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1. INTRODUCTION

Ž .Let A be an n = n matrix and let s A be its spectrum. The stability
Ž . � Ž .4modulus of A is s A s max Re l: l g s A , and A is said to be stable

Ž .if s A - 0. The stability of a matrix is related to the Routh]Hurwitz
problem on the number of zeros of a polynomial that have negative real
parts. Much research has been devoted to the latter. The first solution

w xdates back to Sturm 21, p. 304 . Using Sturm’s method, Routh developed a
simple algorithm to solve the problem. Hurwitz independently discovered
necessary and sufficient conditions for all of the zeros to have negative
real parts, which are known today as the Routh]Hurwitz conditions. A
good and concise account of the Routh]Hurwitz problem can be found in
w x5 . According to the Routh]Hurwitz conditions, a 2 = 2 real matrix A is

Ž . Ž .stable if and only if tr A - 0 and det A ) 0; a 3 = 3 real matrix A is
Ž . Ž . Ž . Ž .stable if and only if tr A - 0, det A - 0, and tr A ? a - det A , where2

a is the sum of all 2 = 2 principal minors of A.2
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Stability of matrices is intimately related to the stability of stationary
solutions of various kinds in the theory and applications of dynamical
systems. Let f be a vector field defined in an open set of Rn. An

Ž .equilibrium point x of f is such that f x s 0. It is asymptotically stable if,
for each neighborhood U of x, there exists a neighborhood V such that

Ž . Ž . Ž .x g V ; U, and x 0 g V implies that the solution x t satisfies x t g U
1Ž . Ž w x.for all t ) 0, and that x t ª x as t ª ` see 11 . If f is C , then the

Ž .asymptotic stability of x is closely related to the stability of Df x , the
Ž Ž ..Jacobian matrix of f at x; it is necessary that s Df x F 0 and sufficient

Ž Ž ..that s Df x - 0 for x to be asymptotically stable. In many applications,
Ž .the entries of Df x contain system parameters, and the stability of x may

have to be verified without knowing its explicit coordinates. The verifica-
Ž .tion of the Routh]Hurwitz conditions for Df x can be technically nontriv-

ial, especially when n G 3.
In the present paper, a necessary and sufficient condition for the

Ž .stability of an n = n matrix with real entries is derived Theorem 3.1 ,
using a simple spectral property of compound matrices. As an application
and demonstration of the effectiveness of our criteria, the asymptotic
stability of a unique endemic equilibrium of an epidemic model of SEIR
type with varying total population is proved. The verification of the
Routh]Hurwitz conditions for this problem, on the other hand, has
presented substantial technical difficulties.

We outline in the next section the preliminaries for our main results,
which are given in Section 3. In Section 4, we show how the conditions in
Section 3 can be relaxed in the presence of certain constraints on the
matrix. Stability of equilibria of differential equations that possess first
integrals are considered as an example. An application to a system arising
from an epidemic model is presented in Section 5.

2. PRELIMINARIES

Ž .Let M T be the linear space of m = m matrices with entries in T,m
where T is either the field of real numbers R or complex numbers C. An

Ž . mM g M T will be identified with the linear operator on T that itm
represents. Let n denote the exterior product in T m, and let 1 F k F m
be an integer. With respect to the canonical basis in the k th exterior
product space nk T m, the kth additï e compound matrix M w k x of M is a
linear operator on nk T m whose definition on a decomposable element
u n ??? n u is1 k

M w k x u n ??? n u s Ýk u n ??? n Mu n ??? n u . 2.1Ž . Ž .1 k is1 1 i k
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Definition over the whole nk T m is done by linear extension. The entries
w k x Ž .of M are linear relations of those of M. Let M s a . For any integeri j

mŽ . Ž . Ž .i s 1, . . . , , let i s i , . . . , i be the ith member in the lexicographic1 kk

ordering of integer k-tuples such that 1 F i - ??? - i F m. Then the1 k
entry in the ith row and the jth column of Z s M w k x is

¡a q ??? qa , if i s j ,Ž . Ž .i i i i1 1 k k

rqsy1 a , if exactly one entry i of i does notŽ . Ž .j i sr s~z si j
occur in j and j does not occur in i ,Ž . Ž .r¢0, if i differs from j in two or more entries.Ž . Ž .

2.2Ž .

w1x w m x Ž .As special cases, we have M s M and M s tr M . The second
compound matrix of an m = m matrix is given in the Appendix for m s 2,
3, and 4. For detailed discussions on compound matrices, the reader is

w xreferred to 8, 19 . Pertinent to the purpose of the present paper is a
w k x Ž . � 4spectral property of M . Let s M s l : i s 1, . . . , m . Then the spec-i

w k x Ž w k x. � 4trum of M , s M s l q ??? l : 1 F i - ??? - i F m .i i 1 k1 k
< < mLet ? denote a vector norm in T and the operator norm it induces in

Ž . Ž . Ž .M T . The Lozinskiı measure or logarithmic norm m on M T with˘m m
< < Ž w x. Ž .respect to ? is defined by see 5, p. 41 , for M g M T ,n

< <I q hM y 1
m M s lim . 2.3Ž . Ž .

q hhª0

Ž . Ž .A Lozinskiı measure m M dominates the stability modulus s M , as the˘
w xfollowing lemma states. A simple proof can be found in 5 .

Ž . Ž . < <LEMMA 2.1. Let m be a Lozinskiı measure. Then s M F m M F M .˘
Ž .The Lozinskiı measures of M s a with respect to the three common˘ i j

< < < < < < < < < < Ž < < 2 .1r2norms x s sup x , x s Ý x , and x s Ý x are` 1 2i i i i i i

< <m M s sup Re a q a ,Ž . Ý` i i i kž /
i k , k/i

< <m M s sup Re a q a , 2.4Ž . Ž .Ý1 k k ikž /
k i , i/k

and

M q M*
m M s s ,Ž .2 ž /2
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Ž w x.respectively see 5 , where M* denotes the Hermitian adjoint of M. If M
Ž . Ž .is real symmetric, then m M s s M . For a real matrix M, conditions2

Ž . Ž .m M - 0 or m M - 0 can be interpreted as a - 0 for i s 1, . . . , m,` 1 i i
and M is diagonally dominant in rows or in columns, respectively.

Ž . < < < < < <Let P g M T be invertible. Define a new norm ? by x s PxP Pm
and denote the corresponding Lozinskiı measure by m . The next lemma˘ P
follows directly from the definition of m.

LEMMA 2.2. Let P be an in¨ertible matrix. Then

m M s m PMPy1 . 2.5Ž . Ž . Ž .P

Ž .PROPOSITION 2.3. For any matrix M g M T ,m

s M s inf m M : m is a Lozinskiı measure on M T . 2.6� 4Ž . Ž . Ž . Ž .˘ m

Ž .Proof. We first prove the case when T s C. The relation 2.6 obviously
holds for diagonalizable matrices by Lemma 2.2 and the first two relations

Ž . Ž .in 2.4 . Furthermore, the infimum in 2.6 can be achieved if M is
diagonalizable. The general case can be shown based on this observation,

Ž .the fact that M can be approximated by diagonalizable matrices in M C ,m
Ž . < Ž . Ž . <and the continuity of m ? , which is implied by the property m A y m B

< < Ž w x. Ž . Ž .F A y B see 5, p. 41 . Next, let M g M R . Then s M sm
� Ž .4inf m M , where m are Lozinskiı measures with respect to vector˘C C

< < m m < <norms ? in C . When restricted to R , each ? induces a vector normC C
< < m? on R . Let m be the corresponding Lozinskiı measure. Then˘R R

Ž . Ž . Ž . < < < <m M G m M holds for M g M R , since M G M holds for theC RC R m
Ž .induced matrix norms. This shows that 2.6 is valid for the case T s R

also.

Remark. From the above proof, one can see that, if T s C, then

s M s inf m PMPy1 : P g M C is invertible .Ž . Ž . Ž .� 4` m

The same relation holds if m is replaced by m . However, we would like to` 1
point out that similar relations no longer hold for the case T s R.

Ž . Ž . Ž .COROLLARY 2.4. Let M g M T . Then s M - 0 m m M - 0 form
Ž .some Lozinskiı measure m on M T .˘ m
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3. STABILITY CRITERIA

Ž .In this section, we assume that A g M R .n

Ž . Ž w2x.THEOREM 3.1. For s A - 0, it is sufficient and necessary that s A - 0
Ž .n Ž .and y1 det A ) 0.

w2x Ž w2x.Proof. By the spectral property of A , the condition s A - 0 im-
plies that at most one eigenvalue of A can have a nonnegative real part.
We thus may assume that all of the eigenvalues are real. It is then simple
to see that the existence of one and only one nonnegative eigenvalue is

nŽ . Ž .precluded by the condition y1 det A ) 0.

Theorem 3.1 and Corollary 2.4 lead to the following result.

Ž .n Ž .THEOREM 3.2. Assume that y1 det A ) 0. Then A is stable if and
nw2xŽ . Ž . Ž .only if m A - 0 for some Lozinskiı measure m on M R , N s .˘ N 2

EXAMPLE. Let

2y1 yt y1
A s .t yt y 1 t

2 2t 1 yt y 1

Ž .We show that A t is stable for all t ) 0. From the Appendix,

y2 y t t 1
w2x 2 2A t s .Ž . 1 y2 y t yt

2 2yt t y2 y t y t

w2x 3Ž . Ž .Considering that A t is diagonally dominant in rows and N s s 3,
2

Ž .we let m be the Lozinskiı measure on M R with respect to the norm˘ 3
< < � < < < < < <4 Ž w2x. Ž .x s sup x , x , x . Then m A s y1 - 0 by 2.4 . Moreover,1 2 3

Ž Ž .. 5 3 2 Ž .det A t s y2 t y 3t y 2 t y t y 1 - 0. The stability of A t follows
from Theorem 3.2.

Ž . Ž . Ž .Let a ¬ A a g M R be a function that is continuous for a g a, bn
Ž . Ž .g R. An a g a, b is said to be a Hopf bifurcation point for A a if0

Ž .A a is stable for a - a , and there exists a pair of complex eigenvalues0
Ž . Ž . Ž . Ž .Re l a " Im l a of A a such that Re l a ) 0, while the rest of the

Ž .eigenvalues of A a have nonzero real parts for a ) a . From the proof0
Ž w2x.of Theorem 3.1 we see that s A F 0 precludes the existence of a pair of

eigenvalues of A having positive real parts. This leads to the following
result.
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Ž w2xŽ .. Ž . Ž .THEOREM 3.3. If s A a F 0 for a g a, b , then a, b contains no
Ž .Hopf bifurcation points of A a .

Ž . Ž .COROLLARY 3.4. No Hopf bifurcation points of A a exist in a, b if
Ž w2xŽ .. Ž .m A a F 0 for some Lozinskiı measure m and all a g a, b .˘

Ž . Ž . n Ž . nLet x, a ¬ f x, a g R be a function defined for x, a g R = R.
Assume that f is C1 in x, and both f and  fr x are continuous in a . We

Ž . Ž Ž . . Ž .also assume that f x, a s 0 has a solution x a , a for all a g a, b .
Ž .Then x a is an equilibrium for the ordinary differential equation

x9 s f x , a , a g a, b . 3.1Ž . Ž . Ž .

Ž . Ž Ž . . Ž .Let J a s  fr x x a , a . We say that the differential equation 3.1
Ž .has a Hopf bifurcation from the equilibrium x a at a s a if a is a0 0

Ž .Hopf bifurcation point for J a .

Ž w2xŽ .. Ž . Ž .THEOREM 3.5. Assume that s J a - 0 for a g a, b . Then 3.1
nŽ . Ž . Ž . Ž Ž ..has no Hopf bifurcation from x a in a, b . Moreo¨er, if y1 det J a )

Ž . Ž . Ž .0 for a g a, b , then x a is an asymptotically stable equilibrium of 3.1 for
Ž .a g a, b .

Ž w2xŽ .. Ž .Remark. The condition s J a - 0 for a g a, b , or equivalently,
Ž w2xŽ .m J a - 0 for some Lozinskiı measure, does not preclude the possibil-˘

Ž . Ž . Ž .ity of x a losing stability in a, b . However, by Theorem 3.3, if x a
Ž .loses its stability at a s a g a, b , then the bifurcation that may occur0

when a passes through a involves only equilibria.0
We end this section by a brief discussion on the connection of the above

results with the Markus]Yamabe Conjecture for an autonomous system
in Rn,

x9 s f x x g Rn . 3.2Ž . Ž .

nŽ .An equilibrium x of 3.2 is said to be globally asymptotically stable in R if
Ž . Ž .it is asymptotically stable and all solutions of 3.2 satisfy x t ª x as

nt ª `. In such a case, x is necessarily the only equilibrium in R .

Ž . Ž .Markus]Yamabe Conjecture. If f 0 s 0 and the eigenvalues of Df x
all have negative real parts for each x g Rn, then x s 0 is globally
asymptotically stable in Rn.

w xMarkus and Yamabe formulated the conjecture in 18 for the case
n s 2, which has recently been given an affirmative answer independently

Ž w x.by several authors see 7, 9, 10 . For n G 3, the Markus]Yamabe Conjec-
Ž w x.ture has been proved to be false see 1, 2, 4 . However, it is still of

interest to see that how the conditions can be strengthened so that the
conclusion may still hold in the case n G 3. This question has been
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Ž w x.considered by many authors see 5, 6, 12, 13 . In the spirit of our
Theorems 3.1 and 3.2, we formulate the following conjecture.

1Ž n n. Ž .Conjecture. Assume that f g C R ª R satisfies f 0 s 0,
Ž .n Ž Ž .. Ž w2xŽ ..y1 det Df x ) 0, and m Df x - 0 for some Lozinskiı measure m˘
and for all x g Rn. Then x s 0 is globally asymptotically stable in Rn.

Ž . w2x Ž .Remarks. 1 Note that Df s tr Df when n s 2. In this case, the
Ž Ž ..last two assumptions in our conjecture become det Df x ) 0 and

Ž Ž ..tr Df x - 0, respectively. It follows that, for planar systems, our conjec-
ture is equivalent to the Markus]Yamabe Conjecture and thus holds true.

Ž . Ž w2xŽ .. Ž w2xŽ ..2 If the condition m Df x - 0 is replaced by s Df x - 0,
then the above conjecture is equivalent to the Markus]Yamabe Conjec-
ture by Theorem 3.1. An autonomous convergence theorem of R. A. Smith
w x w x Ž w2xŽ ..20 and Li and Muldowney 17 states that the condition m Df x - 0

n Ž .for x g R implies that each bounded semi-orbit of 3.2 converges to a
single equilibrium. To prove our conjecture, it remains to see whether its

Ž . Ž .conditions can ensure a all solutions are forwardly bounded, and b
x s 0 is the only equilibrium.

Ž .3 Any solution that establishes the validity of our conjecture may
also offer a new proof of the Markus]Yamabe Conjecture for the case
n s 2.

4. STABILITY IN THE PRESENCE OF CONSTRAINTS

Ž . nLet A g M R . Assume that n G 3. A subspace V ; R is in¨ariantn
Ž .under A if A V ; V. A is said to be stable with respect to an invariant

<subspace V if the restriction of A to V, A : V ª V, is stable. Let matrixV

B be such that rank B s r, 0 - r - n y 1, and

BA s 0. 4.1Ž .

� n 4 Ž n.Then ker B s x g R : Bx s 0 satisfies A R ; ker B. In particular,
ker B is an n y r dimensional invariant subspace of A. It is of interest to

Ž .study the stability of A with respect to ker B when 4.1 holds.
n Ž n.LEMMA 4.1. Let V ; R be a subspace such that A R ; V and dim V

s k - n. Then 0 is an eigen¨alue of A, and there exist n y k eigen¨ectors of
0 that do not belong to V.

Proof. Let W be the quotient space RnrV. Then Rn ( V [ W and
nŽ . � 4 Ž .A W s 0 , since A R ; V. This establishes the lemma.
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Ž .THEOREM 4.2. Assume that A and B satisfy 4.1 and rank B s r, 0 -
r - n y 1. Then, for A to be stable with respect to ker B, it is necessary
and sufficient that

Ž . Ž w rq2 x.a s A - 0, and
Ž . w Ž .x Ž .ny r

qb lim sup sign det e I q A s y1 .e ª 0

<Proof. Let l , . . . , l be the eigenvalues of A . By Lemma 4.1,ker B1 nyr
the eigenvalues of A can be written as

r! # "
l , . . . , l , 0, . . . , 0 ,1 nyr

� 4 Ž w rq2x.and thus l q l : 1 F i - j F n y r ; s A by the spectral propertyi j
of additive compound matrices discussed in Section 2. It follows that
Ž w rq2x.s A - 0 precludes the possibility of more than one l , 1 F i F n y r,i

have nonnegative real parts. For e ) 0 sufficiently small,

sign det e I q A s sign e r l ??? l .Ž .Ž . Ž .1 nyr

The theorem can be proved using the same argument as in the proof of
Theorem 3.1.

Ž .Remark. If r s n in 4.1 , then B is of full rank and hence A s 0. If
r s n y 1, then ker B is of dimension 1, and thus the eigenvalues of A are
l and 0 of multiplicity n y 1. From the above proof, we know that1

Ž .Theorem 4.2 still holds in this case, if condition a is replaced by
Ž .tr A - 0.
Let matrix B be such that rank B s r, 0 - r - n y 1, and1 1

B A s n B 4.2Ž .1 1

for some scalar n / 0. Then ker B is an invariant subspace of A. A class1
Ž .of differential equations that give rise to the consideration of 4.2 can be

w x Ž . Ž .found in 15, 16 . Noting that 4.2 is equivalent to B A y n I s 0, one1
can apply Theorem 4.2 to A y n I and obtain the following result.

Ž .COROLLARY 4.3. Assume that A and B satisfy 4.2 and rank B s r,1 1
0 - r - n y 1. Then A is stable with respect to ker B if and only if the1
following conditions hold:

Ž . Ž w rq2 x. Ž .a s A - r q 2 n .
Ž . Ž . rŽ .ny r Ž .b sign n y1 det A ) 0.

Ž . nA function x ¬ H x g R defined for x g R is said to be a first
Ž . Ž Ž .. Ž . Ž .integral for system 3.2 if H x t, x s H x for all t G 0, where x t, x0 0 0

Ž . Ž . Ž .denotes the solution to 3.2 such that x 0, x s x . Suppose that 3.2 has0 0
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Ž . Ž .r first integrals H x , i s 1, . . . , r. Then each trajectory of 3.2 stays on ai
level set

G s x : H x s c , i s 1, . . . , r ,� 4Ž .i i

Ž .where c s H x . Assume that H is smooth and that the gradient vectorsi i 0 i
=H satisfyi

=H x n ??? n =H x / 0, for all x g G ,Ž . Ž .1 r

Ž .which is equivalent to the linear independence of =H x . Then G is ai
n y r-dimensional submanifold of Rn. If r s n, then f ' 0. If r s n y 1,

Ž .then 3.2 is integrable and the case is trivial. We assume that 0 - r -
n y 1.

n n Ž . Ž . Ž .Let w : R ª R be the flow of 3.2 defined by w x s x t, x . Thent t 0 0
n Ž .w is a diffeomorphism on R for each t and w G ; G. This implies thatt t

the tangent space T G of G at x satisfiesx 00

Dw x T G ; T G.Ž . Ž .t 0 x w Ž x .0 t 0

Ž .If x g G is an equilibrium, then T G is an invariant subspace of Dw x .x t
An equilibrium x g G is said to be asymptotically stable with respect to G if

<it is so with respect to the restriction w of the flow w on G. Using aGt t
local chart on G, one can show that a sufficient condition for x to be
asymptotically stable with respect to G is that it is so under the restriction

Ž . < Ž .Dw x of the linearized flow Dw x on the invariant subspace T G.T Gt t xx

Ž Ž .. Ž .Differentiating the identity H x t, x s H x with respect to xi 0 i 0 0
leads to

=H x t , x *Dw x s =H x *.Ž . Ž . Ž .Ž .i 0 t 0 i 0

In particular, when x s x, this becomes0

=H x *Dw x s =H x *.Ž . Ž . Ž .i t i

Ž .This relation and the fact that Dw x is a fundamental matrix to thet
Ž .linear variational equation of 3.2 ,

y9 t s Df x y t , 4.3Ž . Ž . Ž . Ž .

lead to the relations

=H x *Df x s 0, i s 1, . . . , r , 4.4Ž . Ž . Ž .i

Ž . Ž . Ž Ž . Ž ..and hence Df x satisfies 4.1 with B s =H x , . . . , =H x *. Theorem1 r
4.2 can be applied to obtain the following result.
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Ž . Ž .THEOREM 4.4. Let H x , i s 1, . . . , r, be first integrals of 3.2 such thati
Ž . Ž .=H x n ??? n =H x / 0 near an equilibrium x g G. Then x is asymptoti-1 r

cally stable with respect to G if
w rq2xŽ . Ž Ž . .a s Df x - 0, and

ny rŽ . Ž Ž Ž ... Ž .qb lim sup sign det e I q Df x s y1 .e ª 0

Ž . Ž . <Remarks. 1 If all of the eigenvalues of Dw x have nonzero realT Gt x

parts, in which case x is said to be hyperbolic with respect to G, the
Ž . Ž .conditions a and b in Theorem 4.4 are also necessary.

Ž . w rq2x Ž .2 When r q 2 s n, we have Df s tr Df s div f , and condition
Ž .a in Theorem 4.4 becomes

div f x - 0. 4.5Ž . Ž .

Ž . Ž .This is so if n s 3 and 3.2 possesses a first integral H x such that
Ž .=H x / 0 in G.

5. AN APPLICATION

Consider the following system:

s9 s b y bs y lis q a is

e9 s lis y e q b e q a ieŽ . 5.1Ž .
i9 s e e y g q a q b i q a i2 ,Ž .

which arises from an epidemic model of SEIR type with varying total
population, where s, e, and i denote the fractions in the population that

Ž .are susceptible, exposed in the latent period , and infectious, respectively.
Then 1 y s y e y i is the fraction of individuals who are recovered from
infection with immunity, which is assumed to be permanent. All of the

Ž .parameters in 5.1 are assumed to be nonnegative. In particular, b is the
exponential birth rate of the host population, l is the per capita contact
rate, and a is the exponential rate constant for the disease-caused death.

w xA detailed description of the model can be found in 14 , and a special case
w x Ž .is studied in 3 . Based on biological considerations, system 5.1 will be

studied in the following region:

G s s, e, i g R3 : s q e q i F 1 , 5.2Ž . Ž .� 4q

Ž .which can be shown to be positively invariant with respect to 5.1 . For all
Ž . Ž .nonnegative values of the parameters, 5.1 has an equilibrium P s 1, 0, 00

on the boundary of G that corresponds to the case of no disease. It is of
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interest to investigate the existence, number, and stability of equilibria in
the interior of G, which correspond to disease being endemic.

As a remark on the range of the parameters, we note that if l F a , then
Ž . Ž . Ž . Ž . Ž .s9 t G b y bs t from 5.1 , which implies that s t ª 1, and hence e t ,
Ž .i t ª 0 as t ª `; no interior equilibrium can exist. Since only interior

equilibria are considered in the rest of the section, we assume that l ) a .

5.1. Existence of a Unique Interior Equilibrium

Ž .For a possible interior equilibrium P* s s*, e*, i* g G, its coordinates
satisfy

b y bs y lis q a is s 0

lis y e q b e q a ie s 0Ž .
2 5.3Ž .e e y g q a q b i q a i s 0,Ž .

and s* ) 0, e* ) 0, and i* ) 0. Adding the above equations leads to

b y a i 1 y s y e y i s g i ,Ž . Ž .

which implies that i* has the range

b
0 - i* - . 5.4Ž .

a

Ž .Eliminating s and e from 5.3 , one obtains the following equation
satisfied by i*:

f i s s , 5.5Ž . Ž .

where

a a l y a
f i s 1 y i 1 y i 1 q iŽ . ž / ž / ž /e q b g q a q b b

and

le
s s . 5.6Ž .

e q b g q a q bŽ . Ž .

Furthermore, s* and e* can be uniquely determined from i* by

b g q a q b y a i* i*Ž .
s* s and e* s , 5.7Ž .

b q li* y a i* e
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Ž .respectively. None of the three roots of f i , considering l ) a ,

e q b g q a q b l y a
i s , i s , i s y ,1 2 3a a b

w x Ž . Ž . Ž .lies in 0, bra . Furthermore, f 0 s 1 and f bra s s a q g ra ) s .
These observations lead to the conclusion that, when s ) 1, the line

Ž Ž .. Ž .y s s has exactly one intersection i*, f i* with the graph of y s f i
w x Ž .that satisfies i* g 0, bra see Fig. 1 . We thus established the existence

Ž .and uniqueness of the endemic equilibrium of 5.1 when s ) 1, which, we
believe, have not been established in the literature of epidemic models.

Ž .PROPOSITION 5.1. When s ) 1, 5.1 has a unique interior equilibrium
Ž . Ž . Ž .P* s s*, e*, i* , and s*, e*, and i* satisfy 5.3 ] 5.5 .

5.2. Asymptotic Stability of the Interior Equilibrium

Ž . Ž .The Jacobian matrix of 5.1 at P* s s*, e*, i* is

ybyli*qa i* 0 yls*qa s*
li* y eqb qa i* ls*qa e*Ž .J P* s ,Ž .
0 e y gqaqb q2a i*Ž .

bw xFIG. 1. Existence and uniqueness of i* in the interval 0, .a
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w2xŽ .whose second additive compound matrix J P* is, by the Appendix,

y2b y li* y e q 2a i* ls* q a e*
e y2b y li* y g y a q 3a i*
0 li*

ls* y a s*
0 .

y2b y e y g y a q 3a i*

Ž .We rewrite 5.3 as

b
s b q li* y a i*

s*

li*s*
s e q b y a i*Ž .

e*
5.8Ž .

e e*
s g q a q b y a i*.

i*

Thus

b bs* y b
y 0

s* i*
li*s*

det J P* sŽ . li* y ls* q a e*Ž .
e*

e e*
0 e y q a i*

i*

a i* bae e*
s ylbe 1 y s* q lbi* qŽ .

e* s*

a i* a
s ylbe 1 y s* q lbe i* q lbe e*Ž .

e e* ls*

F ylbe 1 y s* y i* y e* - 0,Ž .
Ž .since from 5.8 ,

e e*
s g q a q b y a i* ) a

i*

b y bs*
ls* s q a ) a .

i*

This leads to the following lemma.
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Ž Ž ..LEMMA 5.2. det J P* - 0.

Ž . w2xŽ . y1Next, we set Q s diag i*, e*, s* . Then QJ P* Q is

li*s*
y2b y li* y e q 2a i* q a i*

e*
e e*

y2b y li* y g y a q 3a i*
i*

li*s*
0

e*

li* y a i*

0 .

y2b y e y g y a q 3a i*

Ž .Let m be the Lozinskiı measure on M R with respect to the norm˘ 3

< < < < < < < <� 4X , Y , Z s sup X , Y , Z .Ž .

Ž . Ž . Ž w2xŽ .. Ž w2xŽ . y 1.Then from 2.4 and 2.5 , m J P* s m QJ P* Q sQ
� 4max g , g , g , where1 2 3

li*s*
g s y2b y e q 2a i* q ,1 e*

e e*
g s y2b y li* y g y a q 3a i* q , 5.9Ž .2 i*

li*s*
g s y2b y e y g y a q 3a i* q .3 e*

Therefore,

w2x �m J P* s max yb q a i*, yb y li* q 2a i*,Ž .Ž .Q

4yb y g y a q 2a i* - 0,

Ž . Ž .by 5.8 and 5.4 . This establishes the following result.

Ž w2xŽ ..LEMMA 5.3. m J P* - 0.Q

From Lemma 5.2, Lemma 5.3, and Theorem 3.1 follows the main result
of this section.
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Ž .THEOREM 5.4. If s ) 1, then 5.1 has a unique equilibrium P* in the
interior of G and P* is asymptotically stable.

APPENDIX

For m s 2, 3, and 4, the second additive compound matrix of an m = m
Ž .matrix M s a is, respectively,i j

m s 2: a q a s tr MŽ .Ž .11 22

a qa a ya11 22 23 13
a a qa am s 3: 32 11 33 12

ya a a qa31 21 22 33

a qa a a ya ya 011 22 23 24 13 14
a a qa a a 0 ya32 11 33 34 12 14
a a a qa 0 a a42 43 11 44 12 13m s 4: .ya a 0 a qa a ya31 21 22 33 34 24

ya 0 a a a qa a41 21 43 22 44 23
0 ya a ya a a qa41 31 42 32 33 44
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