
700 IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 4, DECEMBER 2010

Health Condition Prediction of Gears Using a
Recurrent Neural Network Approach

Zhigang Tian and Ming J. Zuo, Senior Member, IEEE

Abstract—The development of accurate health condition predic-
tion approaches has been a key research topic in condition based
maintenance (CBM) in recent years. However, current health
condition prediction approaches are not accurate enough, which
has become the bottleneck for achieving the full power of CBM.
Neural network based methods have been considered to be a very
promising category of methods for equipment health condition
prediction. In this paper, we propose a neural network prediction
model called extended recurrent neural network (ERNN). An
ERNN based approach is developed for health condition pre-
diction of gearboxes based on the vibration data collected from
a gearbox experimental system. The results demonstrate the
capability of the ERNN based approach for producing satisfactory
health condition prediction results. A comparative study based
on the gearbox experiment data further establishes ERNN as an
effective recurrent neural network model for equipment health
condition prediction.

Index Terms—Gearbox, health condition, prediction, recurrent
neural network.

ACRONYMS

CBM Condition based maintenance

FCRNN Fully connected recurrent neural network

ERNN Extended recurrent neural network

NMSE Normalized mean squared error

NOTATION

The function to fit the ERNN training data set

The scale parameter in

The shape parameter in

A constant to scale the function value in

The number of data points considered
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The actual value at time

The estimated value with neural networks at time

The number of neurons in FCRNN

The number of hidden neurons in ERNN

I. INTRODUCTION

C ONDITION BASED MAINTENANCE (CBM) is an ad-
vanced maintenance strategy to achieve the reliable, cost-

effective operation of engineering systems. CBM is based on
the understanding that a piece of equipment goes through mul-
tiple degraded states before it fails. These degraded states, or
health conditions, can be monitored and predicted, and optimal
maintenance actions can be scheduled for improving reliability
while minimizing total operation costs [1], [2]. In this work, we
focus on gears, which are critical components in aircraft sys-
tems, manufacturing systems, etc. The development of accurate
health condition prediction approaches has been a key research
topic in CBM in recent years [3]–[5]. However, current health
condition prediction approaches are not accurate enough, which
has become the bottleneck for achieving the full power of CBM.

One category of equipment health condition prediction
methods are based on damage propagation physics [6]. How-
ever, damage propagation processes are typically very complex,
and accurate physical models are difficult to build for many
components and systems, which limits the application of this
category of methods. Neural network based methods, which
belong to data-driven methods, have been considered to be
very promising for health condition prediction due to the
adaptability, nonlinearity, and arbitrary function approximation
ability of neural networks. Neural network methods do not
assume the mathematical model of the damage propagation,
but aim at modeling the degradation processes based on the
collected condition monitoring data using neural networks, and
perform health condition prediction. Huang et al. predicted
the health condition of ball bearings using self-organizing
maps, and back propagation neural networks methods based on
vibration signals [7]. Lee et al. proposed to extract an overall
health indicator based on the collected condition data, and
predict future health indicator values using the autoregressive
moving average (ARMA) method, and Elman neural networks
[8]. Gebraeel et al. developed feedforward neural networks
based methods for predicting the remaining useful life of ball
bearings [9]. Tse and Atherton compared the prediction per-
formance of various prediction approaches based on vibration
signals from several industrial machines, and concluded that
the Jordan network was superior to both statistical approaches
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Fig. 1. The structure of ERNN.

and feedforward neural networks in one-step-ahead time series
prediction [10].

For the purpose of time series prediction, a neural network
can be considered to be a general nonlinear mapping between a
subset of the past time series and the future time series values.
The neural network models that have been used for prediction
include feedforward neural networks, the Jordan network, the
Elman network, and the fully connected recurrent neural net-
work (FCRNN) [11]. The last three types of neural networks fall
into the category of recurrent neural networks. Studies show that
neural network approaches perform better than statistical au-
toregressive moving average (ARMA) methods, and recurrent
neural networks are better than feedforward neural networks in
time series prediction [12]. Thus, in this study, we focus on re-
current neural network prediction models. Part of this paper was
published in the proceedings of the Sixth International Confer-
ence on Reliability, Maintainability & Safety [13].

II. THE EXTENDED RECURRENT NEURAL NETWORK MODEL

In this section, we propose the ERNN model, a new recur-
rent neural network prediction mode. The structure of the pro-
posed ERNN is shown in Fig. 1. ERNN has two context layers,
called the Elman context layer, and the Jordan context layer, re-
spectively. The Elman context layer is the same as the context
layer in the Elman network. In the Jordan context layer, there
are two neurons with self-feedbacks: one neuron obtains inputs
from the actual output of the network after a delay of one time
unit, and from itself; while the other neuron obtains inputs from
the output error of the network after a delay of one time unit,
and from itself. For the purpose of predicting time series, ERNN
has only one neuron in the output layer. We use 2 neurons in the
input layer because it has been reported that every data point in
a time series is only strongly dependent on the immediate past
two values. The linear activation function, i.e. transform func-
tion, is used in the output layer, the Jordan context layer, and the
Elman context layer. The sigmoid activation function is used in
the hidden layer.

The activations of the hidden layer, , is given by

(1)

where is the sigmoid activation function. is the input
vector plus an additional column with all the elements equal to
1, is the activation vector of the Jordan context layer, and

is the activation vector of the Elman context layer. is
the trainable weights from the input layer to the hidden layer,

is the weights from the Jordan context layer to the hidden
layer, and is the weights from the Elman context layer to
the hidden layer. The activation of the output layer is

(2)

where is the linear activation function, and the bias in the
output layer is incorporated into . The activations of the
Jordan and Elman context layers are

and (3)

(4)

where denotes the activation vector of the Jordan context
layer at time point , and are the output value and
the output error respectively of the network at time point ,
and denotes the self-feedback connection weight in the Jordan
context layer which is a fixed value between 0 and 1.

Theoretically, the original Elman network with feedback con-
nections from the hidden layer to the context layer is capable
of representing an arbitrary dynamic system, while the original
Jordan network does not have this capability. Moreover, the con-
text layer in the Elman network can store information for future
references. Therefore, the incorporation of the Elman context
layer in the proposed ERNN is expected to enhance its ability
to model nonlinear, dynamic systems such as nonlinear time se-
ries.
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Fig. 2. The gearbox experimental system.

When the ERNN is used for predicting a certain time series,
say series , it should be trained with

as inputs, and as the desired output. In
other words, the current desired output is one of the inputs at
the next time point. Therefore, feeding the current actual output
of the network back to the Jordan context layer, and then pre-
senting it as an additional input to the hidden layer, is helpful
for the network to learn the time series. This is why the Jordan
context neuron that receives the actual output of the network is
meaningful. The self-feedbacks of the Jordan context neurons
will improve the dynamic property of the proposed ERNN, and
make it more stable. In addition, these self-feedbacks enable the
Jordan context layer to store information not only of the current
output, and the current output error at the current time point,
but also of the output, and the output error values at many pre-
ceding time points. This feature will further enhance the pro-
posed ERNN’s ability to learn temporal sequences.

The ARMA model has been widely used for time series pre-
diction. The ARMA model uses both the time series values,
and the prediction errors at the previous time points as inputs
to predict the value at the next time point. In such a model, the
prediction errors at previous time points influence the predicted
value at the next time point. We have incorporated this idea used
in ARMA into the proposed ERNN network. A Jordan context
neuron is used to feed the output error back to the hidden layer.
The proposed ERNN is expected to perform better than models
without such a context neuron.

Based on the discussions above, it can be seen that the ar-
chitecture of the proposed ERNN is designed to be suitable for
time series prediction. We expect that the proposed ERNN will
perform better than other neural network models for prediction
of time series.

According to the structure of the proposed ERNN model, pre-
sented in Fig. 1, there are two neurons in the Jordan context
layer, and the number of the neurons in the Elman context layer
is equal to that in the hidden layer. Thus, we can control the
number of neurons in the hidden layer, and thus the number
of neurons in the Elman context layer, to fit different problems

properly. The general rule is, when the problem is large with
a large number of data points, we need to use more neurons
in the hidden layer. Meanwhile, we should try to minimize the
number of hidden neurons to achieve good generalization ca-
pability. ERNN can be trained using the exact gradient based
training algorithm [11]. The details of the training algorithm are
omitted here.

III. THE GEARBOX EXPERIMENTAL SYSTEM, AND DATA

PROCESSING

An approach based on the ERNN model is used to predict
the health condition of the gearbox in the gearbox experimental
system at the Reliability Research Lab of the University of Al-
berta, Canada [14].

A. The Gearbox Experimental System, and the Collected
Vibration Data

The setup of the gearbox experimental system is shown in
Fig. 2, along with some system parameters [14]. The speed of
the motor is 2400 rpm; that is, the motor frequency is 40 HZ. The
load applied to the gearbox is 40 Nm. An accelerated run-to-
failure test of the gearbox was conducted. The vibration data
was collected, and then re-sampled so that the interval between
two neighboring points is 8 minutes. The total duration of the
data set used in this study is 18.8 hours with 141 vibration data
points. At the end of the 18.8 hours, a failure occurred. The
gearbox was opened after the failure, and it was found that gears
5 and 6 were damaged with broken teeth, and out of meshing.

The root mean square (RMS) value is relatively flat before
data point 110, and then it starts to increase, suggesting a degra-
dation process of the gearbox. We are interested in predicting
the future health condition of the gearbox, particularly when the
gearbox starts to deteriorate, using an ERNN based approach.
So we only use part of the vibration data, data points 90 to 141,
for training ERNN for health condition prediction. The RMS
plot with only these data points is shown in Fig. 3. We use data
points 90 to 135, represented by “o” in Fig. 3, to train ERNN.
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Fig. 3. The RMS data points 90 to 141.

Data points 136 to 141, represented by “ ”, are used to test the
prediction performance of the ERNN based approach.

B. Processing the Vibration Data With a Weibull Failure Rate
Function Based Approach

From the RMS data set shown in Fig. 3, the vibration level
starts to increase at approximately data point 110, which cor-
responds to 14.6 hours from the start of the continuous exper-
iment. The understanding is that the vibration level increases
as the gearbox deteriorates. However, the RMS curve fluctuates
roughly between data points 117 and 131, which is likely due
to environment noise or intervention. This will affect the pre-
diction performance if we directly feed this data set to ERNN.
Thus, we decided to fit the training set, data points 90 to 135,
and use the fitted data points to replace the fluctuating segment
of the data set, so as to remove the negative effect of the fluctu-
ation on the prediction performance.

The vibration level, as shown in Fig. 3, roughly indicates the
health condition of the gearbox. Meanwhile, in reliability engi-
neering, it is the failure rate that indicates the health condition
of a piece of equipment. The Weibull distribution is the most
powerful, flexible lifetime distribution, and it is flexible enough
to model the “wear out” portion of a piece of equipment’s life.
Thus, we propose to use a function based on the Weibull failure
rate function to fit the training data set. The function used takes
the form [19]

(5)

We use this function to fit the training data set; and the fitted
data, along with the original data, are shown in Fig. 4. The orig-
inal data set is represented by “ ”, and the fitted data set is repre-
sented by “ ”. We replace data points 117 to 131 in the original
data set with the corresponding portion in the fitted data set. The
resulting training set is shown in Fig. 5, which shows a gener-
ally steady increase of the vibration level with the deterioration
of the gearbox.

Fig. 4. The original and fitted RMS data sets: (�) the original data set; the
fitted data set.

Fig. 5. The training data set for ERNN.

IV. GEARBOX HEALTH CONDITION PREDICTION USING THE

ERNN BASED APPROACH

In this section, we use the gearbox dataset obtained from the
previous section to investigate the performance of the ERNN
based approach in predicting the gearbox health condition, and
perform a comparative study between the ERNN and FCRNN
based methods.

A. Gearbox Health Condition Prediction Results Using the
ERNN Based Approach

Using the training data set with data points from 90 to 135, as
shown in Fig. 5, we train the ERNN model. Based on the size of
the problem, we use 2 hidden neurons, and 1 output neuron in
the ERNN model. The one-step-ahead prediction performance
is investigated. That is, first we train the ERNN model using
data points 90 to 135, and use the trained ERNN model to pre-
dict the vibration RMS value for data point 136, then compare
it with the actual RMS value for this point. Then we use actual
data points 90 to 136 to train the ERNN model, use the trained
ERNN model to predict the vibration RMS value for data point
137, and compare it with the actual RMS value for this point.
Similarly, we perform one-step-ahead prediction for data points
138, 139, 140, and 141. The training and prediction processes
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TABLE I
PREDICTION RESULTS FOR THE GEARBOX EXPERIMENT DATA

Fig. 6. The prediction results: (�) the actual data points; ( ) the predicted data
points.

are conducted 10 times to obtain the average prediction perfor-
mance using the ERNN model.

We use the normalized mean squared error (NMSE) to com-
pare the performances of different methods. The NMSE is given
as

(6)

where is the mean of . The NMSE is
not affected by the data set size. The average training NMSE is
0.0012, and the average prediction NMSE is 0.1183. The predic-
tion results are shown in Fig. 6, where the “ ” points represent
the real data, and the “ ” points represent the average prediction
values.

We might as well use another index to measure the prediction
performance, given as

Average normalized error (7)

where is the number of data points investigated for the
one-step-ahead prediction, which equals 6 in this problem.
The average normalized error in the gearbox condition pre-
diction is 0.0488, or 4.88%. In another words, in the gearbox
run-to-failure experiment, using the ERNN based approach to
predict the vibration level at the next time point, i.e. 8 minutes

from the current time point, the average normalized prediction
error is 4.88%, which is satisfactory. Here, we used the data
from an accelerated failure experiment with a total duration
of 18.8 hours. If we project it out to a practical gearbox under
heavy load condition with a life expectancy of, say, 1 year, the
duration between two data points will be approximately 2.6
days, and the maintenance staff will have time to act on health
condition prediction results.

B. Comparative Study Between the ERNN and FCRNN Based
Methods

To ensure a fair comparison, we use two input neurons, and
one output neuron in ERNN; and use two external inputs, and
one output in FCRNN. We want to keep the numbers of the train-
able parameters, or trainable weights, of ERNN and FCRNN as
close as possible, so that the differences in their prediction per-
formances are only a result of the differences in their model ar-
chitectures. For the ERNN model used in Section IV-A with 2
hidden neurons, the number of the trainable parameters is 19.
Thus, to compare with this ERNN model, we use 3 neurons in
the FCRNN model, which has 18 trainable parameters.

Based on the gearbox experiment data, we follow the same
procedure as that in Section IV-A to perform one-step-ahead
prediction using FCRNN. The average prediction is 0.3238,
and the average normalized error is 7.01%. The one-step-ahead
prediction results with ERNN and FCRNN are summarized in
Table I, where represents the number of hidden neurons in
ERNN, and represents the number of neurons in FCRNN.
From the results, we can see that both ERNN and FCRNN can
produce reasonably good gearbox health condition prediction
results. Secondly, according to both the NMSE measure values,
and the average normalized error measure values, ERNN with
2 hidden neurons performs better than FCRNN with 3 neurons,
while they have a close number of trainable parameters (19
versus 18).

We also compare another pair of ERNN and FCRNN models:
an ERNN model with 1 hidden neuron, and a FCRNN model
with 2 neurons, which both have 10 trainable parameters, and
the results are also listed in Table I. The ERNN model again
demonstrates better prediction performance than the FCRNN
model. From Table I, comparing to the ERNN model with 2
hidden neurons, the ERNN model with 1 hidden neuron pro-
duces worse NMSE results, but better average normalized error
result. We have also investigated ERNN models with other num-
bers of hidden neurons, and found that these two ERNN models
actually give the best results. We have also investigated other
FCRNN models with different numbers of neurons, and found
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that the FCRNN model with 3 neurons produces the best predic-
tion results. To summarize, the results in this section suggest that
both ERNN and FCRNN models can produce reasonably good
gearbox health condition prediction results. For two ERNN and
FCRNN models with similar numbers of trainable parameters,
the ERNN model produces better prediction results.

V. CONCLUSIONS

Neural networks based methods have been considered to be
very promising for equipment health condition prediction. In
this paper, we propose a recurrent neural network prediction
model called ERNN. The ERNN based approach is developed
for the health condition prediction of gearboxes based on the
vibration data collected from a gearbox experimental system.
The results demonstrate the capability of the ERNN based ap-
proach for producing satisfactory health condition prediction re-
sults. The comparative study based on the gearbox experiment
data further demonstrates ERNN as an effective neural network
model for health condition prediction.
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