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Abstract Human T-lymphotropic virus type I (HTLV-I) is a persistent human retro-
virus characterized by life-long infection and risk of developing HAM/TSP, a pro-
gressive neurological and inflammatory disease, and adult T-cell leukemia (ATL).
Chronically infected individuals often harbor high proviral loads despite maintaining
a persistently activated immune response. Based on a new hypothesis for the persis-
tence of HTLV-I infection, a three-dimensional compartmental model is constructed
that describes the dynamic interactions among latently infected target cells, target-cell
activation, and immune responses to HTLV-I, with an emphasis on understanding the
role of Tax expression in the persistence of HTLV-I.

Keywords Mathematical modelling · HTLV-I · Persistent viral infection · Latently
infected target cells · Viral tax protein · Global stability · Backward bifurcation

1 Introduction

Human T-lymphotropic virus type I (HTLV-I) is the aetiological agent of HTLV-
I-associated myelopathy or tropical spastic paraparesis (HAM/TSP) (Gallo 2005),
and infection can also lead to adult T-cell leukemia/lymphoma (ATL) (Proietti et al.
2005). HTLV-I infection is life-long and there is currently no cure nor preventative
vaccine for HTLV-I, and neither is there satisfactory treatment for HTLV-I-associated
pathologies (Bangham 2000; Proietti et al. 2005). The majority of HTLV-I-infected
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individuals remains as asymptomatic carriers (ACs) throughout their lifetime, while
approximately 0.1–4% will develop HAM/TSP or ATL (Proietti et al. 2005).

Host immune responses specific to HTLV-I are associated with the activation and
clonal expansion of anti-HTLV-I CD8+ cytotoxic T-lymphocytes (CTLs), and such
CTLs are typically abundant in the peripheral blood of infected hosts, both ACs and
HAM/TSP patients (Asquith et al. 2005; Bangham et al. 2009). A traditional theory
for HTLV-I maintenance is that infected cells are almost exclusively latent, escaping
CTL-induced lysis by effectively remaining ‘invisible’ to host immune responses,
and the proviral load is maintained principally by normal homeostatic mitotic divi-
sion of CD4+ helper T-cells, the primary targets of HTLV-I (Mortreux et al. 2003;
Wattel et al. 1996). Such a mechanism does not adequately justify the high frequen-
cies of circulating anti-HTLV-I CD8+ CTLs found in the peripheral blood, which
require antigenic stimulation from transcriptionally active proviral cells in order to
proliferate. These HTLV-I-specific CTLs have been shown to be chronically acti-
vated in infected individuals, suggesting that they have recently been exposed to anti-
gen in vivo (Asquith et al. 2005; Bangham et al. 2009). The high proviral loads often
observed cannot be maintained solely by normal homeostatic mitosis of CD4+ helper
T-cells; selective proliferation of provirus-containing cells must be involved. A new
hypothesis has been proposed in Asquith and Bangham (2007, 2008) that focuses
on the dynamic interaction between transcriptional latency of proviral cells and in-
fected target cell activation corresponding to either suppression or expression of viral
antigens. This hypothesis suggests a way in which HTLV-I-infected individuals can
display elevated proviral loads while maintaining a persistently activated HTLV-I-
specific immune response.

The viral protein Tax is a crucial antigen expressed by cells productively infected
by HTLV-I and is involved in activating the transcription of HTLV-I genes and trigger-
ing infected T-cell proliferation (Bangham 2000). Proviral cells can be crudely sepa-
rated into two types, which may be distinguished by the absence or presence of Tax
inside the cell due to T-cell latency or T-cell activation: (i) latently infected, or Tax−,
target cells are resting CD4+ helper T-cells that contain a provirus and do not express
Tax, and (ii) actively infected, or Tax+, target cells are activated provirus-carrying
CD4+ helper T-cells that do express Tax. Latently infected cells are transcriptionally
silent and do not make new virions, whereas actively infected cells undergo persistent
selective replication of the virus, and is hypothesized to be driven by the expression
of Tax (Asquith and Bangham 2007, 2008).

Tax expression can be both beneficial and detrimental to the HTLV-I provi-
ral cell. On the one hand, expressing the viral protein is required for cell-to-cell
transmission and drives rapid selective clonal expansion of actively infected cells
via up-regulation of cellular genes involved in mitosis and down-regulation of
cell-cycle checkpoints (Asquith and Bangham 2007, 2008; Mortreux et al. 2003;
Wattel et al. 1996). On the other hand, Tax expression simultaneously exposes
the proviral cell to immune surveillance as the Tax protein is the dominant anti-
gen recognized by anti-HTLV-I host immune responses, both humoral and cell-
mediated (Asquith and Bangham 2007, 2008; Bangham et al. 2009; Wattel et
al. 1996). Indeed, lysis of HTLV-I-infected cells by CD8+ CTLs is highly effi-
cient and target Tax+ proviral cells; Tax− proviral cells evade detection and sub-
sequent destruction (Asquith and Bangham 2007, 2008; Bangham et al. 2009;
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Bangham and Osame 2005). Blood samples taken from most HTLV-I-infected in-
dividuals consistently show the presence of large, chronically activated Tax-specific
CTL responses, suggesting that Tax is continuously being expressed (Asquith and
Bangham 2008). Thus, it is plausible that HTLV-I persists in-host not by complete
viral latency, but rather by balancing latency with activation. To investigate the out-
comes of the dynamic interactions of HTLV-I infection and immune responses, and
the overall role played by Tax expression in the persistence of HTLV-I in vivo, we
propose and analyze a mathematical model based on the new theoretic hypothesis in
Asquith and Bangham (2007, 2008).

2 Formulation of Mathematical Model

To formulate a mathematical model that explores the role of Tax expression in the
dynamic interaction between transcriptional latency and viral activation, we com-
partmentalize the CD4+ T-cell population into three distinct classes. Denote by x(t),
u(t), and y(t) the numbers of healthy, latently infected (Tax−), and actively infected
(Tax+) CD4+ helper T-cells at time t .

It is common to assume that healthy CD4+ helper T-cells are produced in the
bone marrow at a constant rate λ and enter the bloodstream (Nowak and May 2000;
Perelson 2002). Infectious or horizontal transmission of HTLV-I occurs via direct
cell-to-cell contact between an actively infected (Tax+) and healthy CD4+ helper
T-cell (Shiraki et al. 2003), and new incidence is described by a bilinear term
βxy, where β is the coefficient of infectious transmissibility (Nelson et al. 2000;
Nowak and May 2000). Within 7–10 days after the initial infection, strong adap-
tive immune responses targeting the Tax protein are established in an attempt to
counter-act the infection (Bangham 2000). It is known that the HTLV-I genome
displays low genetic sequence variability; infectious transmission is highly error-
prone and would result in a genetically diverse pool of infected target cells (Asquith
and Bangham 2007; Mortreux et al. 2003; Wattel et al. 1996). It is assumed that
only a small fraction σ , where σ ∈ (0,1) and σ � 1, of newly infected Tax+ tar-
get cells via infectious transmission survive and silence Tax expression, by mecha-
nisms that are not yet understood (Asquith and Bangham 2008; Mortreux et al. 2003;
Wattel et al. 1996).

A small proportion τ of latently infected (Tax−) CD4+ T-cells spontaneously ex-
press the viral Tax protein and become actively infected (Tax+) (Asquith and Bang-
ham 2008). Mitotic or vertical transmission of HTLV-I involving selective clonal
expansion of these Tax-expressing proviral CD4+ T-cells occurs at a rate r and is
modelled by a logistic growth term. Although mitosis is a natural process that occurs
in all CD4+ T-cells, normal homeostatic proliferation occurs at a much slower rate
than that of selective mitotic division of Tax+ proviral cells. To avoid unnecessarily
complicating the mathematical analysis, we ignore the effects of passive proliferation
of the healthy and latently infected target cell populations. Newly infected cells via
mitotic transmission risk elimination by CTL-mediated lysis. The genetic stability
of HTLV-I along with the frequently observed high proviral loads in infected hosts
imply that a significant proportion ε, where ε ∈ (0,1) and ε ≈ 1, survives and hides
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Fig. 1 Transfer diagram describing the infection dynamics of HTLV-I in vivo

Tax expression, thereby contributing to the latently infected target cell compartment.
Since the vast majority of proviral cells are transcriptionally latent then at any given
time t , y(t) � u(t), and it is biologically plausible to use the form ry(1 − x+u

k
),

instead of ry(1 − x+u+y
k

), to describe the vertical transmission of HTLV-I, where k

is the CD4+ helper T-cell carrying capacity. We assume that all target cell popula-
tions under consideration are removed from the system by natural cell death at a rate
proportional to their numbers. The removal rates of uninfected, latently infected, and
actively infected CD4+ helper T-cells are denoted by μ1, μ2, μ3, respectively. All pa-
rameters are assumed to be positive. A transfer diagram for the described interactions
is shown in Fig. 1.

Based on our assumptions, we derive the following system of ordinary differential
equations:

x′ = λ − βxy − μ1x,

u′ = σβxy + εry

(
1 − x + u

k

)
− (τ + μ2)u,

y′ = τu − μ3y.

(1)

Mathematical models that take into account both infectious and mitotic routes of vi-
ral transmission as well as the role of HTLV-I-specific immune responses have been
constructed by Gómez-Acevedo and Li (2005) and Wodarz et al. (1999). Model (1)
extends these earlier models by incorporating the role of the viral protein Tax during
the course of infection, whose expression confers both advantages and disadvantages
to the proviral cell. In our mathematical model (1), the differentiation of the infected
cell class into two pools, latent and active, illustrates for the first time a highly dy-
namic interaction between viral expression and transcriptional latency that is critical
to the persistence of HTLV-I in vivo.
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3 Equilibria, Local Stability, and Backward Bifurcation

For the mathematical analysis of model (1), we first derive upper bounds for the T-cell
populations to find a biologically relevant region for which our model is well-posed.
The result is stated in Theorem 3.1 and the proof is given in Appendix B. Since the
parameter k denotes the carrying capacity of CD4+ helper T-cells in the peripheral
blood, it is natural to expect that x + u + y ≤ k for all time. For this to hold, we need
to make the following compatibility condition:

(A0)
λ

μ̃
≤ k,

where μ̃ = min{μ1,μ2}. Denote by R
3+ the closed positive orthant of R

3, and let

Γ :=
{
(x,u, y) ∈ R

3+ : x ≤ λ

μ1
, x + u ≤ k, y ≤ τ

μ3
k

}
. (2)

Theorem 3.1 The set Γ is positively invariant with respect to model (1). All solutions
of model (1) are bounded for t ≥ 0 and eventually enter Γ .

Theorem 3.1 defines the set Γ as a feasible region on which the dynamics may be
analyzed. The global dynamics of model (1) are determined by the basic reproduction
number for viral infection,

R0 = σβτx0

μ3(τ + μ2)
+ εrτ

μ3(τ + μ2)

(
1 − x0

k

)
> 0, where x0 = λ

μ1
. (3)

Biologically, R0 represents the average number of secondary infected cells produced
from a single actively infected cell over its lifetime. The first term in the sum of R0
represents secondary infections through horizontal (infectious) transmission, while
the second term represents secondary infections from vertical (mitotic) transmission.

Define

σ0 = εr

kβ
− εr − μ3

τ
(τ + μ2)

2βx0

[
kβτ(εr − μ3

τ
(τ + μ2))

2εrμ1μ3
+ 1

]
, (4)

and

σ̄ = εr

kβ
− 1

βx0

(
εr − μ3

τ
(τ + μ2)

)
. (5)

Throughout this paper, we make the following mild mathematical assumptions:

(A1) εr − μ3

τ
(τ + μ2) > 0,

(A2) σβ <
εr

k
,

(A3) 0 < σ0 < σ̄ .
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If we consider R0 = R0(σ ) as a function of σ , then R0(σ ) is increasing and σ̄ sat-
isfies R0(σ̄ ) = 1. Hence, Assumption (A3) is equivalent to R0(σ0) < R0(σ̄ ) = 1.
Assumption (A1) requires that the net effect of infected T-cell activation and Tax ex-
pression is stronger than transcriptional latency. Assumption (A2) implies that infec-
tious transmission has less of an impact in maintaining the proviral load than mitotic
transmission. Assumption (A3) states that both chronic infection and viral clearance
are theoretically possible outcomes of the infection.

There are two types of equilibria for model (1): the infection-free equilibrium
P0 = (x0,0,0) corresponding to a healthy individual, and chronic-infection equilibria
P̄ = (x̄, ū, ȳ), where x̄, ū, ȳ > 0 satisfy

0 = λ − βx̄ȳ − μ1x̄, (6)

0 = σβx̄ȳ + εrȳ

(
1 − x̄ + ū

k

)
− (τ + μ2)ū, (7)

0 = τ ū − μ3ȳ. (8)

From (7)–(8), we find that

ȳ = kτ

εrμ3

[(
σβ − εr

k

)
x̄ + εr − μ3

τ
(τ + μ2)

]
and ū = μ3

τ
ȳ. (9)

Substitution into (6) then yields

λ − μ1x̄ = kβτ

εrμ3
x̄

[(
σβ − εr

k

)
x̄ + εr − μ3

τ
(τ + μ2)

]
.

Define

f1(x) = λ − μ1x,

f2(x) = kβτ

εrμ3
x

[(
σβ − εr

k

)
x + εr − μ3

τ
(τ + μ2)

]
.

(10)

The x-coordinates of chronic-infection equilibria, if they occur, are the intersection
points of the line f1 with the parabola f2; see Fig. 2. Observe that Assumptions (A1)

and (A2) are precisely the requirements that f ′
2(0) > 0 and f ′′

2 (x) < 0, respectively.
Note that both f1 and f2 have a single positive root. Assumption (A3) ensures that
for some positive value of the parameter σ , the height of the vertex of the concave
parabola f2 lies above the height of the corresponding point on the straight line f1,
and a range for σ exists, in which the number of chronic-infection equilibria goes
from zero to two as σ increases.

We summarize the results for the existence of equilibria in the following theorem.

Theorem 3.2 Assume that (A1)–(A3) hold. Then

(1) the infection-free equilibrium P0 = (x0,0,0), where x0 = λ
μ1

, always exists in Γ̄ .

Moreover, if 0 < R0 < R0(σ0), then P0 is the only equilibrium in Γ̄ ;
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Fig. 2 Graphs of the straight line f1 and the concave parabola f2 for several values of the parameter σ .
As σ varies, the two graphs may have zero, one, or two intersection points. All parameter values are
selected in the ranges shown in Table 1

(2) when R0(σ0) < R0 < 1, there exist three equilibria, P0 on the boundary ∂Γ and
two distinct chronic-infection equilibria P1 = (x1, u1, y1) and P2 = (x2, u2, y2),
with x1 < x2. Furthermore, f ′

1(x1) < f ′
2(x1) and f ′

1(x2) > f ′
2(x2);

(3) when R0 > 1, there exist exactly two equilibria, P0 on ∂Γ and a unique chronic-
infection equilibrium P1 = (x̄, ū, ȳ), whose x-coordinate satisfies f ′

1(x̄) < f ′
2(x̄).

Next, the local stability of equilibria is examined and the results are stated in The-
orems 3.3 and 3.4. The proofs may be found in Appendix B. We first establish the
basic reproduction number for viral infection R0 as a threshold parameter character-
izing the local stability of the infection-free equilibrium P0.

Theorem 3.3

(i) When R0 < 1, the infection-free equilibrium P0 is always locally asymptotically
stable in the feasible region Γ .

(ii) When R0 > 1, P0 is unstable. More specifically, P0 is a saddle with
dimWs

loc(P0) = 2 and dimWu
loc(P0) = 1, where Ws

loc(P0), Wu
loc(P0) denote the

local stable and unstable manifolds of P0, respectively.

Theorem 3.4 Assume that (A1)–(A3) hold. Then

(i) when R0(σ0) < R0 < 1, the chronic-infection equilibrium P1 is locally asymp-
totically stable whereas P2 is unstable. Moreover, the local stable manifold
Ws

loc(P2) of P2 is two-dimensional;
(ii) when R0 > 1, the unique chronic-infection equilibrium P1 is locally asymptoti-

cally stable.

Theorems 3.2–3.4 establish the existence of a backward bifurcation leading to a
region of bi-stability. There is an open range of the parameter σ ∈ (σ0, σ̄ ), such that
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Fig. 3 Backward bifurcation and bi-stability of equilibria with respect to the parameter σ . Parameter val-
ues are selected from the ranges as in Table 1: λ = 20, β = 0.001, ε = 0.9, τ = 0.01, r = 0.15, k = 1150,
μ1 = 0.02, μ2 = 0.02, μ3 = 0.03

the infection-free equilibrium P0 and a chronic-infection equilibrium P1 co-exist and
are both stable. The bifurcation diagram is shown in Fig. 3. Backward bifurcation
is also shown to occur in a model for HTLV-I infection in Gómez-Acevedo and Li
(2005), suggesting that such a phenomenon is intrinsic to the dynamics of HTLV-I.
Challenges to effective treatment strategies to HTLV-I infection arising from a back-
ward bifurcation due to bi-stability and hysteresis effects are examined in Gómez-
Acevedo and Li (2005). In Sect. 4, we will further discuss biological implications of
a backward bifurcation with respect to viral infection.

4 Global Dynamics

We first show that model (1) is a cooperative system.

Proposition 4.1 Model (1) is cooperative with respect to the partial ordering defined
by the orthant

K = {
(x,u, y) ∈ R

3 : x ≤ 0, u ≥ 0, y ≥ 0
}
.

Furthermore, system (1) is irreducible in Γ̊ .

Proof The Jacobian matrix for model (1) is

J (x,u, y) =
⎡
⎣ −βy − μ1 0 −βx

(σβ − εr
k

)y − εr
k

y − τ − μ2 σβx + εr(1 − x+u
k

)

0 τ −μ3

⎤
⎦ .
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Assumption (A0) implies that x +u ≤ k, and thus 1 − (x +u)/k ≥ 0. Also, Assump-
tion (A2) implies (σβ − εr/k)y ≤ 0, and the matrix J (x,u, y) is irreducible if y > 0.
Choose Q = diag(−1,1,1). Then QJQ−1 has non-negative off-diagonal elements.
The first claim follows from Lemma 2.1 in Smith (1998). �

Applying the theory of monotone dynamical systems (Hirsch 1982; Smith 1995),
we obtain the following global stability results.

Theorem 4.1 (Global Stability when P0 is the Only Equilibrium in Γ ) When 0 <

R0 < R0(σ0), the infection-free equilibrium P0 is the only equilibrium in Γ̄ and it is
globally asymptotically stable.

Proof The set Γ̊ ∪ {P0} is convex and positively invariant, and contains a unique
equilibrium P0. Applying Proposition 4.1 in Γ̊ ∪ {P0} establishes the global stability
of P0 in the interior Γ̊ of Γ [Smith 1995, Theorem 3.1]. On the boundary of Γ ,
the direction of the vector field for model (1) indicates that solutions starting on ∂Γ

either enter Γ̊ and subsequently converge to P0, or remain on the positively invariant
x-axis and converge to P0 along the x-axis. This establishes the global stability of P0
in the closure Γ̄ of Γ . �

A similar argument may be used to establish the global stability when a unique
chronic-infection equilibrium exists in the interior Γ̊ of Γ .

Theorem 4.2 (Global Stability of the Unique Chronic-Infection Equilibrium when
R0 > 1) Assume that R0 > 1. Then, there exists a unique chronic-infection equilib-
rium P1 and it is globally asymptotically stable in Γ̊ .

If σ0 = σ̄ , or equivalently R0(σ0) = 1, then the range of σ for backward bifurca-
tion and bi-stability disappears and the standard forward bifurcation is observed. In
this case, Theorems 4.1 and 4.2 together establish the global behavior of solutions to
model (1), and the basic reproduction number for viral infection R0 acts as a sharp
threshold parameter completely characterizing the global dynamics of model (1).

Next, we establish the global dynamics when backward bifurcation occurs, namely
when σ0 < σ̄ . Because of multi-stability, the proof for Theorems 4.1 and 4.2 does not
apply. It is known that the Poincaré–Bendixson theorem holds for three-dimensional
cooperative systems (Hirsch 1982; Smith 1995). Since model (1) is cooperative, it
may only admit unstable periodic trajectories when multiple equilibria exist in Γ̊ .
Using a result of Muldowney [1990, Theorem 4.2], we prove that any non-constant
periodic solution of model (1), if it exists, is orbitally asymptotically stable with
asymptotic phase. This allows us to establish the non-existence of periodic orbits
in the feasible region Γ . The proofs of the following two theorems are given in Ap-
pendix B.

Theorem 4.3 (Non-existence of Closed Orbits in Γ ) There cannot exist any non-
constant periodic solutions of model (1) in Γ provided

(A4)
εr

k
< 2σβ.
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Biologically, Assumption (A4) requires that both infectious and mitotic transmission
of HTLV-I are important for the infection.

Theorem 4.4 (Global Dynamics when Bi-stability Occurs) Assume that (A1)–(A3)

hold. When R0(σ0) < R0 < 1, there exist three equilibria in Γ̄ : the infection-free
equilibrium P0 on the boundary ∂Γ , along with two distinct chronic-infection equi-
libria P1 and P2 in the interior Γ̊ . Under Assumption (A4), both P0 and P1 are
attractors whose basins of attraction are separated by the two-dimensional stable
manifold of the saddle point P2.

Our main theoretical results give rise to the following biological implications.

(a) If 0 < R0 < R0(σ0), an infected individual can elicit a strong immune response
against the virus and the infection is cleared. Even with a high initial viral dosage,
chronic infection does not occur.

(b) If R0 > 1, the individual elicits a weak immune response against the virus. Such
a scenario may occur in individuals whose circulating CTLs or antibodies have
poor recognition of HTLV-I epitopes, or those who are immuno-compromised.
Even with a small initial viral dosage, chronic infection ensues.

(c) If R0(σ0) < R0 < 1, backward bifurcation and bi-stability are present. In this
case, the outcome of the infection, whether it is cleared or becomes chronic, is
dependent on the initial viral dosage at the onset of the infection: a low initial
viral dosage can be cleared by the host, whereas a high enough initial viral dosage
leads to chronic infection.

5 Numerical Investigations

In this section, we investigate several important aspects of model (1) numerically.
We will use parameter values that have been estimated using both experimental and
theoretical methods in studies of CD4+ lymphocyte kinetics by Asquith et al. (2007),
Kirschner and Webb (1996), and Nelson et al. (2000). In particular, the rate of produc-
tion of healthy CD4+ helper T-cells from the bone marrow falls in the range of 10–25
cells/mm3/day (Kirschner and Webb 1996). As infection by HTLV-I only causes mi-
nor detriment to T-cell functionality (Asquith and Bangham 2007), it is expected that
all three populations of target cells considered in our model display natural death
rates similar to that of healthy target cells, between 0.01–0.05 day−1 (Kirschner and
Webb 1996; Nelson et al. 2000). The rate of rapid Tax-driven selective mitosis r lies
in the range 0.04–0.4 per day, which is in the same order of magnitude as the one pro-
posed in Kirschner and Webb (1996). In the absence of infection, the normal CD4+
helper T-cell count averages 1000 cells/mm3, and we consider a target cell carrying
capacity of 1150 cells/mm3. Using a scaling relation of Perelson (1989), βk ≈ 1, and
when the time unit is per day, we determine values for the coefficient of infectious
transmissibility β to be in the order of 10−3 mm3/cell/day. Asquith et al. (2007)
have quantified the rate τ of expression of Tax in proviral cells to be between 0.03–
3% per day. The biological meaning of the parameters as well as the relevant ranges
in which the parameters lie are summarized in Table 1. It is easily verified that when
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Table 1 Biologically relevant parameter values

Parameter Range or value Biological meaning

λ 10–25 cells/mm3/day Rate of production of target cells (CD4+
helper T-cells)

β 0.0005–0.003 mm3/cell/day Coefficient of infectious transmissibility

r 0.04–0.4 day−1 Rate of Tax-driven selective proliferation of
actively infected target cells

k 1150 cells/mm3 Carrying capacity of target cells

σ 0–1 Fraction of infected target cells from
infectious transmission surviving immune
responses

ε 0–1 Fraction of infected target cells from mitotic
transmission surviving immune responses

τ 0.0003–0.03 day−1 Rate of spontaneous Tax expression

μ1 0.01–0.05 day−1 Natural death rate of healthy target cells

μ2 0.01–0.05 day−1 Natural death rate of latently infected target
cells

μ3 0.01–0.05 day−1 Natural death rate of actively infected target
cells

parameter values are selected from these ranges, the assumptions and theoretical re-
sults observed in Sects. 3 and 4 are valid, thus the behaviors of solutions to model (1)
stated in these sections are plausible for HTLV-I infection.

5.1 Establishment of Proviral Load and Viral Persistence in Latently Infected Cells

The proviral load of a chronically infected individual at equilibrium is commonly
expressed as a proportion or percentage of the total number of CD4+ helper T-cells.
Specifically,

Equilibrium Proviral Load = number of infected cells

total number of cells

= ū + ȳ

x̄ + ū + ȳ
. (11)

Numerical simulation of model (1) as in Fig. 4 shows that the proviral load at equi-
librium is 77% CD4+. Our model agrees with the common experimental observation
that an HTLV-I-infected person may harbor a high proviral load (Bangham 2000;
Mortreux et al. 2003; Wattel et al. 1996).

The proportion of infected cells that are latent in an infected individual is

Proportion of Latently Infected Cells

= number of Tax− infected cells

total number of infected cells
= ū

ū + ȳ
. (12)
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Fig. 4 Chronic infection by HTLV-I. The level of healthy target cells x(t), latently infected target cells
u(t), and actively infected target cells y(t) are shown over the course of approximately 11 years from
the initial infection. The parameter values are: λ = 20, β = 0.001, σ = 0.1, ε = 0.9, τ = 0.01, r = 0.15,
k = 1150, μ1 = 0.02, μ2 = 0.02, μ3 = 0.03

In Fig. 4, 75% of the equilibrium proviral load is comprised of latently infected cells.
Our simulations agree with the experimental observation that the vast majority of
proviral cells are transcriptionally latent (Asquith and Bangham 2007, 2008).

5.2 Tax Expression is Positively Correlated with Proviral Load

As shown in Fig. 5, the rate of spontaneous Tax expression τ displays a positive cor-
relation with the equilibrium proviral load during chronic infection by HTLV-I. This
observation suggests that the net effect of increased Tax expression, which exposes
the proviral cell to immune surveillance and raises its risk of elimination by CTLs,
is to increase rather than decrease the proviral load. The benefits conferred by T-cell
activation, such as infectious transmission and rapid mitotic transmission, allow the
provirus to replicate faster than it is being destroyed. The proviral load should then
be expected to increase as the surviving proportion of newly infected cells, either
through horizontal or vertical transmission, subsequently hide viral protein expres-
sion and become latent. This conclusion agrees with theoretical studies in Asquith
and Bangham (2007, 2008).

5.3 Tax Expression Drives Chronic Infection and Promotes Bi-stability

We make two observations regarding the effect of Tax expression in determining
whether the infection becomes chronic or dies out. First, a simple computation yields

∂R0

∂τ
= μ2

μ3(τ + μ2)2

(
σβx0 + εr

(
1 − x0

k

))
> 0,

that is, an increase in the rate of spontaneous Tax expression increases the possibility
of viral persistence.
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Fig. 5 The rate of spontaneous Tax expression and the equilibrium proviral load display a positive cor-
relation. Parameter values are: λ = 20, β = 0.003, σ = 0.06, ε = 0.9, r = 0.12, k = 1150, μ1 = 0.02,
μ2 = 0.02, μ3 = 0.03

Fig. 6 Tax expression increases the range for which backward bifurcation and bi-stability occur. Parame-
ter values are: λ = 20, β = 0.001, ε = 0.9, r = 0.15, k = 1150, μ1 = 0.02, μ2 = 0.02, μ3 = 0.03

Second, numerical simulations indicate that increasing τ also increases the range
for which backward bifurcation and bi-stability occur, as illustrated in Fig. 6.
A broader range for the presence of bi-stability means that (i) newly infected in-
dividuals would have a higher probability of lying in the basin of attraction of the
stable chronic-infection equilibrium, and (ii) a smaller initial viral dosage would be
sufficient to cause chronic infection. An increased rate of Tax expression is therefore
seen to be a factor that drives the system towards chronic infection.
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Fig. 7 Time series simulations demonstrating the impact of Tax expression on the duration of time re-
quired for an individual to settle at equilibrium. (a)–(b) Increasing the value of τ increases the time needed
to clear HTLV-I. (c)–(d) The result of increased Tax expression is a decreased time to settle at the chronic
infection steady state. Parameter values are: λ = 20, β = 0.001, σ = 0.06, ε = 0.9, r = 0.15, k = 1150,
μ1 = 0.02, μ2 = 0.02, μ3 = 0.03

5.4 Tax Expression Affects Time to Reach Chronic-Infection Equilibrium

The rate of expression of viral proteins also has a strong impact on the length of time
it takes an individual to reach steady state. Time series plots demonstrating the possi-
ble situations are shown in Fig. 7. In Figs. 7(a)–(b), a slight increase in Tax expression
significantly increases the time for complete clearance of the virus and for the level
of healthy CD4+ helper T-cells to return to normal. During this extended period of
time, a lower CD4+ helper T-cell count could reduce overall immune functional-
ity and leave the host more susceptible to invading pathogens including bacterial or
other viral infections. In Figs. 7(c)–(d), a small increase in Tax expression not only
increases the proviral load at equilibrium, it also reduces considerably the length of
time required to reach the chronic infection steady state. It is possible that the sudden
sharp decline in healthy CD4+ helper T-cell counts in chronically infected individu-
als induced by a high continuous rate of viral protein expression is a crucial factor in
the pathogenesis of the inflammatory disease HAM/TSP.
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6 Discussion

In this paper, we have developed a mathematical model based on a new hypothe-
sis in Asquith and Bangham (2007, 2008) for the persistence of HTLV-I infection
in vivo, focusing on the role of Tax expression in viral replication, transmission, and
maintenance. The proposed mechanism of viral infection considers a highly dynamic
interaction among three compartments of target cells of the virus: healthy, latently
infected, and actively infected CD4+ helper T-cells. The differentiation between two
pools of infected target cells and the relationship between them are key features of
our model and represent important aspects of realistic HTLV-I infection that have not
been considered in previous mathematical models of HTLV-I. Our findings demon-
strate that a balance between transcriptional latency and activation of proviral cells
offers opportunities for HTLV-I to evade destruction by human immune responses
while establishing high proviral loads, and that the rate τ of spontaneous expression
of the viral protein Tax has a substantial impact on the outcome of HTLV-I infection.

The proportion of the equilibrium proviral load consisting of actively infected
target cells depends only on the parameters τ and μ3, and is equal to τ

τ+μ3
. Direct

calculation shows that

∂

∂τ

(
τ

τ + μ3

)
= μ3

(τ + μ3)2
> 0;

that is, a higher rate of Tax expression increases the Tax+ proportion of the provi-
ral load, which in turn stimulates faster proliferation of anti-Tax HTLV-I-specific
CTLs. The cytotoxic effects of CTLs have been suggested to be the underlying cause
of the tissue damage in the central nervous system leading to the development of
HAM/TSP (Asquith et al. 2005; Bangham 2000; Mosley and Bangham 2009). In-
deed, a higher rate of Tax expression has been experimentally shown to be associ-
ated with a greater risk of developing HAM/TSP (Asquith and Bangham 2007). Our
conclusion supports a new postulate in Mosley and Bangham (2009) for HAM/TSP
pathogenesis. Our conclusion also helps to rectify conflicting arguments that the
proviral load should play an important part in determining disease status yet its mag-
nitude is neither necessary nor sufficient to cause HAM/TSP (Asquith and Bangham
2007; Mosley and Bangham 2009).

Model (1) incorporates anti-HTLV-I immune responses implicitly as in Gómez-
Acevedo and Li (2005) by including the parameters σ and ε representing fractions of
newly infected target cells that survive elimination: stronger immune responses corre-
spond to lower values of σ, ε; weaker immune responses correspond to higher values
of σ, ε. As the primary focus of our model is to illuminate the particular role of Tax
expression in HTLV-I persistence, an explicit incorporation of the HTLV-I-specific
immune response via a compartment of CD8+ CTLs would greatly complicate the
mathematical analysis and make it difficult to draw clear conclusions from the anal-
ysis. Nevertheless, the CTL response is an integral part of HTLV-I infection and per-
sistence, and is believed to be directly related to the development of HAM/TSP. It is
necessary to include a separate CTL compartment in future modelling investigations.

It is known that Tax, though immuno-dominant, is not the only viral protein recog-
nized by HTLV-I-specific CTLs (Bangham et al. 2009; Bangham and Osame 2005).
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Recent research evidence shows that a different HTLV-I gene product, HTLV-I basic
leucine zipper factor (HBZ), is also a critical target of the CTL response, and may
play an important role in determining the proviral load and risk of HTLV-I-related
diseases (Boxus and Willems 2009; Matsuoka and Green 2009; Saito et al. 2009).
Further modelling studies incorporating the role of HBZ are needed. Another crude
approximation used in our model is the partition of infected CD4+ helper T-cells
into Tax+ and Tax− groups. It is becoming increasingly clear that the expression
of the provirus in each distinct HTLV-I-infected T-cell clone is likely to be differ-
ent, and depends on the integration site in the host genome (Bangham et al. 2009;
Meekings et al. 2008). As a result, there may be a continuum of proviral expres-
sion and a varying degree of susceptibility to CTL-mediated lysis. Improved models
incorporating this structure need to be further investigated to gain a more in-depth
understanding of HTLV-I dynamics in vivo.
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Appendix A: Second Additive Compound Systems

Let A denote a linear operator on R
n as well as its matrix representation with respect

to the standard canonical basis of R
n. Denote by

∧2
R

n the exterior product of R
n

consisting of exterior products v1 ∧v2 of two vectors v1, v2 in R
n. The linear operator

A, along with its standard basis of R
n, induces a linear operator A[2] with correspond-

ing canonical basis of
∧2

R
n. Its matrix representation with respect to the canonical

basis in
∧2

R
n is called the second additive compound matrix of A (Fiedler 1974;

Muldowney 1990). It satisfies the property (A + B)[2] = A[2] + B[2] for any two
n × n matrices A and B . The second additive compound matrix of A = [aij ] when
n = 3 is given below by

A[2] =
⎡
⎣a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

⎤
⎦ . (13)

Let f : D → R
n be a continuously differentiable function defined on an open set

D ⊂ R
n and consider the autonomous system of ordinary differential equations

x′ = f (x), x ∈ D. (14)

The kth compound system associated to the non-linear autonomous system of ordi-
nary differential equations (14) is a system of linear equations

z′ = ∂f

∂x

[2]
z, (15)

where ∂f
∂x

[2]
is the second additive compound matrix of the Jacobian matrix, ∂f

∂x
, of f .

The following result of Muldowney (1990) is critical to the proof of Theorem 4.3.
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Theorem A (Theorem 4.2, Muldowney 1990) A non-constant periodic solution x =
p(t) of system (14) is orbitally asymptotically stable with asymptotic phase if the
linear second compound system

z′(t) = ∂f

∂x

[2]
(p(t))z(t)

is asymptotically stable.

Appendix B: Proofs

Proof of Theorem 3.1 From the first equation of system (1), we obtain x′ ≤ λ − μ1x,
and this implies that lim supt→∞ x(t) ≤ λ

μ1
. Adding the first two equations of our

model yields

(x + u)′ ≤ λ + εrk

(
1 − x + u

k

)
− μ̃(x + u),

where μ̃ = min{μ1,μ2}. Therefore, lim supt→∞(x + u)(t) ≤ λ+εrk
εr+μ̃

= N . Finally, if
(x(t), u(t), y(t)) is a solution of system (1) with x(0) + u(0) ≤ N , then from the third
equation of our model, we obtain

y′ = τu − μ3y ≤ τN − μ3y,

and thus

lim sup
t→∞

y(t) ≤ τ

μ3
N.

Using condition (A0), it can be verified that N ≤ k, and thus the feasible region for
model (1) is

Γ :=
{
(x,u, y) ∈ R

3+ : x ≤ λ

μ1
, x + u ≤ k, y ≤ τ

μ3
k

}
.

It can be verified that Γ is positively invariant in R
3 and that the model is well-

posed. �

Proof of Theorem 3.3 At the infection-free equilibrium P0, the Jacobian matrix is

J (P0) =
⎡
⎣−μ1 0 −βx0

0 −τ − μ2 σβx0 + εr(1 − x0
k

)

0 τ −μ3

⎤
⎦ ,

whose eigenvalues are

ζ1 = −μ1

and

ζ2,3 = −1

2
(τ + μ2 + μ3) ± 1

2

√
(τ + μ2 + μ3)2 + 4μ3(τ + μ2)[R0 − 1].
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Clearly, Re(ζ1),Re(ζ3) < 0. The sign of Re(ζ2) depends on R0. If R0 < 1, Re(ζ2) < 0
and P0 is locally asymptotically stable. If R0 > 1, Re(ζ2) > 0 and P0 is a saddle with
dimWs

loc(P0) = 2 and dimWu
loc(P0) = 1. �

To determine the local stability properties of a chronic-infection equilibrium P̂ =
(x̂, û, ŷ), we examine the stability of J (P̂ ), the Jacobian matrix at P̂ . We use the
following result by McCluskey and van den Driessche (2004), which is equivalent to
the general stability criterion developed by Li and Wang (1998, Theorem 3.1) in the
special case when n = 3.

Lemma A (Lemma 3, McCluskey and van den Driessche 2004) Let A be a 3 × 3
matrix with real entries. If tr(A), det(A), and det(A[2]) are all negative, then all of
the eigenvalues of A have negative real part.

Proof of Theorem 3.4 At any chronic-infection equilibrium P̂ = (x̂, û, ŷ), the Jaco-
bian matrix is

J (P̂ ) =
⎡
⎣ −βŷ − μ1 0 −βx̂

(σβ − εr
k

)ŷ − εr
k

ŷ − τ − μ2 σβx̂ + εr(1 − x̂+û
k

)

0 τ −μ3

⎤
⎦ ,

and the second additive compound matrix of J is

J [2](P̂ )

=
⎡
⎣−βŷ − μ1 − εr

k
ŷ − τ − μ2 σβx̂ + εr(1 − x̂+û

k
) βx̂

τ −βŷ − μ1 − μ3 0
0 (σβ − εr

k
)ŷ − εr

k
ŷ − τ − μ2 − μ3

⎤
⎦ .

From the equilibrium equations (6)–(8), we observe that

σβx̂ + εr

(
1 − x̂ + û

k

)
= μ3

τ
(τ + μ2)

and

ŷ = kτ

εrμ3

[(
σβ − εr

k

)
x̂ + εr − μ3

τ
(τ + μ2)

]
.

We first compute

tr
(
J (P̂ )

) = −βŷ − μ1 − εr

k
ŷ − τ − μ2 − μ3 < 0,

and

det
(
J [2](P̂ )

)

= det

⎡
⎣−βŷ − μ1 − εr

k
ŷ − τ − μ2

μ3
τ

(τ + μ2) βx̂

τ −βŷ − μ1 − μ3 0
0 (σβ − εr

k
)ŷ − εr

k
ŷ − τ − μ2 − μ3

⎤
⎦
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= −
(

βŷ + μ1 + εr

k
ŷ + τ + μ2

)
(βŷ + μ1 + μ3)

(
εr

k
ŷ + τ + μ1 + μ3

)

+ μ3(τ + μ2)

(
εr

k
ŷ + τ + μ1 + μ3

)
+ βτ

(
σβ − εr

k

)
x̂ŷ

= −
(

βŷ + μ1 + εr

k
ŷ

)
(βŷ + μ1 + μ3)

(
εr

k
ŷ + τ + μ1 + μ3

)

− (τ + μ2)(βŷ + μ1)

(
εr

k
ŷ + τ + μ1 + μ3

)
+ βτ

(
σβ − εr

k

)
x̂ŷ

< 0.

Lastly, we consider the determinant of J (P̂ ). We compute

det(J (P̂ )) = det

⎡
⎣ −βŷ − μ1 0 −βx̂

(σβ − εr
k

)ŷ − εr
k

ŷ − τ − μ2
μ3
τ

(τ + μ2)

0 τ −μ3

⎤
⎦

= ŷ

[
−εrβμ3

k
ŷ − εrμ1μ3

k
− βτ

(
σβ − εr

k

)
x̂

]
,

= εrμ3

k
ŷ

[
−μ1 − kβτ

εrμ3

[
2

(
σβ − εr

k

)
x̂ + εr − μ3

τ
(τ + μ2)

]]

= εrμ3

k
ŷ
[
f ′

1(x̂) − f ′
2(x̂)

]
{

< 0 if f ′
1(x̂) − f ′

2(x̂) < 0, i.e. when x̂ = x1 or x̄,

> 0 if f ′
1(x̂) − f ′

2(x̂) > 0, i.e. when x̂ = x2.

We see that det(J (P̂ )) changes sign depending on the sign of f ′
1(x̂) − f ′

2(x̂) and
thus may be used to distinguish the stability properties in the case when two distinct
chronic-infection equilibria exist. When R0 > R0(σ0), the chronic-infection equilib-
rium P1 exists in Γ̊ and det(J (P1)) < 0. Hence, the conditions of Lemma A hold
and we may conclude that P1 is locally asymptotically stable whenever it exists.
When R0(σ0) < R0 < 1, a second chronic-infection equilibrium P2 is also found
in Γ̊ but, as det(J (P2)) > 0, P2 is unstable. In this case, it can be shown that
dimWs

loc(P2) = 2. �

Proof of Theorem 4.3 Assume that (A4) holds. Let p(t) = (x(t), u(t), y(t)) be a non-
constant periodic solution of model (1) with least period ω > 0 and let γ = {p(t) :
0 ≤ t < ω} be its orbit. Consider the 3 × 3 non-constant invertible matrix

A = A
(
x(t), u(t), y(t)

) =
⎡
⎢⎣

1 0 0
0 u(t)

y(t)
0

0 0 1
σ

u(t)
y(t)

⎤
⎥⎦ .
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Compute B = Af A−1 + AJ [2]A−1, where Af = (DA) · f or equivalently, Af de-
notes the matrix obtained by replacing each entry in A with its directional derivative
in the direction of the vector field f for model (1). Write B as a block matrix

B =
[
B11 B12

B21 B22

]
,

where

B11 = −βy − μ1 − εr

k
y − τ − μ2,

B12 = [[
σβx + εr

(
1 − x+u

k

)] y
u

σβ
xy
u

]
, B21 =

[
τ u

y

0

]
,

B22 =
⎡
⎣

u′
u

− y′
y

− βy − μ1 − μ3 0

1
σ
(σβ − εr

k
)y u′

u
− y′

y
− εr

k
y − τ − μ2 − μ3

⎤
⎦ .

Let | · |1 denote the standard �1-norm on Euclidean space and select the vector norm

| · | on R
3 ∼= R(3

2) defined by
∣∣(v,w)

∣∣ := max
{|v|1, |w|1

}
, for (v,w) ∈ R × R

2.

The Lozinskiı̆ measure μ(B) (Coppel 1965; Li and Muldowney 1996) associated to
| · | may be estimated by

μ(B) ≤ sup{g1, g2},
where

g1 = μ1(B11) + |B12| = u′

u
− βy − μ1 − εr

k
y ≤ u′

u
− μ1,

and

g2 = |B21| + μ1(B22) = u′

u
+ max

{
−μ1 − 1

σ

(
2σβ − εr

k

)
y,−εr

k
y − τ − μ2

}

≤ u′

u
+ max{−μ1,−τ − μ2}.

Hence,

μ(B) = μ
(
Af A−1 + AJ [2]A−1) ≤ u′

u
− b̄, where b̄ = min{μ1, τ + μ2} > 0.

Next, integrate μ(B) over one period ω to obtain
∫ ω

0
μ(B)ds ≤

∫ ω

0

(
u′(s)
u(s)

− b̄

)
ds = logu(s)|ωs=0 − b̄s|ωs=0 = −b̄ω

< 0 for all t > 0.
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Thus, the second compound matrix J [2](p(t)) is asymptotically stable. It follows
from Theorem A that the non-constant periodic orbit p(t) is orbitally asymptotically
stable with asymptotic phase. Since model (1) is cooperative in Γ by Proposition 4.1,
any closed orbits must be non-attracting (Hirsch 1982, Theorem 2.1, or Smith 1995,
Theorem 2.2). This contradiction precludes the existence of periodic trajectories in
the feasible region Γ . �

Proof of Theorem 4.4 We need to show that the ω-limit set of any trajectory in Γ̊

consists of a single equilibrium. Since model (1) is cooperative, there are only two
possibilities for the structure of its ω-limit sets. In particular, for a trajectory starting
from y0 ∈ Γ̊ , either (i) ω(y0) contains an equilibrium, or (ii) ω(y0) is a non-attracting
periodic orbit. Due to the non-existence of closed orbits in Γ proved in Theorem 4.3,
it follows that every compact ω-limit set must contain an equilibrium.

If P0 ∈ ω(y0), then ω(y0) = {P0} since P0 is locally asymptotically stable. Simi-
larly, P1 ∈ ω(y0) implies ω(y0) = {P1}.

Suppose that P2 ∈ ω(y0) and ω(y0) �= {P2}. Then, by Lemma 2.1 of Butler and
Waltman (1986), ω(y0) contains points on the unstable manifold Wu(P2) of P2.
Since Wu(P2) is 1-dimensional, it must be a hetero-clinic orbit connecting P2 with P0

or P1 (Smith 1998, Theorem 2.8). Since Wu(P2) and ω(y0) are invariant and ω(y0)

is compact, Wu(P2) ⊂ ω(y0), and thus ω(y0) contains either P0 or P1, contradicting
the asymptotic stability of P0 or P1. Therefore, ω(y0) = {P2}. �
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