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ABSTRACT 

The SEIR model with nonlinear incidence rates in epidemiology is studied. 
Global stability of the endemic equilibrium is proved using a general criterion for 
the orbital stability of periodic orbits associated with higher-dimensional nonlinear 
autonomous systems as well as the theory of competitive systems of differential 
equations. 

1. I N T R O D U C T I O N  

The SEIR model in epidemiology for the spread of an infectious 
disease is described by the following system of differential equations: 

S '  = - A I P S  q -[- 1.~ - ~ S  
E '  = AIPS  q - ( 6 + tz)  E 

I ' =  E E -  (3' + t z ) I  
R ' =  3/1 - / x R ,  (1.1) 

where p, q, 7, ~, A, and E are positive parameters and S, E, I, and R 
denote the fractions of the population that are susceptible, exposed, 
infectious, and recovered, respectively. Some notable features of the 
model: the birth rate and the death rate are assumed to be equal 
(denoted by /z) and in consequence the total population is at an 
equilibrium; the incidence rate (the rate of new infections) is described 
by the nonlinear term AIPS  q which includes the traditional bilinear 
case (p  = q  = 1); a latent period is introduced on the basis of the 
well-known SIS and SIR models. Individuals are susceptible, then 
exposed (in the latent period), then infectious, then recovered with 
permanent  immunity. 

Epidemiological models with nonlinear incidence rate have been 
under extensive studies in recent years. A good survey of results may be 
found in [4] and [8]. The existence and local stability of the nontrivial 
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equilibrium as well as possible Hopf bifurcations for different values of 
the parameters are well understood (cf., [8]). The global stability of the 
nontrivial equilibrium, however, has long been conjectured and re- 
mained unsolved. It is the purpose of this paper to prove the global 
stability of the nontrivial equilibrium for the SEIR model (1.1). 

Our main result, Theorem 2.1, is stated in the next section. In 
Section 3, we prove in Theorem 3.2 that any periodic orbit of the system 
(1.1), when it exists, is orbitally asymptotically stable based on a crite- 
rion for the asymptotic orbital stability of periodic orbits for general 
autonomous systems given in [11]. In Section 4, we first prove that (1.1) 
satisfies a strong Poincar6-Bendixson property using the theory of 
order preserving dynamical systems developed by M. W. Hirsch and 
H. L. Smith (cf., [5] or [13]). Then Theorem 2.1 is proved by ruling out 
periodic orbits using the result developed in the Section 3. 

2. STATEMENT OF THE MAIN RESULT 

We first outline some known results about the SEIR model (1.1). 
Their proofs and more detailed study can be found in [8]. 

Throughout this paper, we assume that 0 < p < 1. 
The feasible region for (1.1) is R 4, the positive orthant of R 4. Adding 

all the equations in (1.1) we have 

( S +  E + I +  R ) ' =  - t z ( S +  E + I +  R - 1 ) ,  

which has the following implications: the 3-dimensional simplex 

F = { ( S , E , I , R ) ~ R  4 : S +  E +  I +  R = I }  

is positively invariant; system (1.1) is dissipative and the global attractor 
is contained in F. Moreover, it suffices to study the dynamics of (1.1) on 
the simplex F. 

On the simplex F, 

R ( t )  = 1 -  S ( t ) -  e ( t ) -  l ( t ) .  

Thus (1.1) reduces to the following 3-dimensional system: 

S' = -AIPS q + ~ -  I~S 
E ' =  AIPS q - (  E + tz)E 
I ' =  e E - ( 3 '  + /*) I .  (2.1) 

The dynamical behavior of (1.1) on F is equivalent to that of (2.1). 
Therefore, in the rest of the paper we will study the system (2.1) in the 
region 

T = { ( S , E , I )  :O <~ S , E , I  <~ I , S  + E + I <~ I} , 

and formulate our results accordingly. 
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There are two possible equilibria to (2.1): the disease-free equilib- 
rium P0 -- (1,0,0) and the endemic equilibrium P*. When 0 < p < 1, P0 
is unstable and all solutions starting near P0 except those from the 
S-axis move away from P0; P* is in the interior of T and is locally 
asymptotically stable. When p = 1, the contact number tr = A e / ( e  + 
/x)(y +/z)  satisfies a threshold condition: if o" _< 1, P0 is the only 
equilibrium in T and is globally asymptotically stable; if tr > 1, P0 
becomes an unstable saddle with one of the two unstable eigenvectors 
pointing to the inside of T while P* emerges as a locally asymptotically 
stable equilibrium in the interior of T. It has been conjectured that P* 
is globally asymptotically stable whenever it belongs to the interior of 
T [8]. 

The main aim of the present paper is to prove the following result: 

THEOREM 2.1 

I f  0 < p < 1 or p = 1 and o" > 1, the endemic equilibrium P* is globally 
asymptotically stable in the interior of  T. 

Remark. Once Theorem 2.1 is proved, the global dynamical behav- 
ior of (1.1) is completely determined when 0 < p ~ 1. 

The proof of Theorem 2.1 will be given in Section 4. It depends on an 
orbital stability result for the periodic solutions to (2.1) which we will 
discuss in the next section. 

The following are some properties of the system (2.1) that will be 
used in later sections. 

PROPOSITION 2.2 

The disease-free equilibrium Po is the only omega limit point of  (2.1) on 
the boundary of T. 

Proof It is easy to see that the vector field of (2.1) is transversal to 
the boundary of T on all its faces except the S-axis which is invariant 
with respect to (2.1). On the S-axis the equation S satisfies is S ' = / z -  
/zS, which implies that S ( t ) ~  1 as t ~ .  Therefore, P0 is the only 
omega limit point on the boundary of T. • 

PROPOSITION 2.3 

Suppose 0 < p < 1 or p = 1 and tr > 1. Then Po cannot be the omega 
limit point of  any orbit starting in the interior of  T. 

Proof Consider the function 

L = E +  e+l '~I .  
E 
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Its derivative along the solutions of (2.1) is 

L'= A I P ( S q - I  II-p).  

Suppose now p < 1 or p = 1 and o- > 1. In the feasible region close 
enough to P0, we always have L '  > 0 as long as I > 0. Therefore,  P0 can 
only be the omega limit point of orbits on the invariant S-axis. Thus the 
lemma is proved. • 

Remark. From Proposition 2.2 and Proposition 2.3 we know that 
when 0 < p < 1 or p = 1 and o- > 1, the system (2.1) is persistent in the 
sense described in [1]. 

3. O R B I T A L  STABILITY OF P E R I O D I C  ORBITS  

Let D c R  n be an open set, and x ~ f ( x ) ~  R n be a C 1 function 
defined in D. We consider the autonomous system in R n 

x'  = f ( x ) .  (3.1) 

Let x(t ,x o) denote the solution of (3.1) such that x(t,O)=x o. The 
linear variational equation of (3.1) with respect to x(t, x o) is given by 

y'( t ) = -~x (X( t,Xo) )y( t ), (3.2) 

where ~ f / 9 x  is the Jacobian matrix of f .  
Our  main result in this section concerns the orbital stability of  a 

periodic orbit of the system (2.1). We first recall the basic definitions 
(cf., [3]). Suppose (3.1) has a periodic solution x = p(t) with least period 
to > 0 and orbit 3' = {p(t) :  0 ~< t ,%< to}. This orbit is orbitalty stable if for 
each e > 0, there exists a ~ > 0 such that any solution x(t), for which 
the distance of x(0) from 3' is less ~, remains at a distance less than 
from 3" for all t t> 0. It  is asymptotically orbitally stable if the distance of 
x(t) f rom y also tends to zero as t --* oo. This orbit y is asymptotically 
orbitally stable with asymptotic phase if it is asymptotically orbitally stable 
and there is a b > 0 such that, any solution x(t), for which the distance 
of x(0) from y is less than b, satisfies I x ( t ) -  p(t - r)l ~ 0 as t ~oo for 
some ~- which may depend on x(0). 

The following is a criterion given in [11] for the asymptotic orbital 
stability of a periodic orbit to the general autonomous system (3.1). 
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THEOREM 3.1 

A sufficient condition for a periodic orbit y = {p(t):O ~< t ~< oJ} of (3.1) 
to be asymptotically orbitally stable with asymptotic phase is that the linear 
system 

z ' ( t )  ( at:J21 \ 
= -~x ( p ( t ) ) ) z ( t )  (3.3) 

be asymptotical(y stable. 

Equation (3.3) is called the second compound equation of (3.2) and 
aft21/ ax is the second compound matrix of the Jacobian matrix o f l a x  
of f .  Generally speaking, for a n × n matrix A and integer 1 ~ k ~< n, 
the k-th additive compound matrix of A is denoted by A [k]. This is a 

N × N matrix, N = t k)' defined by 
/ h 

A [k] = D+ ( I  + hA)(k)lh=0, 

where B (k) is the kth exterior power of a n x n matrix B and D+ 
denotes the right-hand derivative. A survey on the definition and 
properties of additive compound matrices together with their connec- 
tions to differential equations may be found in [9, 11]. Further applica- 
tions may be found in [6, 7]. Examples of various compound matrices 
when n = 3 are provided in the Appendix of this paper. We summarize 
some properties of the additive compound matrices in the following; 
readers are referred to [11] for their proofs. 

The term additive comes from the property (A + B) t~l = A tkl + Btkl; 
if A 1 . . . .  , A, are the eigenvalues of A, then all the possible sums of the 
form ~ i l  -Jr " ' "  -k- .~ik , 1 ~ il < "'" < i~ ~< n, are the eigenvalues of A[k]; in 
the two extreme cases when k = 1 and n, we have 

A [1] = A and A In] = t r ( A ) ,  

respectively. 

Remark. It is also demonstrated in [11] that Theorem 3.1 general- 
izes a classic criterion of Poincar6 for the orbital stability of periodic 
solutions to planar autonomous systems. 

Using Theorem 3.1 we can prove the following result. 

THEOREM 3.2 

The trajectory of any nonconstant periodic solution to (2.1), if it exists, is 
asymptotically orbitally stable with asymptotic phase. 
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Proof. The Jacobian matrix J(S, E, I) of (2.1) is given by 

_AqlPS q- 1 _ IX 0 -h.pi p - 1sq 

J( S , E , I )  = AqIPS q-1 -E - IX ApIp-Is q 

0 E - y - l x  I . 

Using the examples of compound matrices given in the Appendix, we 
can write the linear system (3.3) with respect to a solution (S(t), E(t), 
I(t)) of (2.1) as the following 3 × 3 system: 

X'  = - ( A q l P S q - i +  E +2IX)X + ApI p- 1sq(Y + Z)  

Y ' =  E X - (  AqlPS q-1 +'y +2IX)Y 

Z ' =  A q l P S q - i y - ( e  + 7  + 2IX)Z. (3.4) 

To show the asymptotic stability of the system (3.4) we consider the 
following function: 

V( X , Y ,  Z; S, E, I )  = IP( S, E, I ) . (  X , Y ,  Z)*[ 

where the matrix P = d i a g ( 1 , E / l , E / I )  and I'[ is the norm in R 3 
defined by 

](X,Y, Z)l = sup{ IXI, [Y] + Izl}. (3.5) 

Suppose that the solution (S(t), E(t), I(t)) is periodic of least period 
co > 0. Then Proposition 2.2 implies that its orbit 3' remains at a positive 
distance from the boundary of T. The matrix P and its inverse are thus 
well defined and smooth along y. There exists constant c > 0 such that 

V( X , Y , Z ; S , E , I )  >1 cl( X , Y , Z ) l  (3.6) 

for all ( X , Y , Z ) ~  R 3 and (S,E, I ) ~  3'. Let (X( t ) ,Y( t ) ,Z( t ) )be  a solu- 
tion to (3.4) and 

V(t)  = V ( X ( t ) , Y ( t ) , Z ( t ) ; S ( t ) , E ( t ) , l ( t ) )  

e ( t )  I)}. = sup(IX(t)l,/--~-y'(Lg(t)[+ IZ(t) 

The right-hand derivative of V(t) exists and its calculation is described 
in [10] and [12]; see also [2]. In fact, direct calculation yields 

O+lS(t)l 
<<. - (  AqlPS q-1 + E +2ix) lS( t ) l+  ApIp-Isq(]Y(t)I+ IZ(/)[) 

<~ -- (  A q I P S q - I + , +  2ix)lX(t)[+ ~ ( E  ([Y(t)[+ ]Z(t)1)}, 

(3.7) 
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D+ [Y(t)[ ~< ~ [ X ( t ) I - ( A q l P S  q-1 + T + 2tz)lY(t)l, 

D+ IZ(t)] < AqlPS q- l l Y ( t ) l -  ( e + y + 2m)lZ(t)[ ,  

and thus 

D+ E ( [ v ( t ) [ +  [Z(t)O 

I 
I ) E ( I Y ( t ) I +  [Z(t)l)  + 7 9 +  ( [Y(t ) [+  IZ(t)l)  

_~_ ( E '  I '  ) E ( I Y ( t ) I + I Z ( t ) [ ) .  (3.8) < IX( t ) [+  E I y - 2 / x  7- 

We claim that (3.7) and (3.8) lead to 

D+ V( t )  <~ sup{g l ( t ) ,g2( t ) } .V( t )  ' (3.9) 

where 

hiPS q gl( t ) = -AqlPS q-1 - ~ - 2 tx + ~ , 

~E E'  I '  
g2(t) = --[- + E I y -2 Ix .  

To see this we consider three cases near t > 0: (a) V( t )=  [X(t)[; (b) 
V ( t ) = E / I ( I Y ( t ) ] +  JZ(t)[); (c) neither (a) nor (b) holds. Clearly (3.9) 
follows from (3.7) in case (a) and from (3.8) in case (b). In case (c), we 
necessarily have IX(t)[ = E/ I ( I Y ( t ) [  + [Z(t)l) and D+ IX(t)] = 
D+ (E/ I ) ( IY( t ) I  + [Z(t)[) at t, and thus (3.9) follows from either (3.7) or 
(3.8). Using (2.1) 

AIPS q E' 
----if-- - E + e + / z ,  

eE I' 
I =-7- + y  + /z '  

we find 

E t 

sup{gl(t),  gz(t)}  <~ ~ - tz, 

and thus 

fo°~Sup{gl(t),gz(t)} dt <<. log E(t)[6 ° -/z~o = - /zw < 0, 
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which, together with (3.9), implies that V(t)  ~ 0 as t ~ o% and in turn 
that ( X ( t ) , Y ( t ) , Z ( t ) ) ~ O  as t ~ o o  by (3.6). As a result, the linear 
system (3.4) is asymptotically stable and the periodic solution (S(t),  
E(t) ,  I(t))  is asymptotically orbitally stable with asymptotic phase by 
Theorem 3.1. • 

4. P R OOF  OF T H E O R E M  2.1 

Before presenting the proof  of Theorem 2.1, we will study further 
dynamical behavior of the SEIR model (2.1). 

The autonomous system (3.1) is said to be competitive in D if, for 
some diagonal matrix H --- diag(E 1 . . . . .  e n) where each e i is either 1 or 
- 1, H a f / ~ x H  has nonpositive off diagonal elements for all x ~ D. It 
is shown in [13] that, if D is convex, the flow of such a system preserves, 
for t < 0, the partial ordering in R n defined by the orthant K = 
{(x I . . . .  , x~) ~ R ~ : Eix i >/0, i = 1, . . . ,  n}. We also want to remark that the 
concept of competitiveness defined above is more general than that in 
[5] in that the partial ordering is not necessarily that defined by the 
standard orthant of R n. However, as is pointed out in [13], by a change 
of variables y =/-/x, a competitive system defined above can be trans- 
formed into a system that is "competitive" in the sense of [5]. 

By looking at its Jacobian matrix and choosing the matrix H as 
H = d i a g ( - 1 , 1 , -  1), we can see that the system (2.1) is competitive 
in the convex region T, with respect to the partial ordering defined 
by the orthant {(S, E, I )  ~ R 3 : S ~< 0, E >/0, I ~< 0}. It is known that 
3-dimensional competitive systems have the Poincar6-Bendixson prop- 
erty [5, 13]. 

THEOREM 4.1 

Assume that n = 3 and D is convex. Suppose (3.1) is competitive in D 
and L is a nonempty compact omega limit set of  (3.1). I f  L contains no 
equilibria, then L is a closed orbit (cf. [5, Theorem 1]). 

Using Theorem 4.1 we can show that the system (2.1) possesses the 
following strong Poincar6-Bendixson property: 

THEOREM 4.2 

Any compact omega limit set of  (2.1) in the interior of  T is either a 
closed orbit or the endemic equilibrium P*. 

Proof. Suppose that f~ is an omega limit set of (2.1) in the interior 
of T. If f~ does not contain P*, then it contains no equilibria since P* 
is the only interior equilibrium. Theorem 4.1 will then imply that l~ is a 
closed orbit. Suppose f /  contains P*. Since P* is asymptotically stable 
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whenever it exists in the interior of T, any orbit that gets arbitrarily 
close to P* must converge to P*. Thus ~ = {P*}. • 

Proof of Theorem 2.1 

The basin of attraction U of the endemic equilibrium P* is a 
relatively open subset of T since P* is locally asymptotically stable. The 
theorem is proved if we can show that U contains the interior of T. 
Assuming that the contrary is true, then the boundary c~U of U has 
nonempty intersection with the interior of T (we denote this intersec- 
tion by E). Now ~ is invariant and thus ~ contains a nonempty 
compact omega limit set 7 which is in the interior of T by Proposition 
2.2 and Proposition 2.3. Moreover, y does not contain P* and thus 
contains no equilibria. We can then conclude from Theorem 4.2 and 
Theorem 3.2 that 7 is a nontrivial periodic orbit which is asymptotically 
orbitally stable. But this contradicts the fact that E, hence 7, is 
contained in the alpha limit set of P*. This contradiction completes the 
proof  of the theorem. • 

APPENDIX 

The matrices A [k] in the case n = 3 are as follows: 

[ a~ 
A [1] = a~ 

[a~ 

al + a~ 
A [21 = a~ 

-a~ 

a~ a~ 
al a~ = A 
a~ a~ 

a~ -a~ ] 
al + a~ al ~ 

a~ a~ + a~ 

A TM = a~ + az 2 + a33 = Tr  A. 
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