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Abstract— Haptic-enabled teleoperated robots can help chil-
dren with physical disabilities to reach toys by applying
haptic guidance towards their toys, thus compensating for their
limitations in reaching and manipulating objects. In this article
we preliminarily tested a learning from demonstration (LfD)
approach, where a robotic system learnt the surface that best
approximated to all motion trajectories demonstrated by the
participants while playing a whack-a-mole game. The end-goal
of the system is for therapists or parents to demonstrate to
it how to play a game, and then be used by children with
physical disabilities. In this study, four adults without disabil-
ities participated, to identify aspects that will be necessary
to improve before conducting trials with children. During the
demonstration phase, participants played the game in normal
teleoperation, assuming the role of the therapist/parent. Then,
the surface was modeled using a neural network. Participants
played the game without and with the haptic guidance. The
movements of the robotic system were mirrored to induce errors
in movements, and thus require the guidance. Participants spent
more time, moved the robot longer distances, and had jerkier
movements when they played the game with the guidance than
without it. Possible reasons were discussed, and several solutions
were proposed to improve the system. The main contribution
of this paper was the learning of a surface instead of learning
a single motion trajectory.

I. INTRODUCTION
Play contributes greatly to child development, especially

for the development of sensory, motor, cognitive, communi-
cation and social skills [1]. Play is, in essence exploratory,
meaning that play activities involve movement, manipulation,
and interaction with the environment [2]. However, children
with physical disabilities may not have the physical capabil-
ities to do so.

Children with physical disabilities, such as those resulting
from cerebral palsy, experience limitations in play because of
difficulties in reaching and handling objects, abilities that are
required for manual tasks in everyday life or for playing [3].
Manipulative exploration of the environment is as important
as visual exploration, since the physical interaction can pro-
vide additional information about the objects that cannot be
sensed visually, such as object properties like texture, weight,
rigidity, or temperature [4]. When the ability of children with
physical disabilities to play is affected, the direction of play
is often led by others, thus, children with physical disabilities
may miss opportunities to learn by playing [5].
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Haptic-enabled robots can allow users to have the sense
of touch. They can allow children to sense the mechanical
characteristics of objects they interact with using the robot.
Becerra et al. [6] tested a haptic-enabled teleoperated robotic
system for sensing size, roughness, hardness, and shape of
objects. Children were able to identify the characteristic of
the object without looking at the objects.

Haptic-enabled robots can also apply haptic guidance for
helping people with disabilities do manual tasks [7]. Haptic
guidance has been employed to help children with cerebral
palsy to improve Chinese handwriting [8]. Children wrote
Chinese characters on a computer screen using a pen-like
robot to follow the templates given as guidelines. If the
child’s handwriting was off the template, force feedback
was provided to pull the child’s hand towards and along
the trajectory of the character. Haptic guidance has been
beneficial for maneuvering an electric powered wheelchair
[9], [10]. Children control the speed and direction of the
wheelchair with force-feedback joystick, and the joystick
exerts forces to direct the wheelchair in the correct direction
if the wheelchair goes off the predefined path or if it goes
in the direction of an obstacle within the activity/task.

Haptic guidance can contribute to better performance in
a task, although, it may not necessarily be in accordance to
the movement intentions of the users, thus, it may oppose to
how users want to move [7], [11].

One of the issues with the aforementioned approaches
is that the haptic guidance model (e.g., trajectory or path)
is manually programmed. The problem is that robotic sys-
tems like those may not perform other tasks, e.g., write
English characters, unless the haptic guidance models are
reprogrammed. In the context of robots for play, the end-
goal of most robotic systems is to have them at children’s
home so that children can play on a daily basis. However,
it is likely that most parents will not have the necessary
programming skills.

Robots can be trained to do tasks from demonstrations
performed by humans. Robot learning from demonstration
(LfD) is the field of study that explores how robots can
learn from examples provided by a human that acts as a
teacher [12]. For example, a helicopter was trained to fly
autonomously by demonstrations from an expert pilot [13].
The robot learned the ideal trajectory from the demonstration
by the pilot. Similarly, a robotic arm was trained to play mini
golf from demonstrations by a golfer [14].

Learning low-level motion trajectories is a common strat-
egy for teaching robots to do specific tasks [12], [15],
and applied in rehabilitation robotics. People with upper
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limb amputations could teach their prosthesis how to move
by showing desired movement trajectories with their non-
amputated limb [16]. People with physical disabilities, such
as stroke patients, could improve their motor functionality
through repetitive motion trajectories that a therapist can
teach to a haptic-enabled robot [17]. Thus, it follows that
children with physical disabilities could use a haptic-enabled
teleoperation system to reach their toys by applying haptic
guidance along a demonstrated trajectory [18].

In the context of play, it would be necessary to learn all
the motion trajectories to reach each toy in the environment.
One issue with this is how a child could switch the haptic
guidance to different trajectories to reach the different toys.
An additional input (e.g., a button) could work, but it is not
always feasible for a child to be able to control it, physically,
or cognitively. We propose to apply a LfD approach to learn
the surface that approximates the movements necessary to
reach the toys in the environment and apply haptic guidance
along the surface. A therapist or parent could demonstrate
to the robotic system the movements to play a game with
several targets, and then a haptic-enabled robotic system
could support children with physical disabilities to play by
applying haptic guidance.

Neural networks create models that map the inputs to
outputs [19]. A neural network can create a model that ap-
proximates to a target continuous function, which is demon-
strated by a set of examples (inputs). Thus, a neural work
could be used to learn the function that best approximates to
the movements demonstrated by a therapist or parent while
playing a game.

The objective of this article is to test the concept of
surface modelling as a LfD approach to support play in
children with physical disabilities. A neural network was
used to model the surface of the movements performed by
adults without physical disabilities while playing a whack-
a-mole game using a haptic telerobotic system. At this
stage, the haptic telerobotic system was tested by adults
without disabilities to ensure the system is safe to use for
children, and to identify feasibility of this LfD approach and
possible improvements necessary before conducting trials
with children with physical disabilities.

II. METHODS
A. Study design

A cross-over experimental design was performed for test-
ing the robotic system. Participants played the game without
and with haptic guidance. Half of the participants started
playing with guidance and the other half without guidance,
and then they switched conditions. This way participants
served as their own control.

B. Participants
Four adult university students without physical or cogni-

tive disabilities participated in this study. The participants’
age ranged from 23 to 44 years old (Mean=30.5, SD=9.6).
Participants Ethical approval was obtained from the Health
Research Ethics Board at the University of Alberta.

Fig. 1. Setup of the robotic system and the game.

C. Materials

1) Robotic system: The telerobotic haptic system included
one Phantom Premium 1.5A and one Touch haptic robot (3D
Systems, Inc., Rock Hill, SC, USA). The Phantom Premium
was placed in the environment (slave side) where it interacted
with the game. The other haptic robot was placed in the user
side (master side), for participants to control. The robots were
programmed in bilateral teleoperation mode using a PID
controller based on position. The robots were programmed in
Simulink R2017a Matlab/Simulink and used the Quarc V2.2
library (Quanser Inc., Markham, ON, Canada) on a Windows
PC.

A whack-A-Mole Arcade Game by Fischer-Price was
adapted to light up and turn off the lights of the five moles,
and sense the pressing of the moles with switches, using an
Arduino Leonardo microcontroller. The Arduino was in serial
communication with the Robots’ PC, sending the information
about the moles that were pressed, in this way the data
could be analyzed mole by mole. Fig. 1 shows the main
components and setup of the robotic system and the game.

2) Surface modelling using a Neural Network: A neural
network was trained to create a model of the 3D surface
that best approximates to the movements demonstrated by
the participants. A feed-forward neural network was used to
learn the height (position in the Z-axis) with respect to the
X and Y position of the environment-side robot. The neural
network created a model as:

Ẑ = f(X,Y ) (1)

where Ẑ is the output of the neural network. Fig. 3
illustrates the structure of the network implemented that
created such a model. The structure was 2-9-1. The network



Fig. 2. Structure of the feed-forward neural network. Two input nodes,
one hidden layer with nine hidden nodes, and a single output node.

had two inputs only: X and Y positions of the environment-
side robot. The network had one hidden layer with nine
hidden nodes. The number of hidden nodes was selected by
visually exploring the surfaces generated having from 1 to
10 hidden nodes. Finally, the output layer had only one node,
the approximate Z position of the environment-side robot.

3) Haptic guidance: Haptic guidance was applied towards
the predicted height (Ẑ) by the neural network. A simple
artificial potential field was implemented towards X, Y, Ẑ,
where X and Y were the coordinates of current position
of the environment-side robot. Fig. 3 illustrates the haptic
guidance along a surface. Forces were applied in the Z-axis
(i.e., upwards or downwards) of the user-side robot as:

FZ = K(Ẑ � Z) = 100(Ẑ � Z) (2)

The force was proportional to the difference between the
true z-position and the predicted. K was set to 100 N/m.

D. Procedure
In this study, participants came to one session that lasted

approximately half hour. Participants played the game three
times using their non-dominant hand. In the demonstration
phase they played the game in normal teleoperation. In the
testing phase they played the game under two teleoperation
conditions: mirrored teleoperation without guidance, and
mirrored teleoperation with guidance. Normal teleoperation
refers to the user-side and environment-side robots following
each other’s position. Mirrored teleoperation, in this study,
refers to mirroring the Y- and Z-axes, thus when the user-
side robot was moved upwards and towards the right, the
environment-side robot moved downwards and towards the
left. Mirroring of the teleoperation was done so the partic-
ipants might move in the wrong direction, and thus need
to use the haptic guidance to move in the correct direction.

Fig. 3. Illustration of the haptic guidance.

Without mirroring, the participants, who did not have motor
impairments, may not have engaged the guidance feature.

Participants played the game under each condition until
whacking 60 moles in total. The moles were randomly lit
up in sets of three, after whacking those three, another three
moles were lit up.

All participants started playing the game under normal
teleoperation, the demonstration phase. Then, participants
waited between five and ten minutes until the neural network
was trained using the data they had demonstrated. In this
case, the participants themselves demonstrated to the system
how to play the game, but if the user was a child with
physical disabilities, a therapist or parent could perform this
demonstration.

After the neural network was trained, participants played
the game under the conditions of mirrored teleoperation
with and without haptic guidance. Two participants started
playing with guidance and two participants without guidance,
and then switched conditions. Participants waited about five
minutes before switching conditions.

E. Data collection and analysis

While each participant played the game in the normal
teleoperation condition during demonstration, the X, Y, and
Z position of the environment-side robot was collected, at a
sampling frequency of 200Hz. A dataset for each participant
was composed, consisting of 60 episodes (i.e., the interval
that participants took to whack each mole). The datasets
were divided into training, test and validations sets, with
80%, 10%, and 10% of the data, respectively. The neural
network was trained using the Levenberg-Manquardt back-
propagation algorithm, and using mean squared error (MSE)
as the performance, or cost, function. To avoid overfitting,
training stopped when 100 epochs were reached, a minimum
performance gradient of 5e-6 was reached, or the MSE
reached 0.0001m2. The performance of the neural networks
was measured using the MSE.



From all three teleoperation conditions the environment-
side robot’s position was recorded. Fourteen out of 720
episodes were excluded because of a malfunction with the
game, i.e., a switch got stuck sometimes. From the included
episodes the average time the user took to whack each mole,
the distance travelled, and the jerkiness of the movements,
were measured. The measure of jerkiness can reflect how
the participants’ movements were affected by mirroring the
teleoperation and how the haptic guidance supported the
participants to complete the activity. Jerkiness was measured
by using the Dimensionless Jerk formula:

LDLJ = �log
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where v is the velocity at which the environment-side
robot was moving. LDLJ is a valid measure for measuring
smoothness of movements [20]. The lower the value of LDLJ
the jerkier the movements.

Linear mixed-effects models were used to statistically
compare the results between conditions. The results of time,
distance, and jerkiness of each participant in each tele-
operation condition were compared. The significance level
of the statistical tests was 0.05. At the end of the study,
participants were asked which condition was the easiest and
the hardest for playing the game, and why. Their responses
were recorded into the research notes.

III. RESULTS

The performance in terms of MSE of the neural net-
works that were trained for each participant were: 0.000189,
0.000203, 0.000151, and 0.000265m2. Fig. 4A illustrates a
few randomly chosen motion trajectories demonstrated by a
participant while he was playing in the normal teleoperation
condition, and Fig. 4B illustrates the surface that was cre-
ated by the neural network that obtained the highest MSE
(2.0368e-04m2).

Table I lists the means and standard deviations for time,
distance, and jerkiness (LDLJ), for each participant when
they played under the conditions of normal teleoperation,
mirrored teleoperation without guidance, and mirrored tele-
operation with guidance. Additionally, it lists the p-values
of the linear mixed-effects model for comparisons between
normal teleoperation and mirrored teleoperation without
guidance, and mirrored teleoperation without guidance and
mirrored teleoperation with guidance.

After participants played the game under the three tele-
operation conditions, all of them reported that the easiest
condition in which to play the game was when the system
was in normal teleoperation, and the hardest was mirrored
teleoperation with guidance. They commented that the sur-
face created by the neural network had a shape that was not
aligned with their movements. Also, they commented that
the moles were harder to whack when the system had the
guidance on.

Fig. 4. Surface created by a neural network. A. Movements demonstrated
by a participant while playing in normal teleoperation. B. The surface
created by a neural network from the movements demonstrated in A.

IV. DISCUSSION

Neural networks can be employed to model the surface in
which the robot moves as seen in Fig. 4. A therapist or a
parent could demonstrate the movements the robot should
do to complete an activity. In this study, the participants
assumed that role by demonstrating to the system how they,
themselves, would play the game when the system was in
the normal teleoperation condition.

Visual examination of the movements of each participant
during demonstration revealed that there was a high vari-
ability in the movements performed by the participants. In
this study, each participant demonstrated the movements to
whack 60 moles, but perhaps fewer movement demonstra-
tions are necessary and could result in smoother surfaces.
The neural network was trained to minimize the MSE, thus,
in some sense, the neural network learnt the average height
(position in the Z-axis) with respect to the X and Y positions
demonstrated and tried to generalize to the X and Y positions
that were not demonstrated. Some surfaces had steep slopes,
perhaps due to overfitting. A possible solution is to regularize
(i.e., controlling the complexity of the surface models created



TABLE I
COMPARISON BETWEEN NORMAL TELEOPERATION AND MIRRORED TELEOPERATION WITHOUT GUIDANCE

Normal teleoperation
Mirrored teleoperation

without guidance
Mirrored teleoperation

with guidance

p-value
Normal vs. Mirrored

without guidance

p-value
Mirrored without vs.

with guidance
Time (s) 1.132± 0.661 2.806± 2.404 3.903± 3.793 0.000 0.000

Distance (m) 0.221± 0.106 0.353± 0.275 0.459± 0.367 0.000 0.000
Jerkiness �9.165± 0.935 �10.188± 1.349 �10.729± 1.374 0.000 0.000

by using a penalty factor in the optimization algorithm) the
training of the neural network, this way overfitting could be
diminished. Also, a different cost function could be created,
for instance, a cost function that takes into account the
slope of the surface, in addition to the MSE. Additionally,
the surface modelling could be improved if the therapist or
parent makes movements over the entire play area. In this
activity, there were empty spaces where the participants did
not move the robot, as seen in Fig. 4A.

All participants commented that the haptic guidance ap-
plied along the surface was not aligned with their move-
ments. A possible reason that explains the misalignment
with the participants’ movements is that the neural network
was trained with ambiguous data. The neural networks were
trained with movements that overlapped each other but had
different targets. For example, trajectories were generated
when the participants moved from the left-bottom mole
to the mole in the middle, and when they moved from
the left-bottom mole to the right-upper mole. The neural
network learnt and modeled the surface as mixture of both
movements, thus, making it difficult to attain the motion
trajectories that could reach both moles with low error. For
activities like this whack-a-mole game, it will be necessary
to create different surface models that guide the user to each
mole and activate the surface that guides the user from the
current mole to the target mole.

Mirroring the axes of the teleoperation certainly increased
the difficulty for completing the activity. According to Table
I, when the system was in mirrored teleoperation without
guidance, participants spent significantly more time, moved
the robot longer distances, and had jerkier movements to
whack each mole than when they played in normal tele-
operation. Mirroring the axes of the teleoperation caused
participants to move involuntarily in the wrong directions and
not efficiently. To some extent, mirroring of the axes simu-
lated the movements that a person with physical disabilities
might perform, especially if he/she experiences involuntary
movements.

Haptic guidance did not help the participants to complete
the activity. According to Table I, participants spent signif-
icantly more time, moved the robot longer distances, and
their movements were jerkier when they played the game
in the mirrored teleoperation with guidance condition than
the without guidance condition. One reason was that the
surface model created by the neural network was above
the moles, even at the X and Y positions of the moles,
and when participants wanted to push straight down on the

moles, the haptic guidance along the surface was against
those movements. Therefore, participants had to push harder
to overcome the force of the haptic guidance and be able to
whack the moles. In this study, the K force constant was set
to 100N/m, if the constant had been increased it to higher
value, participants may not have been able to whack the
moles. A possible solution is to switch the type of haptic
guidance when the environment-side robot’s end-effector is
close to a mole, so that the users can push straight down
easier.

The haptic guidance applied along the surface created by
the neural network should have helped the participants to
not have to think about controlling the robot in the Z-axis.
Thus, participants should have been able to devote most of
the cognitive effort to control the robot in the two remaining
degrees of freedom, the X and Y axes. This feature could be
beneficial for children with physical disabilities. However, to
accomplish this it will be necessary to improve the surface
modelling so that the haptic guidance is aligned with the
users’ movements.

There were limitations in this study. There were only
four participants, however, the large number of episodes
(number of moles whacked) allowed statistical analysis. Only
adults without physical impairments tested the system, and
not children with physical disabilities, who are the target
population. However, the findings of this study were helpful
to identify the possible improvements that are necessary
before doing trials with children. In addition, there was a
washout period of about five minutes between the conditions
of mirrored teleoperation without and with guidance, but
results could have been different with a longer washout
period, although, counterbalancing was implemented to help
control for learning effects.

This work showed that modelling of a surface is possible,
but future research is needed. We will improve the surface
modelling by implementing the suggestions above: regular-
izing the learning, creating a new cost function, or training
the neural network with movement examples that cover the
entire play area. Additionally, it will be necessary to train the
neural network with data that it is not ambiguous or perhaps
create multiple surface models. Haptic guidance will be also
implemented to help participants push straight down on the
moles. Other tasks can be trialed to identify which activities
are best for this LfD approach and which could be more
useful for children with physical disabilities. The guidance
along a surface will be compared to other guidance methods
such as guidance on single motion trajectories, artificial



potential fields, and forbidden region virtual fixtures. Finally,
we will test the system with children with and without
physical disabilities after the improvements are done.

V. CONCLUSIONS

This study has introduced a learning from demonstration
approach based on surface modelling. A neural network was
used to model a surface that represented the movements
that adults performed while playing whack-a-mole using
a haptic telerobotic system. The main contribution of this
approach was the fact that it is possible to learn, not just a
single motion trajectory as commonly done in LfD, but the
surface that best represents multiple motion trajectories. This
approach could benefit children with physical disabilities,
since it could help children to play and reach their toys or
objects since they only have to worry about moving the robot
in the X and Y directions, and the surface will aid them
in the Z direction. However, the surface modelling needs
some improvements before conducting trials with children,
so that it can better match the movements demonstrated by
the therapist or parent.
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