of his higher-
dimensional Poincare� -Bendixson Theory in terms of guiding functions to
obtain a similar conclusion in [33]. Practical criteria are developed for a
nonautonomous version of the feedback control equation. In [29]
Theorem 4, Sell proves that, if U=Rn and (5.1) has a solution �( } ) which
is bounded and uniformly asymptotically stable, then it has a harmonic
solution: a periodic solution of period k| where k is an integer �1. This
solution is also uniformly asymptotically stable. Here we show that a
weaker restriction than uniform asymptotic stability of �( } ) is sufficient to
imply the existence of a harmonic solution. We also provide a Poincare� -
type sufficient condition for the existence and uniform asymptotic stability
of a harmonic solution in terms of the variational equation of (5.1) with
respect to �( } ) when f (t, } ) is C1 for each t:

y* =
� f
�x

(t, �(t)) y. (5.2)

A comprehensive discussion of Massera's Theorem is given in Yoshizawa
31. Chap. VII]. Yoshizawa [37] further develops Sell's result and proves
a similar theorem for functional differential equations; he also has many
references to earlier work and brief descriptions of the results. Pliss [26,
Chap. I] also gives results of this type together with many interesting
applications.

We first develop a Poincare� criterion for discrete semiflows in Rn and
deduce the result for (5.1) from this. Let x [ .(x) be a continuous function
with open domain U in Rn and range in Rn. Then .(0, x)=x, .(k, x)=
. b .(k&1, x), k=1, 2, ..., defines a semiflow as described in 92 with
T=Z+ , X=U0 where U0 is any subset of U such that .(U0)/U0 . The
semiflow will be called asymptotic at S/U if there is a \>0 such that
x0 # S, x # U and |x&x0 |< \ implies limk � � |.(k, x)&.(k, x0)|=0. This
means that the semiflow is phase asymptotic at S as defined in Section 2
with phase function x [ h(x)=0 in (2.1) for each x0 # S. When . is C 1

and (�.��x) is nonsingular on U, then the nonautonomous recursion

yk+1=
�.
�x

(xk) yk (5.3)
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is the variational equation of the semiflow with respect to 1+(x0), if x0 # U,
and xk=.(k, x0) exists for each k # Z+.

Theorem 5.1. Suppose the discrete semiflow . has a Lagrange stable
orbit 1+ with omega limit set 0.

(a) If . is asymptotic (and Lyapunov stable) at 1+ , then 0 is a peri-
odic orbit and . is asymptotic (and Lyapunov stable) at cl 1+.

(b) If . is C1 and (�.��x) is nonsingular, suppose the recursion (5.3)
is uniformly asymptotically stable for some x0 # cl 1+. Then 0 is a periodic
orbit and there exist positive constants H, :, \ such that :<1 and

|.(k, x)&.(k, x0)|�H |x&x0 | :k, k=0, 1, 2, ...,

if x0 # 0 and |x&x0 |< \.

Proof. Part (a) may be proved as in Theorem 2.1 with h(x)=0. To
prove part (b), recall that solutions [ yk] of (5.3) satisfy

yk=
�.
�x

(xk&1)
�.
�x

(xk&2) } } }
�.
�x

(xj ) yj=
�

�x
(k&j, xj ) yj , 0� j �k.

The recursion is uniformly asymptotically stable if and only if

} �
�x

.(k, x) }�K:k (5.4)

for each x # 1+(x0), k # Z+ , where K, : are constants, 0<:<1. If x # U
and .(k, x) exists define zk by .(k, x)=zk+xk . If zk+1 exists, then zk+1=
.(zk+xk)&.(xk) and

zk+1=
�.
�x

(xk) zk+F(k, zk) (5.5)

where F(k, z)=.(z+xk)&.(xk)&(�.��x)(xk) z. It follows that

zk=
�

�x
.(k, x0) z0+ :

k

j=1

�
�x

.(k&j, xj ) F( j&1, zj&1) (5.6)

if zk exists. Conversely, if a sequence [zk] satisfies (5.6), it is a solution of
the recursion (5.5) and .(k, x)=zk+xk , with x=z0+x0 , for each k # Z+.
If cl 1+(x0) is a compact subset of U, then for each =>0 there exists $>0
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such that |z|<$ implies z+xk # U and |F(k, z)|<= |z|. Therefore, if
|zj |<$, j=0, ..., k&1 and (5.4) is satisfied, then (5.6) implies

|zk |�K _ |z0 | :k+= :
k

j=1

|zj&1 | :k&j& . (5.7)

Choose =<:�K and, with corresponding $, let |z0 |<(:�K&=)$=\. Then,
by induction from (5.7),

|zk |�[1+K=�:+(K=�:)2+ } } } +(K=�:)k] K |z0 |:k

<
K |z0 | :k+1

:&=K
<$ (5.8)

and zk is defined by (5.6) for all k # Z+. Furthermore (5.8) implies

|.(k, x)&.(k, x0)|�H |x&x0 | :k (5.9)

if |x&x0 |< \ and K:(:&=K)&1�H so that the semiflow is asymptotic at
x0 . Since . is C 1, (5.4) is satisfied for each x # cl 1+(x0) and it may be
assumed without loss of generality that x0 # 0. As in Theorem 2.1(b), 0 is
a periodic orbit at which the semiflow is asymptotic. Since 0 is finite, the
constants H, \ may be chosen so that (5.9) is satisfied if |x&x0 |< \ for
any x0 # 0. K

A solution �( } ) of (5.1) will be called asymptotic if there exists \>0 such
that any solution x( } ) with |x(s)&�(s)|< \ for some s�0 satisfies
limt � � |x(t)&�(t)|=0.

Let t [ x(t, x0) denote the solution x( } ) of (5.1) such that x(0)=x0 .
Then .(x0)=x(|, x0) defines a discrete semiflow as in the preceding dis-
cussion with .(k, x0)=x(k|, x0). Applying Theorem 5.1 to this semiflow
we obtain the corollary.

Corollary 5.2. Suppose cl[�(t): t # R+] is a compact subset of U for
the solution �( } ) of (5.1).

(a) If �( } ) is asymptotic (and uniformly stable), then there is a
harmonic solution which is asymptotic (and uniformly stable).

(b) If f (t, } ) is C1 for each t�0 and the variational equation (5.2) is
uniformly asymptotically stable, then there is a harmonic solution %( } ) and
positive constants H, #, \ such that any solution x( } ) with |x(s)&%(s)|< \
for some s�0 satisfies

|x(t)&%(t)|�H |x(s)&%(s)| e&#(t&s), t�s.
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We note that, when the compactness condition is satisfied, concrete
examples of conditions which imply that (5.2) is uniformly asymptotically
stable as required in Corollary 5.2(b) are given by

|
t

s
+(u, �(u)) du�&#(t&s), if t&s�T, (5.10)

for some constants T, #>0, where (t, x) [ +(t, x) is any one of the
expressions

(i) +=sup {� fr

�xr
+ :

q{r }
� fq

�xr } : 1�r�n=
(ii) +=sup {� fr

�xr
+ :

q{r }
� fr

�xq } : 1�r�n=
(iii) +=*1

where *1 is the largest eigenvalue of 1�2((� f*��x)+(� f��x)). The formula
(5.10) is the analogue for periodic systems of the concrete Poincare� condi-
tions (4.4) for autonomous systems. The preceding observation may be
verified by considering the expressions | y |=sup i | yi |, �i | yi |, ( y*y )1�2

respectively as Lyapunov functions for (5.2).
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