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TURNING POINTS AND RELAXATION OSCILLATION CYCLES
IN SIMPLE EPIDEMIC MODELS∗

MICHAEL Y. LI† , WEISHI LIU‡ , CHUNHUA SHAN† , AND YINGFEI YI§

Abstract. We study the interplay between effects of disease burden on the host population and
the effects of population growth on the disease incidence, in an epidemic model of SIR type with
demography and disease-caused death. We revisit the classical problem of periodicity in incidences
of certain autonomous diseases. Under the assumption that the host population has a small intrinsic
growth rate, using singular perturbation techniques and the phenomenon of the delay of stability
loss due to turning points, we prove that large-amplitude relaxation oscillation cycles exist for an
open set of model parameters. Simulations are provided to support our theoretical results. Our
results offer new insight into the classical periodicity problem in epidemiology. Our approach relies
on analysis far away from the endemic equilibrium and contrasts sharply with the method of Hopf
bifurcations.
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1. Introduction. Investigation of oscillations in disease incidence is of funda-
mental importance in mathematical epidemiology. Empirical data of disease incidence
has shown clearly identifiable cyclic patterns in many common diseases, including
diseases for which environmental influences do not appear to play an important role,
such as measles, pertussis, chicken pox, and mumps [2, 20]. Mechanisms for this type
of “autonomous oscillation” have been extensively studied in the mathematical epi-
demiology literature. These include, together with papers that introduced them, time
delays in the transmission process [14, 20], varying total population size with den-
sity dependent demography and transmission [1, 22], nonlinear incidence forms [16],
discrete age-structures with a nonsymmetric contact matrix among age groups [8],
and seasonality in the transmission process in both deterministic and stochastic mod-
els [3, 4, 12, 20]. The mathematical approach for these earlier works was bifurcation
analysis (e.g., Hopf bifurcation theory), which analyzes model behaviors in a neigh-
borhood of an endemic equilibrium. In the case of Hopf bifurcation, a certain degree
of complexity needs to be introduced into the transmission process to produce insta-
bility of the endemic equilibrium, and the bifurcation may occur in parameter regimes
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that are not biologically realistic. For more complete reviews of related work, we refer
the reader to [2, 13].

In the present paper, we apply a singular perturbation approach to this inves-
tigation. Our goal is to reveal a simple and biologically sound mechanism that can
produce large-amplitude oscillations in disease incidence. Our basic assumption is
that the host population has a small intrinsic growth rate ε > 0, the difference be-
tween the natural birth rate and the natural death rate. This slow-growth assumption
is not biologically unrealistic. Demographic data has shown that annual population
growth rates in many industrialized countries have been only slightly above zero, in
the range of 0.01–0.001 per year, for a long period of time [28]. The slow-growth
assumption may also apply to animal populations on livestock farms, where, for eco-
nomic reasons, population may be kept near its carrying capacity, where the growth is
close to zero. Using the intrinsic growth rate ε as a perturbation parameter, we show
that a standard SIR epidemic model can be reformulated as a singularly perturbed
problem. Applying techniques from geometric singular perturbation and global cen-
ter manifold theory, we prove that for an open and biologically realistic parameter
regime, stable periodic oscillations exist in rather simple SIR models. Furthermore,
our analysis demonstrates that the periodic solution has a large amplitude of order
O(1). This overcomes a common drawback of Hopf bifurcation analysis where the
bifurcating periodic solutions are of small amplitude.

Relaxation oscillations demonstrate distinguished and robust cyclic patterns that
consist a gradual (slow) change in the state variables over a long period of time
followed by a sudden (fast) change. A distinction between relaxation oscillations and
harmonic oscillations was first made by van der Pol [29]. Relaxation oscillation cycles
have been used to explain fast-slow dynamics frequently observed in electrical circuits,
mechanics, and many other physical and natural systems. In the present paper, for
a simple epidemic model with a slowly growing host population, we show that the
periodic solutions are of relaxation oscillation type. An important characteristic of
the model under the slow-growth assumption is the existence of a turning point. This
is a point on the slow manifold with the population size at the critical community size
to support an epidemic [2]. In the presence of turning points, the dynamics under
general perturbations are extremely rich and complicated (see [23, 24, 25, 27]). For
the specific model problem at hand, the disease-free subspace is invariant for ε ≥ 0
since the disease will not develop if it is not present at the initial time. Under the
invariance of the disease-free subspace, the turning point yields a critical phenomenon
called delay of stability loss, in which a solution starts with a fast motion to approach
a vicinity of the slow manifold, moves slowly along the slow manifold, passes through
the turning point, and continues the slow motion along the slow manifold, then, up to
some point, moves away from the slow manifold in a fast motion (see, e.g., [7, 17, 18,
23, 24, 25, 27]). In our model, the slow manifold is in the disease-free region, and the
time period a solution spends in the vicinity of the slow manifold corresponds to the
interepidemic period (IEP) with low disease incidence: the period between epidemics
(fast dynamics) away from the slow manifold. The fast-slow oscillations characterize
the global dynamics of the model and capture the qualitative nature of the oscillatory
behaviors in empirical disease data; see Figure 1 for a set of data on reported cases
of rubella in Canada during the period 1925–1960. Our analysis of the simple SIR
models has demonstrated that the existence of turning points and the associated delay
of stability loss due to the slow growth of the population offers a simple and robust
mechanism for sustained oscillations of disease incidence.
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Fig. 1. The number of reported cases of rubella in Canada during the period 1925–1960. The
data shows a long period between 4 to 6 years of low incidence followed by a sharp increase within
2–4 months. The data was obtained from the Notifiable Disease Surveillance System of Canada [26].

Mathematically, our singular perturbation analysis is done for a three-dimensional
system, and the presence of turning points leads to a significant challenge. At a turning
point, two eigenvalues are zero. This results in the loss of normal hyperbolicity of
the one-dimensional slow manifold, and the standard geometric singular perturbation
theory of Fenichel [9, 10] no longer applies. Another difficulty we encounter in the
analysis is having to deal with the nonlinear dynamics in a large neighborhood of
the slow manifold. Such a difficulty does not seem to appear in the analysis of many
other biological models, e.g., in the analysis of relaxation oscillation of a predator-prey
model [19].

The primary objective of our paper is to establish the mathematical framework
and carry out detailed mathematical analysis for the singular perturbation approach
to the study of epidemic models. We have chosen a simple SIR model to keep the
mathematical technicality to its minimum, and the analysis is applicable to more
complex models. In a subsequent paper, we will investigate relaxation oscillations in
a SEIR model and give a more in-depth discussion of biological implications of the
mathematical results. The singular perturbation approach and associated asymptotic
analysis have been successfully applied to the analysis of relaxation oscillation phe-
nomena in many mechanical, physical, chemical, and biological systems. We hope
that our study will lead to more applications of singular perturbation analysis to the
study of disease transmission processes.

2. The model and statements of main results.

2.1. The model problem. Consider the spread of an infectious disease in a
host population of size N . Partition the population into susceptible, infectious, and
recovered classes, and denote the sizes by S, I, and R, respectively, so that N =
S + I +R.

In the absence of the disease, we assume that N satisfies

N ′ = εg(N),

where constant ε > 0 is assumed to be small. A typical example of g(N) is the
quadratic form N(1 − N/N∗), such that N has the logistic growth with carrying
capacity N∗ and intrinsic growth rate ε. It is natural to require the following.

(A1) The function g(N) satisfies

g′′(N) < 0, g(0) = g(N∗) = 0 for some N∗ > 0.
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As a consequence, we have the following properties.

Lemma 1. Assume (A1). Then, N∗ is unique, and g(N) > 0 for N ∈ (0, N∗)
and g(N) < 0 for N > N∗.

We further assume that the per capita natural death rate is a constant d > 0,
and newborns b(N) has a density dependent form b(N) = dN+εg(N). For simplicity,
we assume that all newborns are susceptible to the disease. We consider the type
of diseases that spread through direct contact of hosts, and incidence is given by
h(S,N)I, where h(S,N) is a smooth function. We will assume the following basic
properties on h(S,N):
(A2) The function h(S,N) is increasing in S and h(0, N) = 0.
A specific form of h(S,N) that is commonly used is

h(S,N) =
β(N)Sq

K + S
, q ≥ 1, K ≥ 0.

This incidence form h(S,N)I includes the bilinear incidence βSI (with K = 0, q = 2),
nonlinear incidence βSq−1I (with K = 0, q > 2), standard incidence λSI

N (with

β(N) = λ/N,K = 0, q = 2), and saturation incidence βSI
K+S .

The transmission process is demonstrated in the following diagram:

b(N) // S
h(S,N)I //

dS

��

�� ��pS

��
I

γI //

dI+αI

��

R

dR

��

The parameter γ denotes the recovery rate, and p denotes vaccination rate for a
simple vaccination strategy. We assume that the infectious individuals suffer a disease-
caused death αI with a constant rate α. It is assumed that disease confers permanent
immunity, and all parameters are assumed to be positive. The transfer diagram leads
to the following system of differential equations:

S′ = b(N)− h(S,N)I − (d+ p)S,

I ′ = h(S,N)I − (d+ γ + α)I,

R′ = pS + γI − dR.

(1)

As a consequence, the total population size N satisfies

(2) N ′ = εg(N)− αI.

It follows that for ε > 0 and α > 0, N varies with time, and model (1) is a three-
dimensional system.

Using b(N) = dN + εg(N) and replacing the R equation by (2), we rewrite the
model (1) as the following equivalent system:

S′ = dN + εg(N)− h(S,N)I − (d+ p)S,

I ′ = h(S,N)I − aI,

N ′ = εg(N)− αI,

(3)
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where a = d+ α+ γ. We study system (3) for ε ≥ 0 in the feasible region

D = {(S, I,N) ∈ R3 : S ≥ 0, I ≥ 0, N ≥ 0 and S + I ≤ N ≤ N∗}.

From Lemma 1 and (2) we know that N ′ < 0 if N > N∗. If follows that the region D
is positively invariant with respect to system (3) and globally attracts all nonnegative
solutions of (3).

Global dynamics of model (3) for the case ε = 0 were studied in [11]. It was shown
that the essential dynamics consist of a local, stable, two-dimensional invariant man-
ifold and, on the invariant manifold, a line of equilibria exists and all other solutions
are heteroclinic orbits each connecting a pair of equilibria. This is a highly unstable
structure and small perturbations can dramatically change the nature of the global
dynamic. We will study the global dynamics of (3) for the case ε > 0 and show that,
under certain conditions, there exists a stable relaxation periodic cycle for small ε.

In the rest of this section, we describe the structure of the equilibria and their
stability and state our main result on relaxation oscillations.

2.2. Structure of equilibria and statement of the main result. For ε ≥ 0,
(0, 0, 0) and (S∗, 0, N∗), with N∗ defined in (A1) and S∗ = dN∗/(d+p), are equilibria
of system (3).

Proposition 2. There are no other equilibria for ε > 0 if and only if

h(S(N), N) < a = d+ γ + α

for all N , where

S(N) =
d

d+ p
N − ε a− α

α(d+ p)
g(N).

Furthermore, if h(S,N) < a for all S and N , then the equilibrium (S∗, 0, N∗) attracts
all solutions except (0, 0, 0). The global dynamics are trivial.

Proof. The first statement can be checked directly. Assume that h(S,N) < a
for all S and N . Then, for any initial condition other than (0, 0, 0), the solution
(S(t), I(t), N(t)) satisfies that I(t) → 0 as t → +∞ and, on the plane {I = 0},
(S(t), N(t))→ (S∗, N∗) as t→∞.

In this work, we will focus on the cases where nontrivial dynamics are possible.
In view of the statements in Proposition 2, we assume the following:

(A3) The function h(dN/(d+ p), N) is nondecreasing for N ∈ (0, N∗). There is
a unique N0 ∈ (0, N∗) such that h(S0, N0) = a, where S0 = d

d+pN0. Furthermore,
d
d+phS(S0, N0) + hN (S0, N0) > 0.

Assumption (A3) is biologically intuitive since the force of infection h(S,N) should
increase as the population size N increases. We note that (S0, 0, N0) in (A3) has both
dynamical and biological significance. In the case when h(S,N) = βS, the equation
h(S0, N0) = a becomes βS0 = d+ γ+α and thus S0 = (d+ γ+α)/β. In the classical
SIR model with no demography (b = d = 0) and no disease-caused death (α = 0),
we have S0 = γ/β, which is known as the critical size of susceptible population to
sustain an epidemic [2, 12]. The dynamical significance of point (S0, 0, N0) is that
it is a turning point, whose existence is the foundation of the relaxation oscillation
phenomenon.

Lemma 3. Assume that (A3) holds. For ε > 0 small, there is a unique equilibrium
Eε = (Sε, Iε, Nε) with Sε, Iε, Nε > 0, and Eε → (S0, 0, N0) as ε→ 0.
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Proof. In addition to (0, 0, 0) and (S∗, 0, N∗), other equilibria of system (3) are
determined by

h(S,N) = a, I =
ε

α
g(N), S =

d

d+ p
N − ε a− α

α(d+ p)
g(N).

The N coordinates are roots of

f(N ; ε) := h

(
d

d+ p
N − ε a− α

α(d+ p)
g(N), N

)
− a = 0.

It follows from assumption (A3) that

f(N0; 0) = 0, fN (N0; 0) =
d

d+ p
hS(S0, N0) + hN (S0, N0) > 0.

An application of the implicit function theorem gives that for ε > 0 small, there is
Nε such that f(Nε; ε) = 0 and Nε → N0 as ε → 0. Note that the corresponding
I-coordinate is Iε = ε

αg(Nε) > 0 for ε > 0 small.

Stability of equilibria of system (3) is described in the next result, whose proof is
given in Appendix I. Denote

∆0 =

(
a

α
− d

d+ p

)
hS(S0, N0)g(N0)− (d+ p)gN (N0).(4)

Theorem 4. Assume that (A1), (A2), and (A3) hold. Then, for ε > 0 small,
(i) the equilibria (0, 0, 0) and (S∗, 0, N∗) are saddles each with two negative eigen-

values and one positive eigenvalue;
(ii) the equilibrium Eε always has a real negative eigenvalue and a pair of complex

conjugate eigenvalues. If ∆0 > 0, then the complex eigenvalues have a nega-
tive real part and Eε is locally stable; if ∆0 < 0, then the complex eigenvalues
have a positive real part and Eε is a saddle.

A rough statement of our main result is given in the following. A more technical
statement (Theorem 10) of this result and its proof will be given in section 4.

Theorem 5. Assume that (A1), (A2), and (A3) hold. Then, for system (3) with
ε > 0 small, one of the following holds:

(i) the equilibrium Eε is a sink and it attracts all orbits except equilibria (0, 0, 0)
and (S∗, 0, N∗);

(ii) there exists an invariant annulus-like or disk-like two-dimensional region that
attracts all but equilibria orbits and contains at least one stable periodic orbit.

We note that for fixed ε > 0 small, as ∆0 varies from positive to negative, in view
of statement (ii) in Theorem 4, it is possible that a periodic solution can be created
through a supercritical Hopf bifurcation of Eε. This has been extensively studied for
many biological models in the literature. We will not pursue this direction. Instead,
we will investigate the existence of a relaxation oscillation using a global approach.
More precisely, we will treat ε as a parameter, first understand the limiting global
behaviors when ε = 0, and then examine how a relaxation oscillation is created for
ε > 0, far from the endemic equilibrium Eε. In particular, the example in section 4.3
shows that a stable relaxation oscillation may exist even if Eε is stable.
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3. Global dynamics of system (3) for ε = 0. In this section, we give a
complete description of the dynamics for the limiting system (3) at ε = 0. The result
extends the work in [11] for a semilocal description of the dynamics. We recall that
system (3) for ε = 0 is

S′ = dN − h(S,N)I − (d+ p)S,

I ′ = (h(S,N)− a)I,

N ′ = −αI
(5)

with feasible region D = {(S, I,N) ∈ R3 : S ≥ 0, I ≥ 0, N ≥ 0, S + I ≤ N ≤ N∗},
which is positively invariant for (5).

It can be verified that the disease-free plane {I = 0} and the half-line

Z0 :=

{
S =

dN

d+ p
, I = 0, N ≥ 0

}
are both invariant under system (5). In particular, Z0 consists of equilibria of (5).

3.1. A complete characterization of dynamics of (5). On the invariant
plane {I = 0}, all solutions (S(t), I(t), N(t)) satisfy that

I(t) ≡ 0, N(t) ≡ N(0), and S(t)→ d

d+ p
N(0) as t→∞.

The set Z0 of equilibria attracts all solutions within {I = 0}.
The linearization at each point (dN/(d+ p), 0, N) ∈ Z0 is −(d+ p) −h(dN/(d+ p), N) d

0 h(dN/(d+ p), N)− a 0
0 −α 0


with eigenvalues λ1 = 0, λ2 = −(d + p) < 0, and λ3 = h(dN/(d+ p), N) − a. The
eigenvectors associated with λ1 and λ2 span the plane {I = 0} and that associated
with λ3 is transversal to the plane {I = 0}. The eigenvalue λ3 = h(dN/(d+ p), N)−a
changes sign across the point (S0, 0, N0) ∈ Z0, where S0 and N0 are defined in (A3).

The complete dynamics for the case ε = 0 are described in the following result
and depicted in Figure 2. The proof is given in Appendix I.

Theorem 6. Assume that (A2) and (A3) are satisfied. Then the following state-
ments hold:

(i) Every solution of system (5) is bounded for t ≥ 0 and the set Z0 is the global
attractor.

(ii) The unstable manifold of each equilibrium (dN/(d+ p), 0, N) ∈ Z0 with N >
N0 is a heteroclinic orbit to an equilibrium (S̄, 0, N̄) ∈ Z0 with 0 < N̄ < N0.
The relationship N̄1 < N̄2 < N0 if N1 > N2 > N0 holds. Furthermore,
limN→∞ N̄ = N∞ ∈ (0, N0).

We denote by M(Z0) the two-dimensional invariant manifold that consists of
heteroclinic orbits established in Theorem 6(ii), and define a map

H : (N0,∞)→ (0, N0), H(N) = N̄ ,

where N̄ is defined by the heteroclinic orbits in Theorem 6(ii). The invariant man-
ifold M(Z0) and the map H will play important roles in our results on relaxation
oscillations for model (3) with ε > 0.
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3.2. Persistence of M(Z0) for ε > 0 small. We are interested in whether
the invariant manifold M(Z0) will persist for ε > 0 small, that is, for ε > 0 small,
whether there is an invariant manifold Mε for system (3) so that Mε → M(Z0) as
ε→ 0.

Recall that when ε = 0, for each equilibrium w = ( d
d+pN, 0, N) ∈ Z0, the eigen-

values of the linearization at w are

λ1 = 0, λ2 = −(d+ p), λ3 = h
( d

d+ p
N,N

)
− a.

Based on the relative size of eigenvalues, the consideration can be divided into two
cases.

Case 1: a = d + α + γ < d + p. It follows that h( d
d+pN,N) − a > −(d + p)

for all N ≥ 0. At each point w ∈ Z0, we have λ1 > λ2 and λ3 > λ2. Applying a
center manifold theorem in [5, 6] to the invariant set Z0, we obtain the existence of
a two-dimensional center manifold W c(Z0). The center manifold W c(Z0) is invariant
under (5) and contains Z0 and all orbits bounded in the vicinity of Z0. At each
w ∈ Z0, the tangent space TwW

c(Z0) is spanned by the eigenvectors associated with
λ1 and λ3 (both are larger than λ2). Most importantly, the center manifold theorem
guarantees the persistence of W c(Z0) for ε > 0 small. In general, a center manifold
may not be unique but any center manifold will contain all orbits that are bounded in
the vicinity of Z0. Therefore, for this model problem, W c(Z0) coincides with M(Z0)
and is unique, and M(Z0) persists for ε > 0.

Case 2: a = d+α+γ ≥ d+p. In this case, there exists a unique N̂ ∈ [0, N0) such
that h( d

d+pN,N)−a > −(d+p) for N > N̂ but h( d
d+pN,N)−a ≤ −(d+p) for N ≤ N̂ .

The general results on center manifolds in [5, 6] cannot be applied to the whole set Z0

to obtain a two-dimensional center manifold. For any fixed δ > 0, the results in [5, 6]
can be applied to the subset Zδ0 := Z0 ∩ {N ≥ N̂ + δ} but the corresponding center
manifold W c(Zδ0 ) will only be a proper subset of M(Z0). It turns out, for ε > 0, that
parts of relaxation oscillations could occur outside W c(Zδ0 ) for all δ > 0. We take the
advantage of a crucial property that the set {I = 0} is invariant under system (3) for
all ε ≥ 0 and show that M(Z0) persists for ε > 0 small even though it is not normally
hyperbolic. This is established in Appendix II. This persistence result appears to be
contradictory to Mãné’s result that an invariant manifold is persistent if and only if
it is normally hyperbolic [21]. It is not, since the persistence in Mãné’s result is with
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respect to all small perturbations, while the perturbations, in our system are special:
they leave the set {I = 0} invariant. As mentioned above, it is possible that a portion
of a relaxation oscillation occurs over the region where N < N̂ . In the limit as ε→ 0,
this portion approaches Z0 along the eigenvector associated with −(p+ q) in general.

3.3. The map H near N0. The map H : (N0,∞)→ (0, N0) defined in Theo-
rem 6 will be a key ingredient for our main result on relaxation oscillations. Detailed
global properties of H seem to be not achievable. On the other hand, it is possi-
ble to examine properties of H near N0 based on an approximation of W c(Z0) near
(S0, 0, N0) or, simply, a center manifold W c(S0, 0, N0) of the equilibrium (S0, 0, N0).
Note that the eigenvalues at (S0, 0, N0) are λ1 = λ3 = 0 > λ2 = −(d + p). Thus, for
an equilibrium w ∈ Z0 near (S0, 0, N0), the corresponding eigenvalues satisfy λ1 > λ2
and λ3 > λ2. As a consequence, W c(S0, 0, N0) ⊂ M(Z0) and hence is unique. It
should be pointed out that, in general, a center manifold may not be unique.

3.3.1. An approximation of the center manifold W c(S0, 0, N0). We look
for an approximation of the center manifold W c(S0, 0, N0) in the vicinity of (S0, 0, N0)
as the graph of a function

S =
d

d+ p
N + U(N, I)I =

d

d+ p
N + a0(N)I + a1(N, I)I2.

The form is justified by the fact that {I = 0} is invariant and W c(S0, 0, N0) ∩ {I =
0} ⊂ Z0.

Taking the derivative of S = d
d+pN + U(N, I)I with respect to t, we have

S′ =
d

d+ p
N ′ + a′0IN

′ + a1,NI
2N ′ + a0I

′ + 2a1II
′ + a1,II

2I ′.

From (5) we have

dN−h
( d

d+ p
N + a0(N)I + a1(N, I)I2, N

)
I

− (d+ p)
( d

d+ p
N + a0(N)I + a1(N, I)I2

)
=− α

( d

d+ p
+ a′0I + a1,NI

2
)
I

+ (a0 + 2a1I + a1,II
2I ′)

(
h
( d

d+ p
N + a0(N)I + a1(N, I)I2, N

)
− a
)
I.

Expanding h at the point (bN/(b+ p), N) we get

dN−h
( d

d+ p
N,N

)
I − (d+ p)

( d

d+ p
N + a0(N)I

)
+O(I2)

=− αd

d+ p
I + a0

(
h
( d

d+ p
N,N

)
− a
)
I +O(I2).

Comparing coefficients of I0 and I1 we obtain

a0(N) =

αd
d+p − h

(
d
d+pN,N

)
d+ p+ h

(
d
d+pN,N

)
− a

.

Note that we restrict the approximation of W c(S0, 0, N0) near (S0, 0, N0). Thus, N is
close to N0, and hence, the denominator in the above expression is close to d+ p > 0.
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Near equilibrium (S0, 0, N0), the center manifold W c(S0, 0, N0) is given as the
graph of the function

S =
d

d+ p
N + a0(N)I +O(I2)

=
d

d+ p
N +

αd
d+p − h

(
d
d+pN,N

)
d+ p+ h

(
d
d+pN,N

)
− a

I +O(I2).(6)

On the center manifold W c(S0, 0, N0) and near (S0, 0, N0), system (5) is reduced
to a two-dimensional system,

I ′ = h

(
dN

d+ p
+ a0(N)I +O(I2), N

)
I − aI,

N ′ = −αI.(7)

3.3.2. Properties of the map H near N0.

Proposition 7. The map H satisfies H(N0) = N0, H ′(N0) = −1, and

H ′′(N0) = − 2

α
a0(N0)hS

(
S0, N0

)
.

Proof. Set v(t) = N(t)−N0. In terms of (I, v), system (7) becomes

I ′ = h

(
S0 +

dv

d+ p
+ a0(N0 + v)I +O(I2), N0 + v

)
I − aI,

v′ = −αI.

Since {I = 0} is invariant and the map H is defined through the dynamics where
I > 0, we divide the two equations above to get

dI

dv
= − 1

α

(
h
(
S0 +

dv

d+ p
+ a0(N0 + v)I +O(I2), N0 + v

)
− a
)
.(8)

Expanding the right-hand side at v = 0 leads to

h
(
S0 +

dv

d+ p
+ a0(N0 + v)I +O(I2), N0 + v

)
− a

= hS ·
( dv

d+ p
+ (a0 + a′0v)I

)
+ hN · v +

1

2
hSS ·

( dv

d+ p
+ (a0 + a′0v)I

)2
+ hSN ·

( dv

d+ p
+ (a0 + a′0v)I

)
v +

1

2
hNN · v2 +O(I2, v2I, I3),

where the partial derivatives of h are all evaluated at (S0, N0), and a0 = a0(N0) and
a′0 = a′0(N0). Denote

L =
d

d+ p
hS + hN and Q =

d2

(d+ p)2
hSS +

2d

d+ p
hSN + hNN .(9)

Equation (8) becomes

dI

dv
= − 1

2α
(2Lv +Qv2)

− 1

α

(
hS +

( d

d+ p
hSS + hSN

)
v

)
(a0 + a′0v)I +O(I2, v2I, v3).(10)
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By the existence and smoothness of solutions and smooth dependence of solutions
on parameters, for v small, we look for solutions of the form I(v) = c0 + c1v+ c2v

2 +
O(v3). Substituting I(v) into (10) and comparing terms of like powers in v we get

c1 =− 1

α
a0hSc0 +O(c20),

c2 =− 1

2α
L− 1

2α

(
a′0hS −

1

α
a20h

2
S +

d

d+ p
a0hSS + a0hSN

)
c0 +O(c20).

(11)

Thus, near v = 0, the solution of (10) is

I(v) =c0 −
a0hSv

α
c0 −

L

2α
v2 +O(c0v

2).(12)

To define H, we need the initial condition I(v) = 0 at v = N − N0 for N > N0

and N − N0 � 1. We can then determine the value c0 corresponding to this initial
condition. From (12),

0 =c0 −
a0hS · (N −N0)

α
c0 −

L

2α
(N −N0)2 +O(c0(N −N0)2),

or equivalently,

c0

(
1− 1

α
a0hS · (N −N0) +O(N −N0)2

)
=

L

2α
(N −N0)2.

Thus,

c0 =
L

2α
(N −N0)2 +

La0hS
2α2

(N −N0)3 +O(N −N0)4.(13)

The value of H(N) satisfies I(H(N)−N0) = 0. Note that

H(N)−N0 = H(N)−H(N0) = H ′(N0)(N−N0)+
1

2
H ′′(N0)(N−N0)2+O(N−N0)3.

It then follows from I(H(N)−N0) = 0, (11), (12), and (13) that

0 =
L

2α
(N −N0)2 +

La0hS
2α2

(1−H ′(N0))(N −N0)3

− L

2α

(
H ′(N0)(N −N0) +

1

2
H ′′(N0)(N −N0)2

)2

+O(N −N0)4.

Comparing (N−N0)2 terms gives thatH ′(N0) = −1 (due also to thatH is decreasing).
The (N −N0)3 terms then yield

La0hS
α2

+
L

2α
H ′′(N0) = 0.

This completes the proof.

3.4. A discussion and the link to the main result. In this section, we sum-
marize the results for system (5), discuss the impact of the sign changing eigenvalue
h(S,N)−a, and provide mathematical and biological motivations for our main result.

For N < N0, h(dN/(d+ p), N) − a < 0, and it implies that for an initial state
(S(0), I(0), N(0)) near the region {I = 0, N < N0}, I(t) decreases and the solution
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converges to an equilibrium in Z0 with N < N0. Biologically speaking, if the total
population N is below the critical community size N0 or, equivalently, the number of
susceptibles S is below the critical size S0 = dN0/(d + p), then the population can
not sustain an epidemic and the disease dies out.

We describe the dynamics for solutions with initial conditions near the other
region {I = 0, N > N0} in three stages.

Stage I. For an initial state (S(0), I(0), N(0)) with N > N0, h(dN/(d+ p), N)−
a > 0 for small t > 0 and I(t) increases initially. In biological terms, if the population
size surpasses the critical community size N0, then any initial infection will lead to a
disease outbreak.

Stage II. As I(t) increases away from {I = 0}, the dynamics outside {I = 0}
become dominant; in particular, N(t) decreases. Once N(t) < N0 (or equivalently
S(t) < S0), we know that h(S,N)− a < 0 and I(t) begins to decrease. The solution
follows a heteroclinic orbit depicted in Figure 2.

Stage III. As time goes on, I(t) continues to decrease. Eventually the solution
will enter a vicinity of the region {I = 0, N < N0} and is attracted to an equilibrium
in Z0 with N < N0. The disease outbreak leads to an epidemic but the disease
eventually dies out.

We see that when ε = 0, model (5) only describes epidemics of the disease; the
disease eventually dies out. There is no mechanism for the recurrence of the disease
if the population growth is zero. This is parallel to the classical SIR model with no
demography and disease-caused death.

When ε > 0, solutions of system (3) with N(0) > N0 and I(0) small go through
Stages I and II as described above, but Stage III will no longer be the terminal stage.
In this case, the disease-free set {I = 0} remains invariant. The half-line Z0 also
remains invariant but is no longer a set of equilibria. Instead, Z0 becomes an orbit
for which N increases with t with speed of order O(ε). For this reason, Z0 is called
the slow manifold for small ε > 0.

Stage IV. When ε > 0, for a solution in the vicinity of Z0 with N < N0 during
Stage III, it will follow an orbit on the slow manifold Z0 by the continuous dependence
on initial conditions. As N(t) increases beyond the critical community size N0, the
solution enters the region {I = 0, N > N0}. As a consequence, I(t) begins to increase
and the solution repeats Stages I–III, leading to another epidemic. The period during
which the solution moves along the slow manifold is the IEP. We see that when
ε > 0, the fall of susceptible population during an epidemic and the recovery of the
susceptible population during the IEP produce an oscillating behavior.

In summary, for ε > 0 small, all orbits, except for solutions on {I = 0} and Eε
of system (3), will exhibit oscillating behaviors. Three key conditions are responsible
for the mechanism of oscillation:

(C0) the plane {I = 0} is invariant for ε ≥ 0,
(C1) the assumption on the natural growth g(N) of the total population in the

absence of disease, and
(C2) the sign changing assumption of the eigenvalue λ3 = h(S,N)− a.

In the language of singular perturbation theory, condition (C2) means that the point
(S0, 0, N0) at which h(S0, N0) − a = 0 is a turning point. This point marks the
level of N or S that separates the region of disease decline from that of disease
rise. Condition (C1) implies that on Z0, with the population growth and increase of
susceptibles from newborns, all orbits move from a region of disease decline where
N < N0 to a region of disease rise where N > N0. Conditions (C0)–(C2) imply that
the turning point (S0, 0, N0) is associated with the delay of stability loss [7, 17, 18,
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23, 24, 25, 27]. Condition (C0) is the consequence of the biological fact that if the
disease is not present at time t = 0, it remains absent from the population for t ≥ 0.
We emphasize that while condition (C0) holds true naturally for the specific model we
consider, it is, however, highly degenerate in general when turning points are present.
Without condition (C0), presence of turning points can make {I = 0} nonnormally
hyperbolic [9, 15] and destroy the persistence of {I = 0} for ε > 0. The impact of
turning points for ε > 0 can be extremely difficult to investigate.

It is important to note that though the oscillating behaviors near the positive
equilibrium Eε when ε > 0 are apparent from the fact that Eε has a pair of com-
plex eigenvalues, which bifurcate from the double zero eigenvalue of E0 (Theorem 4),
the heteroclinic orbit structure established in Theorem 6 and the delay of stability
loss associated with the turning point determine the oscillatory behaviors far away
from Eε.

While the oscillating behaviors of the SIR model when ε > 0 as described above
are biologically intuitive and mathematically verifiable, they can be decayed oscilla-
tions. The important mathematical question with biological significance is whether
there exists a stable periodic oscillation. Our main result in the next section char-
acterizes, for the existence of stable periodic solutions, abstract conditions in general
and verifiable sufficient conditions in particular. Those periodic oscillations, if they
exist, will typically have a large period of order O(ε−1).

4. Global dynamics of (3) for ε > 0 small. Recall that the two-dimensional
invariant manifold M(Z0) from Theorem 6 persists to Mε for ε > 0 small. We use the
properties of Mε to establish an abstract result from geometric singular perturbations
with turning point, focusing on results on relaxation oscillations. Due to the lack of
explicit global representation of M(Z0), not all abstract results can be transformed
back to the concrete model (3) in the sense that the corresponding conditions are not
easy to verify. For some sufficient conditions on the existence of periodic oscillations,
we are able to transform the conditions back to the original model and they are
verifiable.

4.1. Formulation of a singularly perturbed problem. For δ > 0 small, let
M be the manifold consisting of all heteroclinic orbits from (S, 0, N) with N0 < N <
N∗+δ, together with the point (S0, 0, N0). Then, M persists in the sense as discussed
in Case 2 of section 3.2 and proved in Appendix II. Let Mε be the perturbed manifold
of M for ε > 0 small; that is, Mε is invariant and Mε → M as ε → 0. Due to the
fact that {I = 0} is invariant for all ε and the set Z0 is normally hyperbolic within
{I = 0}, we have that Z0 persists for ε > 0 small; that is, Zε = Mε ∩{I = 0} persists
as a portion of the boundary of Mε.

Let φ(u, v; ε) for (u, v) ∈ R be a parameterization of the center manifold Mε,
where R is a bounded domain in {u ≥ 0, v ≥ 0} to be further characterized later on.
We require that

(P1) for ε = 0, the heteroclinic orbits are determined by v = const and the u-
variable is decreasing from the right branch of slow manifold v = T (u) to the
left branch as time increases (see Figure 3);

(P2) for ε ≥ 0, the set Zε corresponds to the curve {v = T (u)} for function
T : (0, U) → (0, V ) with T (U) = V , where (U, V ) corresponds to the point
(S, 0, N∗ + δ) ∈ Z, for arbitrarily fixed δ > 0 independent of ε, and hence
{v = V } corresponds to the heteroclinic orbit from (S, 0, N∗ + δ) ∈ Z0;
therefore,

R = {(u, v) : 0 < u < U, T (u) ≤ v < V };
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(P3) for ε ≥ 0, the point (u, v) = (u0, T (u0)) corresponds to the point (S0, 0, N0),
(u, v) = (u0, T (u0)) corresponds to (S∗, 0, N∗).

v=T(u)

0

0u

v

u0 u

Fig. 3. Heteroclinic structure of (15) with ε = 0.

In terms of (u, v) ∈ R, suppose that system (3) on the center manifold can be
put into the form

u′ = F (u, v; ε), v′ = G(u, v; ε).(14)

We now examine the properties that the vector field of system (14) must satisfy.
First of all, (P1) implies that G(u, v; 0) = 0, F (u, T (u); 0) = 0, and F (u, v; 0) < 0

for v > T (u). Thus, we can write G(u, v; ε) = εG1(u, v; ε), F (u, v; ε) = T (u) −
v + εF1(u, v; ε). The property (P2) implies that G1(u, T (u); ε) = TuF1(u, T (u); ε).
System (14) can be rewritten as

u′ = T (u)− v + εF1(u, v; ε),

v′ = εTu(u)F1(u, T (u); ε) + ε(v − T (u))G2(u, v; ε).
(15)

System (15) is a singularly perturbed problem with ε as the singular parameter.
As usual, the time t is called the fast time, which is the physical time of our problem.
In terms of the slow time τ = εt, system (15) becomes

εu̇ = T (u)− v + εF1(u, v; ε),

v̇ = Tu(u)F1(u, T (u); ε) + (v − T (u))G2(u, v; ε),
(16)

where the overdot symbol indicates the derivative with respect to τ .
The slow manifold is

Z = {v = T (u)}.

On the slow manifold Z, the flow is given by

u′ = εF1(u, T (u); ε).

It has a global sink at u = u0.
We recall that the set Z is invariant under system (15) (or equivalently under

system (16)) for all ε ≥ 0. This property is crucial in creating oscillations in the
system. In fact, one will see later that there is a turning point on Z and, due to the
invariance of Z for all ε, the turning point causes the delay of stability loss [7, 17, 18,
23, 24, 25, 27]. We believe that the delay of stability loss is one of the most important
mechanisms for the oscillation structure in biological population systems.
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To describe the delay of stability loss, we define a map P : (0, u0)→ (u0, u
0) via

(17)

∫ P (u)

u

Tu(ξ)

F1(ξ, T (ξ))
dξ = 0.

Also, for any v > min{T (u) : u ∈ (0,∞)}, let l(v) and r(v) be the two solutions of
v = T (u) for u with l(v) < r(v) and set v0 = T (u0).

Proposition 8 (delay of stability loss). Fix δ > 0 small, for ε > 0 small, let
(u(τ ; ε), v(τ ; ε)) be the solution of system (16) with the initial condition (u(0), v(0)),
where u(0) < u0 and v(0) = T (u(0))+δ. Let τ(ε) > 0 be the time such that v(τ(ε); ε) =
T (u(τ(ε))) + δ. Then, as ε→ 0, r(v(τ(ε)))→ P (l(v(0)).

Note that P (l(v0)) < u0, and hence, T (l(v0)) = v0 > T (P (l(v0))).

Theorem 9. For ε > 0 small, either the equilibrium (uε, T (uε)) is a global
attractor of R for system (15) or there is a stable periodic relaxation oscillation.
Furthermore,

(i) if there exists u1 ∈ (l(v0), u0) such that T (u1) < T (P (u1)), then, for ε > 0
small, system (15) has a stable periodic relaxation oscillation whose limiting
orbit, as ε→ 0, is the union of the heteroclinic orbit from (P (uc), T (P (uc)))
to (uc, T (uc)) and the curve on {v = T (u)} from (uc, T (uc)) to
(P (uc), T (P (uc))) for some uc ∈ (l(v0), u1) satisfying T (uc) = T (P (uc));

(ii) if for every u ∈ (l(v0), u0), T (u) > T (P (u)), then, for ε > 0 small, the
equilibrium (uε, T (uε)) is a global attractor of R for system (15).

Proof. To prove statement (i), note that the unstable manifold Wu(u0, v0) will
approach the left branch of the slow manifold {v = T (u)} almost horizontally near
the set {v = v0} toward the point (l(v0), v0) and then follow the slow orbit through
(l(v0), v0) up to near the point (P (l(v0)), T (P (l(v0)))), and leave the slow mani-
fold almost horizontally near the set {v = T (P (l(v0)))}. Due to the fact that
T (l(v0)) = v0 > T (P (l(v0))), upon leaving the slow manifold at near the point
(P (l(v0)), T (P (l(v0)))), the unstable manifold Wu(u0, v0) stays below its initial por-
tion. Therefore, the unstable manifold spirals inward. By the same argument, the
existence of u1 with the property T (u1) < T (P (u1)) implies that the forward orbit
starting from (u1+δ, T (u1)) for some δ > 0 small spirals outward. This orbit together
with the unstable manifold Wu(u0, v0) encloses a positively invariant region. By the
Poincaré–Bendixon theorem, there is a stable periodic orbit. The above argument also
shows that between any numbers û1, û2 ∈ (l(v0), u0) with û2 < û1, T (û1) < T (P (û1)),
and T (û2) > T (P (û2)), there is a periodic orbit strictly enclosed by the two orbits
through, respectively, the points (û1 + δ, T (û1)) and (û2 + δ, T (û2)) for some small
δ. Therefore, the limiting position of a periodic orbit is exactly as described in the
statement.

The proof for the statement (ii) follows from the above argument and we will
omit the details here.

4.2. Statement of the main results for system (3). To translate Theorem 9
in terms of the original system (3), we recall that H : (N0,∞) → (0, N0) is the
function defined as follows: for ε = 0 and for (dN/(d + p), 0, N) ∈ Z0 with N > N0,
(dH(N)/(d+p), 0, H(N)) ∈ Z0 is the unique equilibrium so that there is a heteroclinic
orbit from (dN/(d + p), 0, N) to (dH(N)/(d + p), 0, H(N)). The map P defined in
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(17) is given by P : (0, N0)→ (N0,∞) by

(18)

∫ P (N)

N

h(dξ/(d+ p), ξ)− a
g(ξ)

dξ = 0.

Theorem 10. Let H(N) and P (N) be defined as above. For ε > 0 small, either
the endemic equilibrium (Sε, Iε, Nε) is a global attractor or there is a stable periodic
relaxation oscillation. More precisely,

(i) if there exists N1 ∈ (H(N∗), N0) such that N1 > H(P (N1)), then for ε > 0
small, system (3) has a stable periodic relaxation oscillation whose limit-
ing orbit, as ε → 0, is the union of the heteroclinic orbit from the point
(dP (N c)/(d + p), 0, P (N c)) to the point (dN c/(d + p), 0, N c) and the seg-
ment on Z0 from the point (dN c/(d + p), 0, N c) to the point (dP (N c)/(d +
p), 0, P (N c)) for some N c ∈ (H(N∗), N1) satisfying N c = H(P (N c));

(ii) if for every N ∈ (H(N∗), N0), N < H(P (N)), then for ε > 0 small, the
endemic equilibrium (Sε, Iε, Nε) is a global attractor for system (3).

Proof. It suffices to show that for ε > 0, Mε attracts all solutions except the
equilibria (0, 0, 0) and (S∗, 0, N∗). Since Mε has a region attracting orbits on Mε and
Mε is normally stable, there is neighborhood U of Mε independent of ε such that for
ε > 0 small enough, any solution entering U is attracted by the attracting region on
Mε. Therefore, we only need to show that any solution will enter U .

First of all, we see that N ′(t) < 0 if N(t) > N∗. Thus, all solutions are attracted
by the domain D and the domain D is positively invariant. It can be verified that Mε

attracts all solutions on {I = 0} except (0, 0, 0) and (S∗, 0, N∗). Now, for a solution
(S(t), I(t), N(t)) with the initial condition (S(0), I(0), N(0)) ∈ D and I(0) > 0, by
continuity, for ε > 0 small independent of the solution starting in D, the solution
will approach a point (S̄, 0, N̄) ∈ Z0 with N̄ ≤ N0 and then follow the slow orbit
through (S̄, 0, N̄) ∈ Z0. Therefore, it enters a neighborhood of (S0, 0, N0) and hence
into U .

4.3. Concrete conditions for the existence of relaxation oscillations of
system (3).

Proposition 11. The map P satisfies P (N0) = N0, P ′(N0) = −1, and

P ′′(N0) =
4g′(N0)L− 2g(N0)Q

3g(N0)L
,

where L and Q are defined in (9).

Proof. It follows from the definition of P that P (N0) = N0. Differentiating with
respect to N on (18) we get

h(dP (N)/(d+ p), P (N))− a
g(P (N))

P ′(N) =
h(dN/(d+ p), N)− a

g(N)
.(19)

Note that

P (N) =P (N0) + P ′(N0)(N −N0) +
1

2
P ′′(N0)(N −N0)2 +O(N −N0)3

=N0 + P ′(N0)(N −N0) +
1

2
P ′′(N0)(N −N0)2 +O(N −N0)3,
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P ′(N) =P ′(N0) + P ′′(N0)(N −N0) +O(N −N0)2,

g(N) =g(N0) + g′(N0)(N −N0) +
1

2
g′′(N0)(N −N0)2 +O(N −N0)3,

g(P (N)) =g(N0) + g′(N0)(P (N)−N0) +
1

2
g′′(N0)(P (N)−N0)2

=g(N0) + g′(N0)

(
P ′(N0)(N −N0) +

1

2
P ′′(N0)(N −N0)2

)
+

1

2
g′′(N0)(P ′(N0))2(N −N0)2 +O(N −N0)3,

and

h(dN/(d+ p), N)− a =L(N −N0) +
1

2
Q(N −N0)2 +O(N −N0)3,

h(dP (N)/(d+ p), P (N))− a =L(P (N)−N0) +
1

2
Q(P (N)−N0)2 +O(N −N0)3

=L

(
P ′(N0)(N −N0) +

1

2
P ′′(N0)(N −N0)2

)
+

1

2
Q(P ′(N0))2(N −N0)2 +O(N −N0)3.

Substituting these expansions into (19) and comparing the terms of like powers in
(N −N0) we get

for N −N0, gL(P ′)2 = gL =⇒ P ′ = −1,

for (N −N0)2, − 1

2
g(LP ′′ +Q) + g′L− gLP ′′ = −g′L+

1

2
gQ

=⇒ P ′′ =
4g′L− 2gQ

3gL
.

This completes the proof.

Combining Propositions 7 and 11 we obtain the following result.

Proposition 12. The function F̄ = H ◦ P satisfies F̄ (N0) = N0, F̄ ′(N0) = 1,
and

F̄ ′′(N0) = H ′′(N0)− P ′′(N0) =
2∆0

(d+ p)g(N0)
+

2

3

g′(N0)L+ g(N0)Q

g(N0)L
,

where ∆0 is defined in (4), and L and Q are defined in (9).

As a direct consequence of Theorem 10 and Proposition 12, we have the following.

Corollary 13. If F̄ ′′(N0) < 0, then, for ε > 0 small, there is at least one stable
relaxation oscillation.

Example. We establish the existence of a stable relaxation oscillation in the
case that Eε is stable. More precisely, we take a special case of h that is biologically
plausible and show that for any g satisfying (A1), there are parameter ranges for β and
K, dependent on all other fixed parameters so that ∆0 > 0 in Theorem 4, for which
the equilibrium Eε is stable and F̄ ′′(N0) < 0 holds. This guarantees the existence of a
stable relaxation oscillation. Thus, a stable relaxation oscillation may exist even when
the equilibrium Eε is stable. In this case, there exists at least an unstable periodic
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orbit between the stable relaxation and the equilibrium. In general, the unstable
periodic orbit is not necessarily a relaxation oscillation but a small periodic orbit
through a subcritical Hopf bifurcation.

Consider h(S,N) = βS
K+S with β > a; it can be verified that

S0 =
aK

β − a
> 0, N0 =

d+ p

d

aK

β − a
,

L =
d

d+ p

βK

(K + S0)2
, Q = − d2

(d+ p)2
2βK

(K + S0)3
,

∆0 =
( a
α
− d

d+ p

) βK

(K + S0)2
g(N0)− (d+ p)gN (N0),

F̄ ′′(N0) =
2∆0

(d+ p)g(N0)
+

2

3

g′(N0)L+ g(N0)Q

g(N0)L

=
2

(d+ p)g(N0)

(( a
α
− d

d+ p

) βK

(K + S0)2
g(N0)

−2

3
(d+ p)gN (N0)− 2d

3

K + S0

(K + S0)2
g(N0)

)
.

We also note that( a
α
− d

d+ p

) βK

(K + S0)2
− 2d

3

K + S0

(K + S0)2
=
( a
α
− d

d+ p
− 2d

3(β − a)

) βK

(K + S0)2
.

Choose β∗ > a such that

a

α
− d

d+ p
− 2d

3(β∗ − a)
< 0,

and choose K∗ such that for N0 = N∗0 = d+p
d

aK∗

β∗−a , gN (N∗0 ) = 0 holds. Then

∆0 =
( a
α
− d

d+ p

) β∗K∗

(K∗ + S0)2
g(N0) > 0,

F̄ ′′(N∗0 ) =
2

d+ p

( a
α
− d

d+ p
− 2d

3(β − a)

) βK∗

(K∗ + S0)2
< 0.

This accomplishes the goal of this example.
We note that the construction of the above example strongly indicates that it

may not be rare to have stable relaxation oscillations when the endemic equilibrium
Eε is stable. It is also possible to give a more detailed analysis, for fixed forms of
h and g, on the parameter ranges for such coexistence of stable structures. It may
reveal a more comprehensive understanding of the global dynamics of this model.

5. Numerical simulations and biological interpretations. In this section,
we provide results from numerical simulations of model (3) that demonstrate and sup-
port our theoretical results on the existence of stable periodic solutions of relaxation
oscillation type. Unless otherwise stated, we choose

g(N) = N
(

1− N

N∗

)
and h(S,N) =

βS

K + S
.

It can be verified that g(N) and h(S,N) satisfy assumptions (A1), (A2), and (A3).
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5.1. Existence of relaxation oscillations.
Case 1. Existence of relaxation oscillation when Eε is unstable. Choose d = 0.2,

p = 0.01, α = 0.048, β = 1, γ = 0.75, K = 0.1, N∗ = 400, and ε = 10−4. The endemic
equilibrium Eε = (49.9, 0.09555, 52.84889) is unstable. In Figure 4, we show that a
trajectory starting from (35, 0.09555, 67) approaches a stable relaxation oscillation
cycle with IEP 5.6× 104.

0 1 2 3 4 5 6

x 10
5

−1

0

1

2

3

4

5

6

7

8

9

I

IEP

Time

(a) Time series plot

0 50 100 150 200 250 300 350 400
−1

0

1

2

3

4

5

6

7

8

9

N

I

(b) Projection in the (N, I) plane

0
100

200
300

400

0

5

10

0

50

100

150

200

250

300

350

400

I

N

S

(c) Plot in the 3D phase space

Fig. 4. An orbit converging to a stable relaxation oscillation cycle when Eε is unstable.

Case 2. Existence of relaxation oscillation when Eε is stable. Choose d = 0.2,
p = 0.01, α = 0.049, β = 1, γ = 0.75, K = 0.1, ε = 10−4, and N∗ = 380. In
Figure 5, we show that a trajectory starting from (197, 1.47, 204.4) approaches a stable
relaxation oscillation cycle. We modified the function h(S,N) in a small neighborhood
of Eε so that it becomes locally asymptotically stable. Such modification does not
change the relaxation oscillation cycle since it is far away from Eε. A trajectory
starting from (150, 1, 160) is shown in Figure 5 to approach the stable equilibrium Eε.
We note that there should be a second periodic orbit that is unstable (not shown in
Figure 5).

5.2. Dependence of IEP on physical parameters.
1. Dependence of IEP on the intrinsic growth rate ε.

We demonstrate using numerical evidence that the IEP is of order 1/ε. We choose
d = 0.2, p = 0.01, α = 0.048, β = 1, γ = 0.75, K = 0.1, and N∗ = 400, and we vary
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Fig. 5. Numerical simulations show the existence of a stable periodic solution when the endemic
equilibrium is stable. An oscillatory orbit with a large amplitude is shown to converge to a stable
relaxation oscillation cycle, and an orbit with a smaller amplitude converges to the stable endemic
equilibrium Eε.
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Fig. 6. The IEP increases as the intrinsic growth rate ε decreases in (a), and the IEP is in
proportion to 1/ε in (b).

the values of ε in the interval [10−5, 10−4]. For the simulations, we assume that the
disease is in the IEP if the number of the infected individuals is less than 10−7. Plots
of IEP against the values of ε and 1/ε are shown in Figure 6.

2. Dependence of IEP on parameters α and β.
In Figure 7, we show that the IEP decreases as the transmission coefficient β in

creases, and the IEP increases as the rate α of disease-caused death increases. For
the simulations, we choose d = 0.2, p = 0.01, γ = 0.75, K = 0.1, N∗ = 400, and
ε = 10−4 and vary values of β when α = 0.048 in Figure 7(a) or vary the values of α
when β = 1 in Figure 7(b).
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Fig. 7. Dependence of IEP on the transmission coefficient β and on the rate of disease-caused
death α.

Appendix I: Technical proofs.

Proof of Theorem 4. To show (i), note that the linearization of system (3) at
(0, 0, 0) is

J(0, 0, 0) =

 −(d+ p) 0 d+ εgN (0)
0 −a 0
0 −α εgN (0)

 ,

whose eigenvalues are −(d + p) < 0, −a < 0, εgN (0) > 0, where εgN (0) > 0 follows
from (A1). Similarly, the linearization at (S∗, 0, N∗) is

J(S∗, 0, N∗) =

 −(d+ p) −h d+ εgN (N∗)
0 h− a 0
0 −α εgN (N∗)


with eigenvalues−(d+p) < 0, h(S∗, N∗)−a > 0, and εgN (N∗) < 0, where h(S∗, N∗)−
a > 0 follows from (A3) and εgN (N∗) < 0 follows from (A1).

The linearization at Eε is

J = J(Sε, Iε, Nε) =

 −(d+ p+ hSIε) −a d− hNIε + εgN
hSIε 0 hNIε

0 −α εgN

 ,

whose characteristic polynomial is given by

Pε(λ) = λ3 +

(
d+ p+

εhSg

α
− εgN

)
λ2 − ε

(
(d+ p)gN −

ahSg

α
− hNg − hSgNIε

)
λ

+ αdhSIε + α(d+ p)hNIε − ε(a+ α)hSgNIε.

Hence,

tr(J) =− (d+ p)− εhSg

α
+ εgN < 0,(20)

det(J) =− αdhSIε − α(d+ p)hNIε + ε(a+ α)hSgNIε
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=− ε(d+ p)

[
d

d+ p
hS(S0, N0) + hN (S0, N0)

]
g(N0) +O(ε2) < 0,

tr(J)a2 − det(A) =− ε
(

(d+ p)gN −
ahSg

α
− hNg − hSgNIε

)
=− ε(d+ p)∆0 +O(ε2),

where a2 is the coefficient of λ in Pε(λ), namely, the sum of all 2× 2 principal minors
of J .

When ε = 0, P0(λ) = λ3 + (d+ p)λ2. It has a negative root, −(d+ p). Therefore,
when ε > 0 small, Pε(λ) has a negative root. We show that the remaining roots of
Pε(λ) are always complex conjugates. To see this, write Pε(λ) as

Pε(λ) = λ3 − a1λ2 + a2λ− a3,

where a1 = tr(A) < 0, a3 = det(A) < 0, and a2 is as above. The larger of the two
critical points of Pε(λ) is

λ1 =
1

3

(
a1 +

√
a21 − 3a2

)
.

Straightforward calculation leads to

Pε(λ1) =
1

27

[
− 2a31 + 9a1a2 − 27a3 − 2(a21 − 3a2)

√
a21 − 3a2

]
.

It can be verified that Pε(λ1) > 0 if and only if

(21) 27a23 + 4a31a3 + 4a32 − 18a1a2a3 − a21a22 > 0.

When ε = 0, we have λ1 = 0, which is a double root of P0(λ). Therefore, Pε(λ1) = 0
when ε = 0, and thus the sign of the expression in (21) is determined by the ε order
terms, which is given by

4(d+ p)4g(N0)

[
d

d+ p
hS(S0, N0) + hN (S0, N0)

]
ε > 0,

by assumption (A3) and continuity. Hence Pε(λ1) > 0. This implies that Pε(λ)
has only one real root. The signs of the real parts of the complex roots can be
determined by the Routh–Hurwitz conditions, which state that all roots of Pε(λ) have
negative real parts if and only if the following three conditions hold: a1 = tr(A) < 0,
a3 = det(A) < 0, and a1a2 − a3 < 0. From relations in (20), we see that for ε > 0
small, if ∆0 > 0, then all three eigenvalues have negative real parts, and if ∆0 < 0,
then at least one eigenvalue has positive real parts. This establishes (ii).

Proof of Theorem 6. To show (i), we note that for solution (S(t), I(t), N(t))
with initial condition (S, 0, N) ∈ D, I(t) ≡ 0, N(t) ≡ N , and S(t)→ dN/(d+p) as t→
∞. Thus, (S(t), I(t), N(t))→ (dN/(d+ p), 0, N) as t→∞. Now let (S(t), I(t), N(t))
be the solution with the initial condition (S(0), I(0), N(0)) ∈ D with I(0) > 0. From
system (5), we have I(t) > 0 for all t ≥ 0 and hence N(t) monotonically decreases.
Therefore N(t) → N̄ as t → ∞ for some N̄ dependent on the initial condition. We
claim that N̄ ≤ N0.

First of all, note that the equilibrium (S0, 0, N0) has two zero eigenvalues and
one negative eigenvalue −(d+ p). Locally, there is a two-dimensional center manifold
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W c(S0, 0, N0), and W c(S0, 0, N0) can be taken to consist of heteroclinic orbits from
(S, 0, N) ∈ Z0 ∩ W c(S0, 0, N0) with S0 < S < S0 + δ0, for some δ0 > 0 small,
to a point (S̄, 0, N̄) ∈ Z0 ∩ W c(S0, 0, N0) and there is a neighborhood N (δ0) of
(S0, 0, N0) inD such that any solution entering inN (δ0) approaches a point (S, 0, N) ∈
Z0 ∩W c(S0, 0, N0) with N < N0. Note that {I = 0} is invariant and, on {I = 0},
any solution (S(t), 0, N(t)) is given by N(t) = N(0) and S(t) → dN(0)/(d + p) with
the rate exp{−(d + p)t}. By continuity, for δ1 > 0 smaller than δ0, any solution
(S(t), I(t), N(t)) with 0 < I(0) ≤ δ1 and N0 − δ1 ≤ N(0) ≤ N0 + δ1 will follow
the solution with the initial condition (S(0), 0, N(0)) to the neighborhood N(δ0) and
hence approach a point (S, 0, N) ∈ Z0 ∩W c(S0, 0, N0) with N < N0.

To establish the claim, we suppose on the contrary that N̄ > N0. Then, N̄ >
N0 + δ1 from the above argument. For δ > 0 small there exists t0 > 0 such that
N̄ ≤ N(t) < N̄ + δ for t ≥ t0. Since h(dN̄/(d+ p), N̄)−a > 0, there exist ρ > 0 small
and T > 0 such that any solution that crosses the square {(S, ρ,N) : |S−dN̄/(d+p)| <
ρ, |N − N̄ | < ρ} from below will stay above {I = ρ} for a length of time greater than
T . Now choose δ > 0 such that αρT > δ. It is clear that there is an infinite sequence
tn →∞ such that I(tn)→ 0. Thus, for some tn > t0, the forward orbit will cross the
above square at some time t∗. We have I(t) ≥ ρ for t ∈ [t∗, t∗ + T ], and hence

N(t∗ + T ) = N(t∗)− α
∫ t∗+T

t∗
I(s) ds ≤ N̄ + δ − αρT < N̄.

This contradicts to that N̄ ≤ N(t) for t ≥ 0, which establishes the claim.
We now show that (S(t), I(t), N(t))→ (dN̄/(d+p), 0, N̄) as t→∞. From the ex-

istence of the sequence tn →∞ such that I(tn)→ 0, we know (I(tn), N(tn))→ (0, N̄)
as n → ∞. By continuity, for n large, the solution will follow the solution through
the point (S(tn), 0, N(tn)) to a neighborhood of the point (dN̄/(d + p), 0, N̄). Since
the set Z0 is normally stable near this point, the solution will approach some point
on Z0 and it must be (dN̄/(d+ p), 0, N̄) because N(t)→ N̄ as t→∞.

To establish statement (ii), we note that the unstable manifold of a point
(S, 0, N) ∈ Z0 with N > N0 is one-dimensional and an orbit representing the unsta-
ble manifold with positive I-component, and hence it converges to a point (S̄, 0, N̄)
with N̄ < N0 from statement (i). We now justify the properties of the function H
in the statement. For N1 > N2 > N0 with N1 and N2 close to N0, it is clear that
H(N1) < H(N2) since the corresponding heteroclinic orbits lie on the local center
manifold W c(S0, 0, N0), which is disk-like. It is also clear that H is a continuous and
one-to-one function. Therefore, the monotone decreasing property of H holds globally
and H(N)→ N∞ as N →∞ exists. It remains to show that N∞ > 0. It can be ver-
ified directly that the eigenvectors associated to the stable eigenvalues λ2 = −(d+ p)
and λ3 = h(0, 0)− a = −a of (0, 0, 0) are, respectively,

v2 = (1, 0, 0) and v3 =

(
αd

a(d+ p− a)
, 1,

α

a

)
.

Since α < a, the vectors v2 and v3 at (0, 0, 0) are pointing toward the exterior of the
feasible region D. Therefore, the local two-dimensional stable manifold W s

loc(0, 0, 0)
except (0, 0, 0) stays outside ofD. By continuity, for some δ > 0 small and for any equi-
librium (dN/(d+ p), 0, N) with N < δ, an orbit starting on the local stable manifold
W s
loc(dN/(d+p), 0, N) except the equilibrium (dN/(d+p), 0, N) will exit the region D

backward and will stay outside D in backward time upon the exit due to the positive
invariance of D. Hence, H(N) ≥ δ for any N > N0, which implies that N∞ ≥ δ > 0.



686 M. Y. LI, W. LIU, C. SHAN, AND Y. YI

Appendix II: Persistence of M(Z0) for ε > 0 small. To establish the
persistence of M(Z0) claimed in Case 2 of section 3.2, we make a change of variables.
This change of variables is continuous but not everywhere smooth. Indeed, it is
smooth everywhere except on {I = 0}. Nevertheless, the property that {I = 0} is
invariant for all ε ≥ 0 makes the change of variables work.

Let m be a positive integer so that a < m(d + p). We may assume that m ≥ 2.
Make the change of state variables: S = x, I = ym, and N = N for y > 0. In terms
of the new variables (x, y,N), the equation for I in (3) becomes

mym−1y′ = (h(x,N)− a)ym or, equivalently, y′ =
1

m
(h(x,N)− a)y.

The model (3) becomes

x′ = dN + εg(N)− sh(x,N)ym − dx− px,

y′ =
1

m
(h(x,N)− a)y,

N ′ = εg(N)− αym.

(22)

We note that this change of state variables is smooth for y > 0 and can be
continued to y = 0. The new system (22) has exactly the same reduced dynamics on
{y = 0} as that of (3) on {I = 0}. We emphasize that the naturally given property
that {I = 0} is invariant under (3) for ε ≥ 0 is crucial for such a change of variables.
The biological implications are commented on and illustrated by examples in section 5.

Recall that m ≥ 2. The set Z0 corresponds, for (22), to

S0 =

{
y = 0, x =

d

d+ p
N

}
.

Let M(S0) denote the corresponding invariant manifold M(Z0).
The linearization at each equilibrium on S0 is −(d+ p) 0 d

0 1
m (h− a) 0

0 0 0


with eigenvalues λ1 = 0, λ2 = −(d + p), and λ3 = (h(dN/(d+ p), N) − a)/m. The
eigenvector v1 associated with λ1 is tangent to S0 and v2 associated with λ2 is (1, 0, 0),
and v1 and v2 span the plane {y = 0}. The eigenvector v3 associated with λ3 is
transversal to the plane {y = 0}. While the eigenvalue λ2 stays negative, the eigen-
value λ3 changes sign across (S0, 0, N0) ∈ S0. Nevertheless, λ1 > λ2 and λ3 > λ2.
The center manifold theory in [5, 6] implies that M(S0) persists under system (22)
for ε > 0 small.
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