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• We investigated a general class of coupled dynamical systems on networks.
• We established the global dynamics when the network is not strongly connected.
• We investigated the impact of network connectivity on the global dynamics.
• When vertex systems are gradient, network connectivity completely determines the synchronization.
• We applied the theory to two significant applications in epidemiology and ecology.
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a b s t r a c t

The global dynamics of coupled systems of differential equations defined on an interaction network are
investigated. Local dynamics at each vertex, when interactions are absent, are assumed to be simple:
solutions to each vertex system are assumed to converge to an equilibrium, either on the boundary or in
the interior of the feasible region. The interest is to investigate the collective behaviours of the coupled
system when interactions among vertex systems are present. It was shown in Li and Shuai (2010) that,
if the interaction network is strongly connected, then solutions to the coupled system synchronize at a
single equilibrium. We focus on the case when the underlying network is not strongly connected and the
coupled system may have mixed equilibria whose coordinates are in the interior at some vertices while
on the boundary at others. We show that solutions on a strongly connected component of the network
will synchronize. Considering a condensed digraph by collapsing each strongly connected component,
we are able to introduce a partial order on the set P of all equilibria, and show that all solutions of the
coupled system converge to a unique equilibrium P∗ that is themaximizer inP . We further establish that
behaviours of the coupled system at minimal elements of the condensed digraph determine whether the
global limit P∗ is a mixed equilibrium. The theory are applied tomathematical models from epidemiology
and spatial ecology.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Coupled systems on networks is a mathematical framework
that encompasses many different classes of large-scale artificial
and natural systems [1]. A network is given by a weighted digraph
(G, A), where G is a digraph with vertex set V (G) = {1, 2, . . . , n},
and A = (aij)n×n ≥ 0 is the weight matrix. At each vertex i,
a differential system u′

i = fi(ui) is defined. Inter-connections or
coupling among vertex systems are described by the edges of G,
and the strength of the coupling described by theweights of edges.
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In particular, an edge (i, j) from vertex j to i exists if and only if
aij > 0. A coupled system defined on a network (G, A) can be
written in the form

u′

i = fi(ui) +

n
j=1

aijgij(ui, uj), i = 1, 2, . . . , n, (1)

and gij(ui, uj) is a normalized interference function from vertex j
to i [1]. System (1) can describe a network of coupled oscillators
in which each vertex system is an oscillator and gij describe the
coupling terms. System (1) can also model the flocking of birds,
swarms of aerial robots and formation of small satellites, for
which (G, A) describes the communication topology. For ecological
systemswith spatial dispersal, vertex systems in (1)maymodel the
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dynamics of species on a single patch, gij describes the dispersal
term and (G, A) is the dispersal network.

Manymathematical questions can be investigated in the frame-
work of coupled systems on networks. Each vertex system is
typically of low dimension and whose dynamics are simple. As-
suming that each vertex system has a global attractor that is an
equilibrium or a limit cycle, one can ask if the coupled system has
a unique equilibrium or limit cycle and if it is globally attracting.
The framework is also a natural setting for investigating the emer-
gence of complex patterns and system behaviours from organiza-
tion of simple dynamics. Of key interest is the impact of network
structure, whether geometrical, topological or graph theoretical,
on the systembehaviours. In this study,we are interested in the im-
pact of network connectivity on the simplest type of invariant sets:
the set of equilibria. A motivation for this study comes from mod-
elling of the transmission dynamics of infectious diseases within a
heterogeneous host population in mathematical epidemiology.
Multi-group models have been used to model heterogeneous
transmission of sexually transmitted diseases [2]. A main math-
ematical question regarding the global dynamics is the threshold
theorem: if the basic reproduction number R0 ≤ 1 then the unique
disease-free equilibrium P0 is globally stable and the disease dies
out; if R0 > 1 then P0 is unstable and the disease persists. In partic-
ular, a unique endemic equilibrium P∗ exists and is globally stable
with respect to all positive initial conditions. Multigroupmodels is
an example of couple systems on networks in which the network
(G, A)describes cross-transmission among groups. The uniqueness
and global stability of the endemic equilibrium for an n-group SIR
model with bilinear incidence was first established in [3] using a
global Lyapunov function, under the assumption that the cross-
transmission network is strongly connected, or in biological terms,
if the disease can be transmitted from one group to another group
either directly or indirectly through other groups. Using the same
technique, the threshold theorem is established for many other
heterogeneous epidemic models structured with groups [4,5], in-
fection stages [6] and spatial dispersal [7]. The overarching as-
sumption for these threshold results is that the underlyingnetwork
is strongly connected. On the other hand, threshold results for het-
erogeneous epidemic models are not expected to hold when the
network is not strongly connected. It is shown in [8] that mixed
equilibria, at which some group/patch is disease-free while oth-
ers are endemic, can exist if the network is not strongly connected.
Further studies are needed to investigate the global dynamics of
heterogeneous epidemicmodels without the assumption of strong
connectedness, and address the following questions: what are the
structures of the set of equilibria? Can a mixed-equilibrium attract
all positive solutions, and if so, how to characterize and identify the
global attracting equilibrium?

In the present paper, in the general mathematical framework of
coupled systems on networks (1), we investigate the structure of
the set of equilibrium without the strong connectedness assump-
tion on G. We show that on each strongly connected component
H of G the behaviour of system (1) tends to be synchronized, the
equilibrium is either positive or zero at all vertex in H . This allows
us to consider a condensed graph H = G/ ∼ by collapsing each
strongly connected component to a single vertex. A canonical par-
tial order ≺ can be defined on the condensed graph H , which en-
codes the structure of the set of equilibria.We define an evaluation
function E on the ordered condensed graph (H, ≺), and show that
E has a unique maximizer P∗, and that P∗ corresponds to a unique
equilibriumof (1), either positive ormixed, that attracts all positive
solutions.

We present ourmain theoretic results in Section 2. In Sections 3
and 4, we apply our general approach to well-known examples of
coupled systems. In Section 5, we present numerical examples to
demonstrate ourmain results. Numerical simulations of a network
of three coupled oscillators are also given in Section 5, to demon-
strate the importance of network connectivity on synchronous os-
cillatory behaviours.
2. Coupled systems on networks

Let G be a digraph of n vertices. Consider a coupled system on
graph G of form:

u′

i = fi(ui) +

n
j=1

gij(ui, Puj), i = 1, 2, . . . , n, (2)

where ui ∈ Rd, fi = (f 1i , f 2i , . . . , f di ) : Rd
→ Rd, and gij = (g1

ij ,

g2
ij , . . . , g

d
ij ) : Rd

× Rd
→ Rd. Functions gij represent the influence

of vertex j on vertex i, and an arc from vertex j to i exists if and only
if gij(ui, Puj) ≢ 0. Matrix P is a d × d projection matrix, namely
P2

= P , and we assume that rank P = r > 0. For each 1 ≤ i ≤ n,
Pui are referred to as coupling variables.

Without loss of generality, we assume that the coupling graph
G is connected, since otherwise each connected component of G
gives rise to an independent system and can be treated separately.
We make the following general assumptions.

(A1) For ∀1 ≤ i ≤ n, 1 ≤ m ≤ d, f mi (ui)

umi =0 ≥ 0; and

f mi (ui)

umi =0 = 0 only if Pui = 0.

(A2) For 1 ≤ i, j ≤ n, ui, uj ≥ 0, Pgij(ui, Puj) ≥ 0; if Pgij ≢ 0, then
Pgij(ui, Puj) ≠ 0 ⇔ Puj ≠ 0.

Assumption (A1) requires that the vector field fi is either tan-
gent to or crosses each boundary subspace um

i = 0 of Rd
+
to the in-

terior. This ensures that the nonnegative orthant Rd
+
is positively

invariant for each vertex system ui = fi(ui), which is motivated
by applications in population biology. Assumption (A2) is regard-
ing the non-negativity of the coupling term gij. We do not require
that all entries in the vector gij to be nonnegative, and only that the
coupling entries Pgij are nonnegative.

An equilibrium u∗
= (u∗

1, . . . , u
∗
n) is said to be nonnegative if it

belongs to the nonnegative orthant Rd
+

× · · · × Rd
+

of the phase
space. From assumption (A1), we can deduce that at a nonnegative
equilibrium u∗, for each vertex i, we have either Pu∗

i > 0 or Pu∗

i =

0, namely, there is no i such that vector Pu∗

i has both positive and
zero coordinates. Equilibrium u∗ is said to be positive if Pu∗

i > 0 for
all i, andu∗ is said to bemixed if there exist i, j such that Pu∗

i = 0 and
Pu∗

j > 0. When matrix P has full rank, then Pu∗

i > 0 if and only if
u∗

i > 0. In this case, a positive equilibriumbelongs to the interior of
the nonnegative orthant. Generally, if Pu∗

i = 0 for some i, then the
equilibrium u∗ belongs to the boundary of the nonnegative orthant,
and is also called a boundary equilibrium. A mixed equilibrium is
necessarily a boundary equilibrium, while a boundary equilibrium
may not be mixed since we can have Pu∗

i = 0 for all i.
Define a partial order ≼ among vertices of the digraph G as

follows: for vertices i, j, i ≼ j if there exists an oriented path
from i to j. We say i ∼ j if i ≼ j and j ≼ i. It can be verified
straightforwardly that relation ‘‘∼’’ is an equivalence relation.

Proposition 2.1. Relation ∼ is an equivalence relation.

Let V (G) be the vertex set of digraph G. Define H as the con-
densed graph of G, which is formed by collapsing each strongly
connected component to a single vertex. Then V (H) = V (G)/ ∼,
and each vertex H ∈ V (H) represents a strongly connected com-
ponent ofG. IfG is strongly connected, thenV (H) = {G} is a single-
ton. ForH,H ′

∈ H , a directed edge fromH toH ′ exists if there exist
i ∈ V (H) and j ∈ V (H) such that a directed edge from i to j exists
inG. A canonical partial order≺ can be defined inH as follows: for
H,H ′

∈ V (H),H ≺ H ′ if there exist i ∈ H, j ∈ H ′, such that i ≼ j.
If H,H ′

∈ V (H) satisfy both H ≺ H ′ and H ′
≺ H , then H and H ′

are the same strongly connected component. This implies that ≺

is a strict partial order. Thus there exist minimal and maximal ele-
ments in V (H)with respect to the strict partial order≺ (see Fig. 1).
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(a) A digraph G. (b) The condensed digraph H .

Fig. 1. A digraph G and its strongly connected components Hi are shown in (a). The corresponding condensed digraph H is shown in (b). H1 and H2 are minimal elements
of H .
For any G ⊆ V (G), we denote

u′

i = fi(ui) +


j∈V (G)

gij(ui, Puj), i ∈ G (3)

as the G-subsystem of system (2); and

u′

i = fi(ui) +


j∈G

gij(ui, Puj), i ∈ G (4)

as the reduced G-subsystem of system (2);
ForH ∈ V (H) and c = (c1, c2, . . . , cn) ≥ 0,where ci ∈ Rd, 1 ≤

i ≤ n, we define

u′

i = fi(ui) +


j∈H

gij(ui, Puj) +


l∈V (G)\H

gil(ui, Pcl), i ∈ H (5)

as the restricted systemof system (2) onH at c. The following result
follows directly from these definitions.

Proposition 2.2. (a) If H ∈ V (H) is a minimal element, then the
H-subsystem is the same as the reduced H-subsystem.

(b) If H ∈ V (H) is a maximal element, then the V (G\H)-subsystem
is the same as the reduced V (G \ H)-subsystem.

(c) When cl = 0, gil(ui, Pcl) ≡ 0, thus the restricted system becomes
reduced H-subsystem.

A differential equation x′
= f (x), with x = (x1, . . . , xk) ∈ Rk,

is said to be uniformly persistent in the nonnegative orthant Rk
+
if

(1) Rk
+
is positively invariant, (2) solutions x(t)with x(0) > 0 exist

for all t ≥ 0, and (3) there exists constant c > 0 such that x(0) > 0
implies

lim inf
t→∞

xi(t) > c, i = 1, . . . , k.

Uniform persistence concept is motivated by the co-existence
of species in population biology. It implies that solutions in the
interior of Rk

+
stay away from the boundary in the limit [9,10].

We make the following additional assumptions on system (2).

(A3) For H ∈ V (H) and c ≥ 0, the restricted system (5) on H
at c has a nonnegative equilibrium that attracts all positive
solutions.

(A4) For 1 ≤ i ≤ n, the vertex system u′

i = fi(ui) has at most one
boundary equilibrium.

(A5) For H ∈ V (H), if the reduced H-subsystem (4) has a positive
equilibrium, then system (4) is uniformly persistent.

Assumption (A3) is a key assumption that needs rigorous verifica-
tion for each application. While the assumption may seem restric-
tive, its verification often relies on the property that a component
H is strongly connected, and can take advantage of the method for
constructing global Lyapunov functions on strongly connected net-
works developed in [4,11,6].
Theorem 2.3. Assume that (A3) is satisfied. Then all positive solu-
tions of coupled system (2) converge to the same nonnegative equilib-
rium P∗.

Proof. We use induction on the order |V (H)| of V (H). When
|V (H)| = 1, system (5) is the same as (2), the theorem holds triv-
ially. Assume that the theorem holds when |V (H)| = m. Then,
when |V (H)| = m + 1, let H ∈ V (H) be a maximal element with
respect to ≺. Let Gr = G \ H . Since H is a maximal element, a re-
stricted system of the Gr -subsystem is also a restricted system of
(2). Since |V (Gr)/∼| = m, by our induction assumption we know
theGr subsystem has a nonnegative equilibrium u∗

r that attracts all
positive solutions. Now the asymptotic behaviours of H subsystem
are the same as those of the limiting system, the restricted system
on H at c = (u∗

r , 0), by the theory of asymptotically autonomous
systems [12]. By assumption (A3), the H-subsystem has a nonneg-
ative equilibrium u∗

H that attracts positive solutions. Therefore sys-
tem (2) has a nonnegative equilibrium u∗

= (u∗
r , u

∗

H) that attracts
all positive solutions of (2). �

System (2) may have multiple mixed equilibria which stay on
the boundary of the phase space. A globally attracting equilibrium
can only be expected to attract all positive solutions and such an
equilibrium is necessarily unique. It is possible that system (2) does
not have any positive equilibrium. In this case, the global attracting
equilibrium in Theorem 2.3 is of a mixed type. In the rest of the
section, we investigate the characteristics of the global attracting
equilibrium.

LetP denote the set of all nonnegative equilibria of (2).Wehave
the following result.

Theorem 2.4. Assume that assumptions (A1) and (A2) are satisfied.
For u∗

∈ P , the following statements hold.
(a) If an arc from j to i exists, then Pu∗

j > 0 implies Pu∗

i > 0.
(b) For i, j ∈ V (G) such that j ≼ i, Pu∗

j > 0 implies Pu∗

i > 0.
(c) Let H ∈ V (H) be a strongly connected component of G. Then for

all i ∈ H, Pu∗

i are either all zero or all positive.

Proof. By assumption (A2), Pu∗

j > 0 implies Pgij(u∗

i , Pu
∗

j ) ≠ 0.
Therefore, there exists a coupling entrym such that gm

ij (u
∗

i , Pu
∗

j ) >

0. Assume that Pu∗

i = 0, by assumption (A1), Pfi(ui) ≥ 0. Then
(um

i )′

u∗ = f mi (u∗

i ) +
n

k=1 g
m
ik (u

∗

i , Pu
∗

k) ≥ gm
ij (u

∗

i , Pu
∗

j ) > 0. This
contradicts the fact that u∗ is an equilibrium. Thus Pu∗

i ≠ 0. By
assumption (A1), for ∀i, either Pu∗

i > 0 or Pu∗

i = 0. Therefore
Pu∗

i > 0.
For (b), if j ≼ i, then there is a directed path from j to i. Let

the path be (j, j1 . . . , jk, i). Using (a) repeatedly, Pu∗

j > 0 implies
Pu∗

i > 0.
For (c), if vertices i and j are in the same strongly connected

components, then i ≼ j and j ≼ i. By (b), we get Pu∗

i > 0 ⇔

Pu∗

j > 0. �
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For the restricted system (5) with H ∈ V (H), c ≥ 0, we have
the following result.

Proposition 2.5. Let u∗∗ be an equilibrium of the restricted sys-
tem (5). Then Pu∗∗

i are either positive for all i ∈ H or zero for all i ∈ H.
Furthermore, if there exists l such that cl > 0, then Pu∗∗

i > 0 for all
i ∈ H.

Proof. Using a similar argument as in the proof of Theorem 2.4,
the signs of Pu∗∗

i are the same since there is only one strongly
connected component in system (5). If there exist l such that cl > 0,
then gkl(ui, Pcl) ≠ 0 for some k. This implies that Pu∗∗

k > 0, and
thus Pu∗∗

i > 0 for all i ∈ H . �

We define a mapping π : P → (0, 1)|V (H)| by

π : u∗
→ ũ∗

= (ũ∗

H)H∈V (H), (6)

and

ũ∗

H =


0 if Pu∗

i = 0, for i ∈ H,
1 if Pu∗

i > 0, for i ∈ H,

where |V (H)| is the order of set V (H). From Theorem 2.4, we can
see that mapping π is well defined and has the following property.

Proposition 2.6. For u∗
∈ P , if H ≺ H ′, then ũ∗

H ≤ ũ∗

H ′ .

The following result follows from Proposition 2.6.

Proposition 2.7. An equilibrium u∗
∈ P is positive if and only if

ũ∗

H = 1 at all minimal elements H ∈ V (H).

Proposition 2.8. Suppose that assumptions (A3) and (A4) are satis-
fied. Then

(a) For H ∈ V (H) and c ≥ 0, the positive or boundary equilibrium
of restricted system (5) on H at c is unique.

(b) The mapping π is one-to-one.

Proof. When assumption (A3) is satisfied, the positive equilib-
rium of system (5) is automatically unique, since otherwise the
globally stable equilibrium cannot attract orbits originated from
the other positive equilibria. If c ≠ 0, then, By Proposition 2.5,
system (5) only has positive equilibrium which is automatically
unique. If c = 0 then system (5) breaks into independent systems
u′

i = fi(ui), i ∈ H . Assumption (A4) guarantees the boundary equi-
librium of system (5) is unique.

To see that π is one-to-one, suppose that π(P∗) = π(P∗∗) for
P∗, P∗∗

∈ P . We use induction on the order |V (H)| of V (H). Sup-
pose that the claim holds for |H | = m. Then, when |V (H)| =

m + 1, we can identify a maximal element H in the ordered set
(V (H), ≺). Let Gc = G \ H , then variables in H will not appear in
V (Gc) subsystem. Let V (Hc) = V (Gc)/∼ = V (H) \ H . Then Hc is
a subgraph ofH with |V (Hc)| = m, and P∗

H ′ = P∗∗

H ′ , forH ′
∈ V (Hc).

Therefore, by our induction hypothesis,

P∗
|Gc = P∗∗

|Gc .

Furthermore, P∗
|H and P∗∗

|H are the equilibrium of the restricted
system on H at c = (P∗

|Gc , 0). By (a), P̃∗

H = P̃∗∗

H implies P∗
= P∗∗

on H since the boundary or positive equilibrium is unique for sys-
tem (5). Therefore, P∗

= P∗∗ over the entire graph G, and the claim
holds for |H | = m + 1. �

Define an evaluation function E : P → R+ as
E(u∗) =


H∈V (H) π(u∗)H for u∗

∈ P . The following results
identify the global attracting equilibrium.
Theorem 2.9. Suppose that (A3) and (A5) are satisfied. Then the
following holds.

(a) All positive solutions of system (2) converge to a maximizer of
function E.

(b) If in addition (A4) is satisfied, then the maximizer of function E is
unique.

Proof. To show (a),wenote that since function E takes only integer
values and is bounded by |V (H)|, a maximizer exists. Let u∗ be
a maximizer of function E. For any u∗∗ that does not maximize
function E, let H ∈ V (H) be the minimal component such that
ũ∗

H > ũ∗∗

H . Then ũ∗

H = 1, ũ∗∗

H = 0. By Proposition 2.6, for H ′
≺ H ,

ũ∗

H ′ = ũ∗∗

H ′ = 0. Therefore the limiting system of H-subsystem
is the same as H-reduced subsystem. Since ũ∗

H = 1, the reduced
H-subsystem has a positive equilibrium. By assumption (A5), the
reduced H-subsystem is persistent, and thus the coordinates of
a positive solution x(t) in component H will not converge to
boundary equilibrium u∗∗

|H . Therefore solutions in the interior of
region Rd

+
will not converge to u∗∗.

To show the uniqueness of the maximizer, we assume the op-
posite. Let u∗, u∗∗ be twominimizers and u∗

≠ u∗∗. By assumption
(A4), themapping π is one to one, and thus π(u∗) ≠ π(u∗∗). There
exists a minimal element H ∈ V (H) such that ˜u∗∗

H > ũ∗
H . Thus

˜u∗∗
H = 1, ũ∗

H = 0. Using a similar argument as in the proof of
(a), we know the solution in the interior of Rd

+
× · · · × Rd

+
will not

converge to u∗. Then the solution in the interior will not converge
to anymaximizers of E, contradicting (a). Therefore themaximizer
of function E is unique. �

3. A general class of multi-group epidemic models

We consider the following system of multi-group epidemic
models of SEIR type:

S ′

i = Λi − dSi Si −
n

j=1

βijfij(Si, Ij),

E ′

i =

n
j=1

βijfij(Si, Ij) − (dEi + ϵi)Ei,

I ′i = ϵiEi − (dIi + γi)Ii,

i = 1, . . . , n, (7)

where Si, Ei, and Ii denote the number of individuals in the sus-
ceptible, exposed, and infectious compartments in the ith group of
the host population, respectively. The number of individuals in the
recovered compartment of the ith group is denoted by Ri, and Ri
satisfies the following equation:

R′

i = ϵiEi − dRi Ri. (8)

Since equations in (7) do not contain variable Ri, wewill first estab-
lish the global dynamics of system (7), and then derive the asymp-
totic behaviours of Ri from Eq. (8).

All parameters in system (7)–(8) are assumed to be nonnega-
tive. We further assume that dSk, d

E
k , d

I
k, d

R
k, Λk > 0 for all k. For

i ≠ j, the incidence term βijfij(Si, Ij) describes the cross-infection
from group j to group i. Motivated by biological considerations,
we assume that fij(0, Ij) = 0, fij(Si, 0) = 0, and fij(Si, Ij) > 0 for
Si > 0, Ij > 0.Wealso assume that fij(Si, Ij) are sufficiently smooth.

For each i, adding the three equations in (3) gives

(Si + Ei + Ii)′ ≤ Λi − d∗

i (Si + Ei + Ii)

with d∗

i = min{dSi , d
E
i , d

I
i + γi} > 0. Hence lim supt→∞(Si + Ei +

Ii) ≤ Λi/d∗

i . Similarly, from the Si equation we obtain lim supt→∞
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Si ≤ Λi/dSi . Therefore, omega limit sets of system (3) are contained
in the following bounded region in the nonnegative orthant of R3n

Γ =


(S1, E1, I1, . . . , Sn, En, In) ∈ R3n

+
| 0 < Si ≤

Λi

dSi
,

Si + Ei + Ii ≤
Λi

d∗

i
, for all i


.

It can be verified that region Γ is positively invariant.
System (3) always has the disease-free equilibrium P0 = (S01 , 0,

0, . . . , S0n , 0, 0), on the boundary ofΓ , where S0i = Λi/dSi . An equi-
librium P∗

= (S∗

1 , E
∗

1 , I
∗

1 , . . . , S
∗
n , E

∗
n , I

∗
n ) is called an endemic equi-

librium of (3) if E∗

i , I
∗

i > 0 for all i = 1, . . . , n, and P∗ is called
a mixed equilibrium if E∗

i , I
∗

i > 0 for some 1 ≤ i ≤ n while
E∗

i = I∗i = 0 for other i.We can see thatmixed equilibria are neces-
sarily on the boundary of Γ , and an endemic equilibrium belongs
to the interior of Γ .

We further make the following assumptions on the incidence
function fij(Si, Ij):

(F1) 0 < limIj→0+

fij(Si,Ij)
Ij

= Cij(Si) ≤ +∞, 0 < Si ≤ S0i .
(F2) fij(Si, Ij) ≤ Cij(Si)Ij for all Ij > 0.
(F3) Cij(Si) ≤ Cij(S0i ), 0 < Si < S0i .

If a positive equilibrium P∗
= (S∗, E∗, I∗) of (7) exists, we as-

sume that

(F4) (Si − S∗

i )(fii(Si, I
∗

i ) − fii(S∗

i , I
∗

i )) > 0, Si ≠ S∗

i .

(F5) [fij(Si, Ij)fii(S∗

i , I
∗

i ) − fij(S∗

i , I
∗

j )fii(Si, I
∗

i )]

fij(Si,Ij)fii(S∗

i ,I∗i )

Ij

−
fij(S∗

i ,I∗j )fii(Si,I∗i )

I∗j


≤ 0, Si, Ij > 0.

Classes of fij(Si, Ij) satisfying (F1)–(F3) include common incidence
functions such as bilinear incidence fij(Si, Ij) = IjSi, nonlinear
incidence fij(Si, Ij) = I

pj
j Sqii , and saturated incidences fij(Si, Ij) =

I
pj
j

Ij+Aj

S
qi
i

Si+Bi
. For detailed description of themodel, we refer the reader

to [1,11,2].
The basic reproduction number R0 for an epidemic model mea-

sures the average number of secondary infections caused by a
single infectious individual in an entirely susceptible population
during its infectious period. Assume that fij(Si, Ij) satisfies (F1), and
let

M0 = M(S01 , S
0
2 , . . . , S

0
n) =


βij ϵi Cij(S0i )

(dEi + ϵi)(dIi + γi)


1≤i,j≤n

. (9)

It can be shown using the method of next generation matrix as
in [13] that R0 for system (3) is

R0 = ρ(M0), (10)

where ρ is the spectral radius of the matrix. If Cij(S0i ) = +∞ for
some i and j, it is understood that R0 = +∞, see also [1].

System (7) is an example of coupled system on networks (2).
The vertex system is a single-group SEIR model with vector field

fi = (Λi − dSi Si, −(dEi + ϵi)Ei, ϵiEi − (dIi + γi)Ii).

The group-contact network is defined by the digraph (G, B),
weighted by the transmission matrix B = {βij} ≥ 0. A directed
arc from vertex j to i exists if and only if βij > 0. The general cou-
pling terms are given by gij = (−βijfij, βijfij, 0), and they represents
cross-infections among groups. Let ui = (Si, Ei, Ii)T be the state
variable and the projection matrix

P =

0 0 0
0 1 0
0 0 1


.

Then the coupling variables are Pui = (Ei, Ii)T . At an equilibrium
u∗

= (u∗

1, . . . , u
∗
n) with u∗

i = (S∗

i , E
∗

i , I
∗

i ), Pu∗

i > 0 if and only if
E∗

i > 0 and I∗i > 0, namely the disease is endemic in the group
i, and Pu∗

i = 0 if and only if E∗

i = I∗i = 0, namely, the group i is
disease free.

Under the assumption that the transmission matrix B = {βij}

is irreducible, or equivalently, the digraph (G, B) is strongly con-
nected, the following threshold result is established in [1]. A simi-
lar result for an n-group SIR model was first established in [11].

Theorem 3.1 (Li and Shuai). Assume that B = (βij) is irreducible.

(a) If R0 ≤ 1, then P0 is the only equilibrium which is globally
asymptotically stable in Γ .

(b) If R0 > 1, then system (7) has a unique endemic equilibrium
P∗, and P∗ is globally asymptotically stable in the interior of Γ

if assumptions (F4) and (F5) are satisfied.

When the irreducibility assumption on the transmissionmatrix
B = (βij) is dropped, the digraph (G, B) is no longer strongly con-
nected. We show in the following that all groups within a strongly
connected componentH have the same behaviours. From the form
of functions fi(ui) and gij(ui, uj), we can verify that conditions in
(A1) and (A2) are satisfied. From Theorem 2.4 we have the follow-
ing result.

Proposition 3.2. Let u∗
= (S∗

i , E
∗

i , I
∗

i )i∈V (G) be an equilibrium and
H be a strongly connected component of (G, B). Either E∗

i = I∗i = 0
for all i ∈ H or E∗

i > 0, I∗i > 0 for all i ∈ H.

The condensed graph H , sub-systems, reduced sub-systems,
restricted systems and the set of equilibria P can be defined for
(G, B) and system (7) in the sameway as in Section 2. For a strongly
connected component H ∈ V (H), the reduced H-subsystem is a
closed system. Let R0,H denote its basic reproduction number. Since
the reduced H-subsystem has an irreducible transmission matrix,
it satisfies Theorem 3.1. Therefore, if R0,H ≤ 1 all solutions of the
reduced H-subsystem converge to the disease-free equilibrium,
and if R0,H > 1, all solutions of reduced H-subsystem converge
to a unique endemic equilibrium.

The following result establishes the relation between the basic
reproduction number R0 for the entire system and R0,H .

Theorem 3.3. Let H be the condensing graph of (G, B). Then

R0 = max{R0,H | H ∈ V (H)}. (11)

Proof. Theorem 3.3 holds trivially if B is irreducible. Suppose that
B is reducible. For a strongly connected component H ∈ V (H), let

M0,H =


βij ϵi Cij(S0i )

(dEi + ϵi)(dIi + γi)


i,j∈V (H)

.

Then R0,H = ρ(M0,H). If we group the equations in (7) according
to strongly connected components of (G, B) and rearrange the
components according to the order ≺ defined on H , then matrix
M0 in (9) can be written in block-triangular form

M0 =


M0,H1 0 · · · 0

∗ M0,H2 · · · 0
...

...
. . .

...
∗ ∗ · · · M0,HN

 ,

where H1, . . . ,HN are the vertices of the condensed graph H .
Using Cauchy–Binet formula we see that eigenvalues of M0 are
the ensemble of eigenvalues of M0,Hi , i = 1, . . . ,N . This leads to
relation (11). �
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From Theorem 3.3 we see that network connectivity has a
strong impact on the endemicity of disease transmission.When the
group-contact network is not strongly connected, the basic repro-
duction number R0 > 1 only implies that R0,H > 1 on some com-
ponentsH . As a result, the disease may be endemic in some groups
and disappears from other groups. It is possible that an endemic
equilibrium may not exist, and that system (7) can have multiple
mixed equilibria. It is of interest to investigate whether R0 > 1
can imply the existence of a positive endemic equilibrium, and
whether global convergence to an equilibrium still holds. Suppose
that R0 > 1 and no positive equilibrium exists, it is then of interest
to investigate which of the many mixed equilibria will be globally
stable. The theory developed in Section 2 will be applied to inves-
tigate the global dynamics of system (7) and address these issues.

Each vertex system is a single-group SEIR model and has
a unique boundary equilibrium (Si, 0, 0), and thus assumption
(A4) is satisfied. For any strongly connected component H , global
dynamics of the reduced H-subsystem satisfy Theorem 3.1. In
particular, when a positive equilibrium exists, we know R0,H > 1
and a unique endemic equilibrium for the reduced system exists
and is globally stable. Thus assumption (A5) is also satisfied.

Next we show that system (7) satisfies assumption (A3). Let
H ∈ V (H) be a strongly connected component and c ≥ 0. The
restricted subsystem on H at c is:

S ′

i = Λi − dSi Si −

j∈H

βijfij(Si, Ij) −


j∈V (G)\H

βijfij(Si, cj)

E ′

i =


j∈H

βijfij(Si, Ij) +


j∈V (G)\H

βijfij(Si, cj)

− (dEi + ϵi)Ei, i ∈ H

I ′i = ϵiEi − (dIi + γi)Ii.

(12)

We want to show that system (12) has a unique positive equilib-
rium that attracts all positive solutions.Wewill establish the result
for a more general system:

S ′

i = Λi − dSi Si −
n

j=1

βijfij(Si, Ij) − hi(Si, Ii),

E ′

i =

n
j=1

βijfij(Si, Ij) + pihi(Si, Ii) − (dEi + ϵi)Ei,

i = 1, 2, . . . , n,

I ′i = ϵiEi + qihi(Si, Ii) − (dIi + γi)Ii,

(13)

where pi, qi satisfy pi, qi ≥ 0 and 0 < pi + qi ≤ 1 for all i, hi(Si,
Ii) ≥ 0. Other parameters have the same interpretation as in sys-
tem (7). Let B = {βij} and (G, B) to represent the weighted digraph
corresponding to B.

System (13) can be regarded as a general multi-group model
with vertical transmission: functions hi(Si, Ii) can be understood
as newborns infected at birth in the ith group, and enter compart-
ments Ei and Ii by fractions pi and qi respectively. It can be verified
that the feasible region for system (13) is

∆ =


(S1, E1, I1, . . . , Sn, En, In) ∈ R3n

+
| 0 < Si ≤

Λi

dSi
,

Si + Ei + Ii ≤
Λi

d∗

i
, for all i


,

with d∗

i = min{dSi , d
E
i , d

I
I}. An equilibrium P∗

= (S∗

1 , E
∗

1 , I
∗

1 , . . . ,
S∗
n , E

∗
n , I

∗
n ) of system (13) satisfies the following equilibrium
equations

0 = Λi − dSi S
∗

i −

n
j=1

βijfij(S∗

i , I
∗

j ) − hi(S∗

i , I
∗

i ),

0 =

n
j=1

βijfij(S∗

i , I
∗

j ) + pihi(S∗

i , I
∗

i ) − (dEi + ϵi)E∗

i ,

i = 1, 2, . . . , n.

0 = ϵiE∗

i + qihi(S∗

i , I
∗

i ) − (dIi + γi)I∗i .

(14)

Proposition 3.4. Assume that B = {βij} is irreducible and there
exists k such that hk(Sk, Ik) > 0 in ∆. Then

(a) system (13) has no equilibria on the boundary of ∆, and
(b) system (13) has an endemic (positive) equilibrium.

Proof. By the positive invariance of the compact and convex
feasible region ∆ and Browder’s Fixed Point Theorem [14], we can
deduce that system (13) has an equilibrium in ∆. Let P∗

= (S∗

1 , E
∗

1 ,
I∗1 , . . . , S

∗
n , E

∗
n , I

∗
n ) be an equilibrium of system (13). From the first

equation of (14) we get S∗

i > 0 for all i since fij(0, Ij) = 0.
Suppose hk > 0 for some k. Then from (14),

(dEk + ϵk)E∗

k =

n
j=1

βkjfij(S∗

k , I
∗

j ) + pkhk(S∗

k , I
∗

k ),

(dIk + γ )I∗k = ϵkE∗

k + qkhk(S∗

k , I
∗

k ).

Therefore, hk(S∗

k , I
∗

k ) > 0 implies that Pu∗

k = (E∗

k , I
∗

k )
T > 0. Since

(G, B) is strongly connected, we know Pu∗

i > 0 for all i, and system
(13) has an endemic equilibrium and no boundary equilibria. �

Let P∗
= (S∗

1 , E
∗

1 , I
∗

1 , . . . , S
∗
n , E

∗
n , I

∗
n ) be an endemic equilibrium

of (13). We make the following assumption on hi(Si, Ii):

(F6)

1−

Iifii(Si,I∗i )hi(S∗
i ,I∗i )

I∗i fii(S
∗
i ,I∗i )hi(Si,Ii)

 
fii(S∗

i ,I∗i )hi(Si,Ii)
fii(Si,I∗i )hi(S∗

i ,I∗i )
−1


≤ 0, for all Si, Ii > 0.

The next result establishes the global dynamics of system (13)
when B is irreducible. It generalizes the global stability result
in [1,11].

Theorem 3.5. Suppose that B = {βij} is irreducible and there exists
k such that hk(Sk, Ik) > 0 in ∆. Assume that (F4), (F5) and (F6) hold.
Then system (13) has a unique endemic equilibrium and it is globally
asymptotically stable with respect to the interior of ∆.

Proof. Let P∗
= (S∗

1 , E
∗

1 , I
∗

1 , . . . , S
∗
n , E

∗
n , I

∗
n ) be an endemic equi-

librium of (13). Consider a Lyapunov function of form V =
n

i=1
ciVi, where ci is the cofactor of the ith diagonal entry of the alge-
braic Laplacian matrix of B, as defined in [1], and

Vi =

 Si

S∗
i

fii(ξ , I∗i ) − fii(S∗

i , I
∗

i )

fii(ξ , I∗i )
dξ + Ei

− E∗

i log Ei +
dEi + ϵi

ϵi
(Ii − I∗i log Ii).

Taking the derivative ofVi along solutions to system (13),we obtain

V̇i =


1 −

fii(S∗

i , I
∗

i )

fii(Si, I∗i )


Λi − dSi Si −

n
j=1

βijfij(Si, Ij) − hi(Si, Ii)


+

n
j=1

βijfij(Si, Ij) + pihi(Si, Ii) − (dEi + ϵi)Ei

−
E∗

i

Ei

n
j=1

βijfij(Si, Ij) −
E∗

i

Ei
pihi(Si, Ii) + (dEi + ϵi)E∗

i
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+ (dEi + ϵi)Ei −
(dEi + ϵi)(dIi + γi)

ϵi
Ii +

(dEi + ϵi)

ϵi
qihi(Si, Ii)

−
I∗i
Ii

(dEi + ϵi)Ei +
(dEi + ϵi)(dIi + γi)

ϵi
I∗i

−
(dEi + ϵi)I∗

ϵiI
qihi(Si, Ii)

≤ −dSi

Si − S∗

i


1 −

fii(S∗

i , I
∗

i )

fii(Si, I∗i )



+

n
j=1

βijfij(S∗

i , I
∗

j )


3 +

fii(S∗

i , I
∗

i )fij(Si, Ij)
fii(Si, I∗i )fij(S

∗

i , I
∗

j )
−

fii(S∗

i , I
∗

i )

fii(Si, I∗i )

−
E∗

i fij(Si, Ij)
Eifij(S∗

i , I
∗

j )
−

Ii
I∗i

−
EiI∗i
E∗

i Ii



+ pihi(S∗

i , I
∗

i )


3 +

fii(S∗

i , I
∗

i )hi(Si, Ii)
fii(Si, I∗i )hi(S∗

i , I
∗

i )
−

fii(S∗

i , I
∗

i )

fii(Si, I∗i )

−
E∗

i hi(Si, Ii)
Eihi(S∗

i , I
∗

i )
−

Ii
I∗i

−
EiI∗i
E∗

i Ii



+ qihi(S∗

i , I
∗

i )


2 +

fii(S∗

i , I
∗

i )hi(Si, Ii)
fii(Si, I∗i )hi(S∗

i , I
∗

i )
−

I∗i hi(Si, Ii)
Iihi(S∗

i , I
∗

i )

−
Ii
I∗i

−
fii(S∗

i , I
∗

i )

fii(Si, I∗i )


.

Let

Qi(Si, Ei, Ii) = 3 +
fii(S∗

i , I
∗

i )hi(Si, Ii)
fii(Si, I∗i )hi(S∗

i , I
∗

i )
−

fii(S∗

i , I
∗

i )

fii(Si, I∗i )
−

E∗

i hi(Si, Ii)
Eihi(S∗

i , I
∗

i )

−
Ii
I∗i

−
EiI∗i
E∗

i Ii
,

Ri(Si, Ei, Ii) = 2 +
fii(S∗

i , I
∗

i )hi(Si, Ii)
fii(Si, I∗i )hi(S∗

i , I
∗

i )
−

I∗i hi(Si, Ii)
Iihi(S∗

i , I
∗

i )

−
Ii
I∗i

−
fii(S∗

i , I
∗

i )

fii(Si, I∗i )
,

and

Fij(Si, Ei, Ii, Ij) = 3 +
fij(Si, Ij)fii(S∗

i , I
∗

i )

fij(S∗

i , I
∗

j )fii(Si, I
∗

i )
−

fii(S∗

i , I
∗

i )

fii(Si, I∗i )
−

fij(Si, Ij)E∗

i

fij(S∗

i , I
∗

j )Ei

−
Ii
I∗i

−
EiI∗i
E∗

i Ii
.

Then

Qi(Si, Ei, Ii) =


4 −

fii(S∗

i , I
∗

i )

fii(Si, I∗i )
−

E∗

i hi(Si, Ii)
Eihi(S∗

i , I
∗

i )

−
Iifii(Si, I∗i )hi(S∗

i , I
∗

i )

I∗i fii(S
∗

i , I
∗

i )hi(Si, Ii)
−

EiI∗i
E∗

i Ii



+


1 −

Iifii(Si, I∗i )hi(S∗

i , I
∗

i )

I∗i fii(S
∗

i , I
∗

i )hi(Si, Ii)


fii(S∗

i , I
∗

i )hi(Si, Ii)
fii(Si, I∗i )hi(S∗

i , I
∗

i )
− 1



≤


1 −

Iifii(Si, I∗i )hi(S∗

i , I
∗

i )

I∗i fii(S
∗

i , I
∗

i )hi(Si, Ii)


fii(S∗

i , I
∗

i )hi(Si, Ii)
fii(Si, I∗i )hi(S∗

i , I
∗

i )
− 1


≤ 0,
by assumption (F6). Similarly,

Ri(Si, Ei, Ii)

=


3 −

fii(S∗

i , I
∗

i )

fii(Si, I∗i )
−

I∗i hi(Si, Ii)
Iihi(S∗

i , I
∗

i )
−

Iifii(Si, I∗i )hi(S∗

i , I
∗

i )

I∗i fii(S
∗

i , I
∗

i )hi(Si, Ii)



+


1 −

Iifii(Si, I∗i )hi(S∗

i , I
∗

i )

I∗i fii(S
∗

i , I
∗

i )hi(Si, Ii)


fii(S∗

i , I
∗

i )hi(Si, Ii)
fii(Si, I∗i )hi(S∗

i , I
∗

i )
− 1



≤


1 −

Iifii(Si, I∗i )hi(S∗

i , I
∗

i )

I∗i fii(S
∗

i , I
∗

i )hi(Si, Ii)


fii(S∗

i , I
∗

i )hi(Si, Ii)
fii(Si, I∗i )hi(S∗

i , I
∗

i )
− 1


≤ 0.

Using assumption (F4) we obtain

V̇i ≤

n
j=1

βijfij(S∗

i , I
∗

j )Fij(Si, Ei, Ii, Ij).

Let Φ(a) = 1− a+ log a and Li(Ii) = −
Ii
I∗i

+ log Ii
I∗i
. Then Φ(a) ≤ 0

for a > 0 and the equality holds only at a = 1. Furthermore,

Fij = Li(Ii) − Lj(Ij) + Φ


fii(S∗

i , I
∗

i )

fii(Si, I∗i )


+ Φ


EiI∗i
E∗

i Ii



+ Φ


Ijfij(S∗

i , I
∗

j )fii(Si, I
∗

i )

I∗j fij(Si, Ij)fii(S
∗

i , I
∗

i )


+ Φ


fij(Si, Ij)E∗

i

fij(S∗

i , I
∗

j )Ei



+


fij(Si, Ij)fii(S∗

i , I
∗

i )

fij(S∗

i , I
∗

j )fii(Si, I
∗

i )
− 1


1 −

Ijfij(S∗

i , I
∗

j )fii(Si, I
∗

i )

I∗j fij(Si, Ij)fii(S
∗

i , I
∗

i )


≤ Li(Ii) − Lj(Ij).

This shows that {Fij} satisfy the cycle condition in Corollary 3.3
of [1], and thus, the function V satisfies V̇ ≤ 0 for all (S1, E1,
I1, . . . , Sn, En, In) ∈ ∆.

In any subset of {(S1, E1, I1, . . . , Sn, En, In) | V̇ = 0} that is
invariant for system (13), we necessarily have dSi (Si − S∗

i )(1 −

fii(S∗
i ,I∗i )

fii(Si,I∗i )
) = 0 and Qi(Si, Ei, Ii) = 0, for all i. It can be verified that

these conditions imply Si = S∗

i , Ei = E∗

i and Ii = I∗i for all i. There-
fore the largest invariant set where V̇ = 0 is the singleton {P∗

}.
LaSalle’s Invariance Principle [15] implies that the equilibrium P∗

is globally asymptotically stable in∆. The uniqueness of P∗ follows
from its global stability. �

When (G, B) is not strongly connected, the restricted system
(12) on a strongly connected component H has its βij from the
weight matrix of the subgraph H , and hence (12) is a special case
of the system (13), pi = 1, qi = 0 and

hi(Si, Ij) =


j∈V (G)\H

βijfij(Si, cj). (15)

The following results follow from Theorem 3.5. It shows that
system (7) satisfies assumption (A3).

Proposition 3.6. For any H ∈ V (H), let hi(Si, Ij) be defined as
in (15).
(a) Suppose that there exist k ∈ H such that hk(Sk, Ik) > 0 and

that fij satisfies assumptions (F4)–(F6). Then, the restricted system
(12) has a unique endemic equilibrium and it attracts all positive
solutions.

(b) Suppose that hi(Si, Ii) = 0 for all i ∈ H and that fij satisfies
assumptions (F4) and (F5). If R0,H ≤ 1 then the disease-free
equilibrium is globally asymptotically stable; if R0,H > 1, then
a unique endemic equilibrium exists and it attracts all positive
solutions.
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We have shown that assumptions (A1)–(A5) are satisfied by
system (7). Let evaluation function E : P → R+ be defined as in
Theorem 2.9. Applying Theorem 2.9, we have the following result.

Theorem 3.7. Assume that incidence functions in (7) satisfy assump-
tions (F1)–(F6). Then all positive solutions of system (7) converge to
the unique maximizer P∗ of function E.

Applying Proposition 2.7 to system (7), we can check if the
globally stable equilibrium is a positive equilibrium or a mixed
equilibrium.

Theorem 3.8. Let P∗ be the nonnegative globally asymptotically
stable equilibrium of system (7). Then P∗ is a positive equilibrium if
and only if R0,H > 1 for all minimal elements H ∈ V (H).

Corollary 3.9. A positive equilibrium P∗ exists if and only if R0,H > 1
for all minimal elements H ∈ V (H). In this case, P∗ is unique and
attracts all positive solutions.

For the class of multi-group epidemic models whose incidence
functions satisfy assumptions (A1)–(A5), Theorems 3.1, 3.3, 3.5,
3.7, 3.8 and Propositions 3.2, 3.4, 3.6 completely characterize the
effects of the connectivity of the group-contact network on the en-
demicity of the disease. If the network is strongly connected, then
the disease outcomes are completely determined by the basic re-
production number R0 (Theorem 3.1): if R0 ≤ 1 the disease dies
out; if R0 > 1 the disease persists in all groups and all persistent
solutions converge to a unique positive endemic equilibrium. If the
network is not strongly connected, then R0 no longer determines
the disease outcomes. While R0 ≤ 1 still implies that the disease
dies out from all groups, R0 > 1 cannot guarantee that the disease
is persistent in all groups. A positive endemic equilibriummay not
exist in this case, and multiple mixed equilibria may exist depend-
ing on the network connectivity. As we show in Theorems 3.7 and
3.8 that it is productive to partition the network (G, B) into strongly
connected components and examine the resulting condensed
graph H . A natural order ≺ and an evaluation function E can be
defined on the set of equilibria using the induced network struc-
ture on the condensed graphH . The uniquemaximizer of function
E identifies the equilibrium that attracts all positive solutions. The
maximizer identifies the groups in which the disease is endemic
and groups in which the disease disappears. The order ≺ also en-
ables us to identify minimal components in the network, whose
importance in determining whether the disease is endemic in all
of the groups is clearly shown in Theorem 3.8 and Corollary 3.9.

4. A spatial ecological model

We consider the following single-species ecological model with
dispersal:

x′

i = xifi(xi) +

n
j=1

dij(xj − αijxi), i = 1, 2, . . . , n. (16)

Here xi ∈ R+ represents density of the species on patch i. Function
fi ∈ C1(R+, R) describes the density-dependent growth rate of
the species on patch i. We assume that fi satisfies the following
property: there exists constant bi > 0 such that f ′

i (xi) ≤ −bi <

0, xi > 0, and fi(0) > 0 for i = 1, 2, . . . , n. Such property is
satisfied by fi(xi) = ri(1 − xi/Ki) so that xifi(xi) gives the logistic
growth. Constants dij are the dispersal rates for the species from
patch j to patch i. A detailed description of system (16) can be found
in [1,16].
Let D = (dij) be the dispersal matrix. Consider

L(D) =



−

n
j=1

d1jα1j d12 · · · d1n

d21 −

n
j=1

d2jα2j · · · d2n

...
...

. . .
...

dn1 dn2 · · · −

n
j=1

dnjαnj


and the Jacobian matrix of system (16) at the equilibrium (0,
. . . , 0)

Af = diag(f1(0), f2(0), . . . , fn(0)) + L(D). (17)

The stability modulus of Af is

s(Af ) = max{Re λ | λ is an eigenvalue of Af }. (18)

It is of interest to investigate the impact of connectivity of the
dispersal network on the extinction and persistence of the species
on all patches. When the dispersal matrix D is irreducible, the
following threshold result is known, see [1,16].

Theorem 4.1. Suppose that the dispersal matrix D = (dij) is irre-
ducible. Then

(1) If s(Af ) ≤ 0, then the extinction equilibrium (0, . . . , 0) is the only
equilibrium of system (16) and is globally asymptotically stable in
Rn

+
, and the species becomes extinct in all patches,

(2) If s(Af ) > 0, then the extinction equilibrium (0, . . . , 0) is un-
stable and a unique positive equilibrium E∗ exists and is globally
asymptotically stable in the interior of Rn

+
. The species persists in

all patches.

When the dispersal matrixD is reducible, the dispersal network
(G,D) is not strongly connected. The species may become extinct
on some patches while persists on others. It can be verified that
system (16) satisfies assumptions (A1) and (A2). The following
result follows from Theorem 2.4.

Proposition 4.2. Let H be a strongly connected component of the
dispersal network (G,D). Then, at an equilibrium x∗

= (x∗

1, . . . , x
∗
n),

either x∗

i = 0 for all i ∈ H or x∗

i > 0 for all i ∈ H.

Proposition 4.2 implies that, at an equilibrium, on all patches
in a strongly connected component, the species has the same
behaviours in terms of extinction and persistence. It is natural
to partition the graph into strongly connected components and
consider the induced network structure on the condensed graph
H . For H ∈ V (H), let Af ,H denote the matrix Af defined in (17) for
the reducedH subsystem. The following result gives the relation of
s(Af ) and s(Af ,H) and can be proved as Theorem 3.3 in Section 3.

Theorem 4.3. Let H be the condensing graph of (G,D). Then

s(Af ) = max{s(Af ,H) | H ∈ V (H)}. (19)

When the dispersal matrix is reducible, by Theorem 4.3, we see
that s(Af ) > 0 can no longer ensure the existence of a positive
persistence equilibrium, and mixed equilibria may exist at which
the species is extinct on some patches and persists among others.
We follow the general theory developed in Section 2 to investigate
the global dynamics of system (16) in this case.

Verification of assumptions (A1), (A2), and (A4) is straightfor-
ward. Assumption (A5) can be verified by applying Theorem 4.1
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to the reduced H subsystem on a strongly connected component.
Next we show that system (16) satisfies assumption (A3).

Let qi =
n

j=1 dijαijxi ≥ 0. Then the restricted system on
H ∈ V (H) at c can be written as:

x′

i = xifi(xi) − qixi +

j∈H

dijxj +


l∈V (G)\H

dilcl, i ∈ H. (20)

We consider a slightly more general system

x′

i = xifi(xi) − qixi +
m
j=1

dijxj + pi, i = 1, 2, . . . ,m, (21)

where pi ≥ 0.Matrix (dij)m×m is irreducible.We have the following
result.

Theorem 4.4. Assume that there exists k such that pk > 0. Then
system (21) has no boundary equilibria. A unique positive equilibrium
exists and is globally asymptotically stable in Rm

+
.

Proof. Suppose that pk > 0. It can be verified that system (21) has
no boundary equilibria and the solutions are ultimately bounded.
By Browder’s Fixed Point Theorem [14], system (21) has a positive
equilibrium E∗

= (x∗

1, x
∗

2, . . . , x
∗
m). We will show E∗ is globally

asymptotically stable and thus unique.
Set Vi(xi) = xi − x∗

i ln xi. Then

V̇i =
1
xi

(xi − x∗

i )

xifi(xi) +

m
j=1

dijxj + p − qxi


= (xi − x∗

i )

fi(xi) +

m
j=1

dij
xj
xi

+
p
xi

−
p
x∗

i
− fi(x∗

i ) −

m
j=1

dij
x∗

j

x∗

i


= (xi − x∗

i )(fi(xi) − fi(x∗

i )) −
p

xix∗

i
(xi − x∗

i )
2

+

m
j=1

dijx∗

j

 xj
x∗

j
−

xi
x∗

i
+ 1 −

x∗

i xj
xix∗

j


≤

m
j=1

dijx∗

j

 xj
x∗

j
−

xi
x∗

i
+ 1 −

x∗

i xj
xix∗

j


.

Let aij = dijx∗

j , Fij(xi, xj) =
xj
x∗j

−
xi
x∗i

+ 1 −
x∗i xj
xix∗j

, and Gi(xi) =

−
xi
x∗i

+ ln xi
x∗i
. Then we have

V̇i ≤

m
j=1

aijFij(xi, xj)

=

m
j=1

aij

Gi(xi) − Gj(xj) + 1 −

x∗

i xj
xix∗

j
+ ln

x∗

i xj
xix∗

j


≤

m
j=1

aij[Gi(xi) − Gj(xj)].

We have shown that Vi, Fij,Gi, and aij satisfy the assumptions of
Theorem 3.1 in [1]. Therefore, by Theorem 3.1 in [1]

V (x1, . . . , xn) =

n
i=1

ciVi(xi)

is a Lyapunov function for (16). It can be verified that V̇ = 0 ⇔

xi = x∗

i , i = 1, . . . ,m, and thus E∗ is globally asymptotically stable
in Rm

+
. �
Let pi =


l∈V (G)\H dilcl, and relabel entries in a strongly com-
ponent H to be 1, 2, . . . ,m. Then the H restricted system (20) is a
special form of system (21). Applying Theorem 4.4, we have shown
that assumption (A3) is satisfied.

Let P be the set of equilibria of system (16), and E : P →

R be the evaluation function defined as in Theorem 2.9. The
following result follows from Theorem 2.9 and establishes the
global convergence of all solutions of system (16).

Theorem 4.5. All solutions of system (16) in the interior of region ∆

converge to the unique maximizer of function E.

We have the following results regarding the positivity of the
globally attracting equilibrium E∗ in Theorem 4.5.

Theorem 4.6. Let E∗ be the nonnegative globally asymptotically
stable equilibrium of system (7). The following holds.

(a) If s(Af ) ≤ 0, then E∗
= 0 and the species goes to extinction in all

patches.
(b) If s(Af ) > 0 and the dispersal matrix D is irreducible, then E∗ > 0

and the species persists in all patches.
(c) If s(Af ) > 0 and the dispersal matrix D is reducible, then E∗ > 0

if and only if s(Af ,H) > 0 for all minimal element H of H .

5. Numerical simulations

In this sectionwe show several simulation results for themulti-
group SEIR model in Section 2. We choose n = 3 and a bilinear
incidence function fij(Si, Ij) = SiIj. The transmission matrix B =

(βij)3×3 and its corresponding group-contact digraph are given in
Fig. 2.

Here the transmission matrix (βij) is reducible. The set of
strongly connected components V (H) = {H1,H2} = {{1, 2}, 3},
and from the graph structure we know that H1 ≺ H2, and H1 is a
minimal element.We can compute the basic reproduction number
R0,Hi for Hi reduced subsystem, i = 1, 2, using formula (10). Then,
Theorem 3.3 implies that the basic reproduction number R0 for the
coupled system satisfies

R0 = max{R0,H1 , R0,H2}.

With the bilinear incidence function fij(Si, Ij) = SiIj, it can be
verified that all assumptions (A1)–(A5) in Section 2 and (F1)–(F6)
in Section 3 are satisfied. From Theorems 3.7 and 3.8 in Section 3,
the global dynamics are determined by the two basic reproduction
numbers, R0,H1 and R0,H2 , and the graph structure as summarized
in the following three cases:

(1) When R0,H1 ≤ 1, R0,H2 ≤ 1, we have R0 ≤ 1, and π(P∗)H1 =

π(P∗)H2 = 0. Accordingly, the disease-free equilibrium P0 =

(S∗

1 , 0, 0, S
∗

2 , 0, 0, S
∗

3 , 0, 0) is the only equilibrium and it is
globally asymptotically stable.

(2) When R0,H1 ≤ 1, R0,H2 > 1, we have R0 > 1. There are two
equilibria: the disease-free equilibrium P0 with π(P0)H1 =

π(P0)H2 = 0, and a mixed equilibrium P∗
= (S∗

1 , 0, 0, S
∗

2 , 0, 0,
S∗

3 , E
∗

3 , I
∗

3 )with π(P∗)H1 = 0 and π(P∗)H2 = 1. Thus E(P0) = 0
and E(P∗) = 1. The mixed equilibrium P∗ is the maximizer of
E, and all solutions in the interior of ∆ converge to P∗.

(3) When R0,H1 > 1, we have R0 > 1. There are two possible
equilibria: the disease-free equilibrium P0 and a unique en-
demic equilibrium P∗

= (S∗

1 , E
∗

1 , I
∗

1 , S
∗

2 , E
∗

2 , I
∗

2 , S
∗

3 , E
∗

3 , I
∗

3 ) with
π(P∗)H1 = π(P∗)H2 = 1. Thus E(P0) = 0 and E(P∗) = 2. The
endemic equilibrium P∗ is the maximizer of E and attracts all
solutions in the interior of ∆, irrespective of the value of R0,H2 .
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Fig. 2. Transmission matrix B and the corresponding group-contact network G(B).
(a) A positive solution converges to a mixed equilibrium in case (2). (b) A positive solution converges to the endemic equilibrium in case
(3).

Fig. 3. Mixed equilibrium and positive equilibrium.
(a) A non-strongly connected network. (b) A strongly connected network.

Fig. 4. Effect of network connectivity on synchronization of periodic solutions.
We have chosen parameter values to simulate the model and
demonstrate the solutions for cases (2) and (3). Our simulation re-
sults are shown in Fig. 3, in which we have plotted Ii(t) for i =

1, 2, 3. In Fig. 3(a), both I1(t) and I2(t) converge to zero, and I3(t)
converges to a positive value, so that solutions with positive ini-
tial conditions converge to amixed equilibrium. In Fig. 3(b), all Ii(t)
converge to a positive value and solutionswith positive initial con-
ditions converge to the endemic equilibrium. Note that in Fig. 3(b),
the parameter values are chosen such that R0,H2 < 1, however,
I3(t) converge to positive values instead of 0.

We can see from the simulations that strongly connected com-
ponents and the condensed graph play an important role to deter-
mine the global dynamics of coupled systems. Vertices in the same
strongly connected component are synchronized. In the following
example, we demonstrate the impact of network connectivity on
synchronization of oscillatory behaviours.

Consider a system of three coupled nonlinear oscillators:

ẋi = yi,

ẏi = −x3i −

n
j=1

aij(yj − yi). i = 1, 2, 3.
(22)

If we choose aij the same form as in Fig. 2, then the connection
graph is not strongly connected. The set of strongly connected com-
ponents V (H) = {H1,H2} = {{1, 2}, 3}. The simulation result in
Fig. 4(a) shows x1, x2 are synchronized, and x3 behaves differently.
If we add an arc from vertex 3 to 2 (β23 > 0) in Fig. 2, then the con-
nection graph becomes strongly connected, and the corresponding
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simulation result is shown in Fig. 4(b). We can see that x1, x2, x3
synchronize in this case. System (22) can also be regarded as a cou-
pled cell network defined in [17].When the nonzeroweights aij are
equal, synchronous oscillations observed in Fig. 4 can be explained
by the symmetries in the network [18]. We refer the reader to the
work of M. Golubitsky, I. Stewart and their collaborators [18,17]
for the theory of coupled cell networks. Our simulations show that
synchronous oscillations occur even when the weights aij are not
equal and when symmetries are not present, suggesting that net-
work connectivitymay play a fundamental role in synchronous be-
haviours in complex networks.
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