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Abstract— Powered prosthetic arms with numerous control-
lable degrees of freedom (DOFs) can be challenging to operate.
A common control method for powered prosthetic arms, and
other human-machine interfaces, involves switching through a
static list of DOFs. However, switching between controllable
functions often entails significant time and cognitive effort on
the part of the user when performing tasks. One way to decrease
the number of switching interactions required of a user is to
shift greater autonomy to the prosthetic device, thereby sharing
the burden of control between the human and the machine. Our
previous work with adaptive switching showed that it is possible
to reduce the number of user-initiated switches in a given task
by continually optimizing and changing the order in which
DOFs are presented to the user during switching. In this paper,
we combine adaptive switching with a new machine learning
control method, termed autonomous switching, to further de-
crease the number of manual switching interactions required
of a user. Autonomous switching uses predictions, learned in
real time through the use of general value functions, to switch
automatically between DOFs for the user. We collected results
from a subject performing a simple manipulation task with a
myoelectric robot arm. As a first contribution of this paper, we
describe our autonomous switching approach and demonstrate
that it is able to both learn and subsequently unlearn to
switch autonomously during ongoing use, a key requirement
for maintaining human-centered shared control. As a second
contribution, we show that autonomous switching decreases
the time spent switching and number of user-initiated switches
compared to conventional control. As a final contribution, we
show that the addition of feedback to the user can significantly
improve the performance of autonomous switching. This work
promises to help improve other domains involving human-
machine interaction—in particular, assistive or rehabilitative
devices that require switching between different modes of
operation such as exoskeletons and powered orthotics.

I. INTRODUCTION

New devices used in human-machine interaction are de-
signed with elegant, efficient parts that allow them to be
multi-purpose—they perform a broad range of functions to
accomplish their users’ many goals. In particular, modern
myoelectric artificial arms (arms that can be actuated via
electromyography, or EMG signals [1]) are highly versa-
tile. The most recent generation of commercial myoelectric
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arms are capable of upwards of 20 different grip patterns
(hand positions) and joint motions. Despite their increasingly
diverse set of functions, these arms are often considered
by persons with amputations to be challenging to operate,
largely because of the non-intuitive solutions in place to
control so many different available motions [1]–[3]. A com-
mon type of control interface is called switched, or gated
control. Using this control method, arm functions (which we
define as either grip patterns or individual joint motions) are
presented to the user as a optimized list with an order that
never changes. The individual can then switch through this
static list using a mechanical toggle, muscle co-contraction,
a force-sensitive resistor, or other similar methods, until they
select their desired function; the selected function can then
be controlled using normal muscle contractions [1], [4]–[6].
A consequence of using this type of control is that amputees
can select and control only one function at a time, which
makes the use of the switched control interface cognitively
demanding and time intensive [1], [2]. As a result, the
number of controllable functions on a prosthetic arm is often
deliberately reduced to only a few clinically selected options
that are customized to the anticipated needs of the user.

We propose to instead preserve a user’s access to the
diverse functions of a myoelectric arm by reducing both
the complexity of their switching choices and the frequency
of required switches or other manual interactions. One
way to decrease the number and complexity of switching
interactions is to shift greater autonomy to the prosthetic
device, thereby sharing the burden of control between the
human and the machine [7]. Autonomy in both switched
and non-switched myoelectric control settings is a topic of
current interest, with a number of compelling approaches
ranging from enhanced pattern recognition to unsupervised
control adaptation, autonomous grasp pre-shaping, and in-
telligent object targeting (as reviewed by Castellini et al.
[7]). Specifically with regard to switched myoelectric control
interfaces, previous work done in our research group has
demonstrated that reinforcement learning (RL) techniques
can be successfully applied to increase the decision making
capacity and autonomy of prosthetic control solutions [8]–
[10]. Our demonstrations have leveraged real-time nexting, a
computational approach so-named because it allows a system
to build up and maintain predictions about what will happen
next (c.f., Modayil et al. [11] and White [12]).

Through the use of nexting, and specifically an RL tech-
nique called general value functions (GVFs, [12], [13]),
we previously developed a novel switching control method
for myoelectric arms called adaptive switching [14]; this
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approach was validated in pilot studies with both amputee
and non-amputee participants [9], [14]. Adaptive switching
reorders a list of arm joints for the user on the basis of
their predicted likelihood of being used in a given situation.
For example, if joint A’s predicted movement is greater than
the prediction of movement for joint B, joint A will be
presented first to the myoelectric arm user when they next
initiate a switch to an alternate joint. This reordering is a
dynamic process that occurs continuously and in real time
as long as the arm is in use. Adaptive switching was shown
to improve the control time and number of switches required
to do a complex task with a robotic arm, as compared
with switching using the conventional static list of functions
(which we here denote non-adaptive switching) [14]. When
using adaptive switching, subjects performing the task had
to switch fewer times to select their desired function, and
experienced myoelectric control users required significantly
less time to complete the task.

A. Motivation and Contributions of the Present Work

Although adaptive switching has the effect of reducing
the number of interactions (switches) required of a user,
for any given task there remains a minimum number of
switches that a user must perform. This is because each
time a user wishes to control a different joint—even with
a joint list built out of perfect prediction accuracy—he or
she is required to switch at least once. As a consequence,
greater attention and time is needed for switching between
control channels of the arm that otherwise could be spent on
accomplishing the task. We expect further reductions in task
time and effort could be gained by removing altogether the
need to perform manual switching interactions in common
or highly consistent situations.

In this paper, we therefore introduce a novel control
method, termed autonomous switching, that works in parallel
with adaptive switching to further reduce the number of
explicit switching interactions required of a prosthetic user.
Autonomous switching automatically switches between the
joints of a myoelectric arm on the basis of the predicted
likelihood that the user will switch to a different joint than
the one that is currently selected. Like adaptive switching,
autonomous switching uses GVFs to build up and maintain
predictions about signals relating a user’s control intentions
and behaviour. Our autonomous switching algorithm is de-
signed in such a way that a myoelectric arm is able to
learn to switch autonomously, and subsequently unlearn the
behaviour should the user’s intent or needs change. Ensuring
the user has the ability to correct the arm’s behaviour
through unlearning is important for daily life, in which the
environment and the task are constantly shifting. Further,
we expect that providing cues or feedback to the user about
forthcoming automatic actions of the control system will help
streamline the use of autonomous switching. Feedback, in the
form of tactile cuing, is therefore an important element of
our algorithm’s practical implementation.

In the remainder of this article, we describe our algorithm
for autonomous switching and present results from two ex-

periments that show the practical learning and unlearning of
autonomous switching behaviour during myoelectric control
by an able-bodied subject. The first experiment demonstrates
how autonomous switching can be both learned and then
unlearned when a user’s intent has changed. In the second
experiment, we compare autonomous switching with previ-
ously tested control methods, and demonstrate the effect that
tactile cuing has on a user’s performance.

II. METHODS
A. Experimental Setup

The robotic arm used in the experiments described in
this paper is called the Bento Arm: a custom-designed
myoelectric arm with the proportions of a human arm (Fig.
1) [15]. The Bento Arm has five degrees of freedom, or
functions, which a user can switch between and which
can be moved like individual joints: shoulder, elbow, wrist
rotation, wrist flexion, and gripper (i.e., hand open/close).
Every time a switch is made, an audible cue alerts the
subject to which joint was selected. Control by the user was
effected so as to closely replicate one of the most challenging
clinical control cases: a single control channel with a single
momentary trigger (e.g., a button, or pulsed myoelectric co-
contraction [6]) to switch the one channel of control between
the multiple functions of a device. In Experiment 1, the
arm was controlled with an Xbox 360 controller. A button
on the right of the controller was programmed to switch
between joints, and the left thumb joystick was used to
move the arm bidirectionally. In Experiment 2, the arm was
controlled using EMG electrodes. One pair of surface EMG
electrodes was attached over a subject’s wrist flexor muscles
and another pair over the wrist extensor muscles (both sets on
the same side). These electrodes provided the control signals
for moving a selected joint back and forth. A separate pair of
electrodes were attached over the opposite wrist extensors,
which provided the signal for switching between the joints
of the arm. EMG signals were acquired using an 8-channel

Fig. 1. The Bento Arm, a custom-designed robot arm, was controlled by
able-bodied subjects in two separate experiments. The Bento Arm has five
joints that can be controlled via EMG signals.



Delsys Bagnoli system. Able-bodied subjects were recruited
and gave informed consent in accordance with the study’s
Human Research Ethics Board approval.

B. Learning Algorithms and General Value Functions

Our approach to reducing switching interactions uses nex-
ting in the form of GVFs to build up predictions about senso-
rimotor signals at various timescales [13]. Like conventional
RL value functions, GVFs represent temporally extended
predictions—they represent the weighted summation of some
observable signal over a window of future experience [11]–
[13]. While conventional value functions approximate the
accumulated reward observed by an RL system, GVFs can
be used to build up predictions about any arbitrary signal of
interest [13]. In this way, GVF predictions may be considered
answers to different types of questions, such as “when will
a myoelectric arm user move the elbow joint?” As noted in
past work, GVFs have proved to be well suited to an ongoing
prosthetic control setting [8]; using standard reinforcement
learning methods, GVFs may be learned from an ongoing
stream of data without labeled training examples and explicit
training periods (in contrast to supervised learning), and
are computationally efficient to both learn and query for
predictions in real time [8].

In precise terms, general value functions are functions
that map a given state S or state approximation (typically a
binary column vector, here denoted x(S)) to the expectation
of a weighted summation of a signal of interest (called a
cumulant, Z, [12]) when starting from state S and thereafter
following a given policy (defined as a way of behaving,
or choosing actions A given S) [11]–[13]. The temporal
weighting of the cumulant is specified by a state-conditional
discounting parameter �(S) 2 [0, 1] [12]. The learned
expectation of the cumulant is represented for each GVF
using a column vector of weights denoted w. Predictions can
then be computed for any given state via the inner product
of the state representation, x(S), and a GVF’s weights, w.

In our experiments with adaptive and autonomous switch-
ing, we framed two distinct questions using GVFs:

1) Which joint, grasp, or function of a robotic arm will a
user want to move next? (For adaptive switching.)

2) At a given moment, is the user going to initiate a
switch to a different joint than the one that is currently
selected? (For autonomous switching.)

These questions were answered by updating GVF weights
using standard RL algorithms: in adaptive switching we used
the temporal-difference learning algorithm, TD(�) [16], and
in autonomous switching we used an off-policy learning
method known as gradient temporal-difference learning,
GTD(�) [17]. An overview of the TD(�) and GTD(�)
algorithms will be presented in the respective sections below.

C. Adaptive Switching

Adaptive switching was implemented as described in
previous work [14] using GVFs and TD(�). We briefly
summarize that implementation here, along with the rele-
vant learning mechanisms, state representation choices, and

experiment-specific parameter settings. As noted in Sec. I,
adaptive switching uses the relative magnitude of predictions
about joint movement to reorder the switching list for the
user according to prediction magnitude, answering on a
moment-by-moment basis the question “which joint will the
user move next?” In order to provide these predictions, five
GVFs were initialized at the start of each experiment—one
for each controllable joint of the robot arm. Each GVF’s
cumulant Z was a binary value indicating whether or not its
respective joint was currently in motion, such that each GVF
learned to predict the movement of a different joint.

TD(�) was used to update the weights of the system’s five
GVFs. In TD learning, a temporal-difference error signal,
denoted �, is calculated in (1) as the difference between the
prediction for the current state and the prediction for the
future—i.e., the cumulant plus the prediction for the next
observed state as discounted by �. According to standard
practice, replacing eligibility traces [16], e, were computed
as in (2), using a trace decay parameter �, to specify
the eligibility of features for weight updates. (For a full
discussion of eligibility traces and their utility, please refer
to Sutton and Barto [16].) The weight vector was then
updated by adding the previous timestep’s weight vector to
the product of �, a scalar step size ↵, and e (3).

�t = Zt+1 + �w>
t x(St+1)� w>

t x(St) (1)

et = min(et�1��+ x(St), 1) (2)

wt+1 = wt + ↵�tet (3)

When used as updates, (1)–(3) represent the steps involved
in learning GVFs that are repeated at each time step. In
adaptive switching trials, the values of � and ↵ were fixed
at 0.99 and 0.0025, respectively, w and e were initialized to 0,
and the discount factor � was set to a constant value of 0.9
(i.e., a exponentially decaying summation of the cumulant
over a horizon of approximately 10 steps into the future).

Learning and control occurred at 20 Hz (hardware de-
termined) on two laptop computers. At each timestep, the
system observed signals from the myoelectric arm. These
signals comprised relevant information about each joint of
the Bento Arm as well as EMG signals from the user
controlling the arm. These signals were used to form the
state space for the leaning system. Tile-coding function
approximation [16] was used as the function x(S). The state
space S 2 IR11 consisted of ten signals relating to the
angular movement of each joint (the position and velocity
of each servo motor) and grip strength information from the
gripper joint (measured in terms of current load). The range
of each observed signal was normalized and divided into
discrete units called tiles (n=6, empirically chosen), with four
overlapping tilings that were randomly offset as per standard
practice [16]. Tile-coding resulted in a sparse binary array
with ⇠1.4B features that was reduced to a more compact
vector of 1M features through the use of hashing.



D. Autonomous Switching

The algorithm for autonomous switching was also based
on the temporal-difference learning of GVFs. Unlike adaptive
switching, wherein the control system’s objective was to
learn what joint a user will select next, in autonomous
switching the control system is trying to learn when a user
will switch between joints. In more precise terms, the control
system aims to learn a computational answer to the following
question: “If the system were to switch autonomously at the
current moment, would the user move the newly selected
joint or manually correct to continue using the previous
joint?” Should the system’s prediction be strong enough that
the user would accept and utilize the new joint, the system
could then autonomously switch for the user. For example,
when the user is reaching for an object on a table, if the
system predicted that the user would readily begin closing
their hand if it switched their control to a grasping actuator,
an autonomous switch would occur. This behaviour—and
the predictions it is based on—can be learned directly by
watching the user perform the task, as in adaptive switching.

However, the when question posed by autonomous switch-
ing cannot be practically learned using the same TD methods
as adaptive switching. In autonomous switching, one GVF
per joint is initialized to predict what would be the outcome
if the system switched for the user at a given moment.
Because this GVF question relates to a switching behaviour
(a policy of switching, not switching, or moving a joint in a
given state) different than the one the user may be currently
be pursuing, GVF learning requires an off-policy algorithm
called gradient temporal-difference learning, or GTD(�) [17].
Off-policy algorithms use information about a policy that is
being followed (the behaviour policy, or how the user is
actually controlling the limb) to learn about a similar but
different policy (the target policy, here defined as “always
switch for the user if not currently switching”).

Computationally implementing the autonomous switching
GVF question posed above, we chose the cumulant Z to be
a binary signal that took a value of 1 for one timestep at
the end of a switching sequence only if the user moved a
different joint than the joint that was active at the start of
switching. For instance, if a user switched from the elbow to
a different joint and moved the selected joint, the cumulant
would momentarily be 1, indicating the user’s intention to
switch to a new joint. Alternatively, if a user initiated a switch
sequence, switching from the elbow and back again to the
elbow, the cumulant would remain 0 at the moment motion
resumed, indicating the intention to continue using the same
joint. Further, to fully specify the predictive question being
asked in autonomous switching, we use a state-conditional
discounting factor �(S) where � = 1 from the beginning
of a switching sequence until the moment a new joint was
selected and moved, and � = 0 otherwise.

This situation-conditional way of designing the GVF ques-
tion for autonomous switching provides a way for users to
correct the switching behaviour of the arm and direct its
learning when there are errors in training, changes to the

environment, or to the user’s intent. As in adaptive switching,
a user’s acceptance of the system’s automatic switching
behaviour provides implicit reinforcement for the system’s
choice to switch. If a system performs an autonomous switch
in a state St at time t, movement by the user of a new
joint following autonomous switching will result in Z = 1
at time t + n, i.e., n steps later at the end of the switching
sequence. Because � = 1 during a switching sequence, the
resulting � will be applied directly to St, modifying w and
strengthening the system’s prediction about switching in the
state where it initiated the autonomous switch. Conversely,
a user switching back to their original joint will result in
Z = 0, decreasing the system’s probability of switching by
lowering its switching predictions for St.

In the GTD(�) algorithm, � is computed as in (1). How-
ever, equations (4) and (5) for updating the eligibility traces
and the weight vector differ from those of the standard
TD(�) algorithm shown above. To compare the similarity
of the behaviour and target policies used in action selection,
an importance sampling ratio, ⇢, is formed by dividing the
target policy, ⇡, by the behaviour policy, µ, according to
⇢t = ⇡(St,At)

µ(St,At)
. In autonomous switching experiments, the

behaviour policy (how the user is switching) matches the
target policy (“always switch if not switching”) only from
the start of a switching sequence until the moment the user
selects and begins moving a new joint, leading to ⇢ = 1
during this time and ⇢ = 0 otherwise. In (4), replacing
eligibility traces are now multiplied by this importance
sampling ratio. To ensure stability during off-policy learning,
GTD(�) also uses a second weight vector h, initialized to
zero, to correct the gradient of the learning update in (5)
[17]. This second weight vector h is updated as in (6), with
� as a step size parameter for the update.

et = min(⇢t(et�1��+ x(St)), 1) (4)

wt+1 = wt + ↵(�tet � �(1� �)x(St+1)e>t ht) (5)

ht+1 = ht + �(�tet � (h>
t x(St))x(St)) (6)

In all autonomous switching experiments, ↵ was set to
0.025, � was set to 0.000025, � was set to 1, and all other
values were initialized as in adaptive switching. To form a
feature vector for the leaning agent we again used tile-coding
function approximation as above, but now with a state S 2
IR13 comprised of the position and velocity of all five joints,
torque on the gripper, and a moving average of the two EMG
channels responsible for joint motion (13 inputs). The total
number of features was ⇠52B and was again reduced to an
x(S) of ⇠1M features (with four active features) via hashing.

Autonomous switches were initiated when switching pre-
dictions exceed a fixed threshold. The threshold for au-
tonomous switching was empirically determined and fixed
for all experiments at 0.3, though in practice this value could
be determined in a state or subject conditional way using
measures of predictive confidence (e.g., Sherstan et al. [19]).



A separate GVF was initialized for each of the five joints of
a switching sequence, with the prediction of the last-moved
joint’s GVF being evaluated against the threshold to trigger
switching. We chose to limit autonomous switching to times
when the arm was not moving and the user had not yet
switched during a switching sequence.

E. Tasks

The task chosen for Experiment 1 to assess unlearning was
a task similar to the simple task used in previous studies [10],
[14]. The subject, who was able-bodied and an experienced
operator of the Bento Arm, controlled the arm with the Xbox
controller. The task was divided into two phases. In the
first phase, the subject was instructed to open and close the
gripper with the shoulder on the far left side of its angular
range, rotate the shoulder to the far right side of its range,
open and close the gripper again, and rotate the shoulder
back to its starting position. Throughout the entire task,
both adaptive switching and autonomous switching were
enabled—thus, the joint list was continually being reordered,
and simultaneously, the arm was learning when to switch
autonomously. The first phase of the task was repeated until
the arm began to switch autonomously at each instance of
a switch. At this point, the task was altered slightly for the
second phase: the gripper was only opened and closed on
the left side of the shoulder’s range. The second phase of
the task was repeated in this way five times.

In Experiment 2, another able-bodied subject was asked to
control the Bento Arm with EMG to perform a task similar
to the first. The subject began the task with the shoulder
joint positioned at the limit of its angular range; opened the
gripper; moved the shoulder to the opposite side; and then
closed the gripper. This motion was repeated for a total of
three minutes. The total number of switches (manual and
automatic) and the total time spent switching were recorded
by a computer connected via USB to the experimental arm.
We also recorded the number of switches and amount of time
in each switching sequence, where switching sequences were
defined as periods of time beginning when a switch occurred
following motion and ending when a same or different joint
was selected and then moved.

The subject performed the three-minute experiment using
four different control methods: using a non-adaptive switch-
ing order (static switching list), using an adaptive switching
order, and using an adaptive switching order combined with
autonomous switching (with and without feedback about up-
coming autonomous switches). Switching feedback consisted
of a light vibration on the subject’s forearm. The frequency
of the vibration feedback was proportional to the magnitude
of the prediction signal for autonomous switching. An LED
also indicated to the user and the experimenter when an
autonomous switch occurred. Our hypothesis was that a user
will be better able to collaborate with an autonomous system
when the system’s intent to switch is made clear to the
user via feedback. Autonomous switching creates a shared
control scheme between the system and the user. For shared
control to be effective, it requires bidirectional communi-

cation: direct communication through a user’s actions and
indirect communication of system knowledge and predictions
through feedback (c.f., Parker et al. [18]).

Prior to beginning the experiments, the subject was given
five minutes to practice controlling the Bento Arm and was
briefed on the nature of each of the control methods. The
subject completed a total of four trials, each consisting of
the four control methods (i.e., 16 x 3min); in each of the
four trials, the subject performed the control methods in a
semi-random order (i.e. the sequence was the same, but the
starting method was randomized).

III. RESULTS
A. Experiment 1

Fig. 2 highlights how switching behaviour was learned
and unlearned during the course of a single task. The results
shown for one full run through the simple task, in which
the subject manipulated the Bento Arm to open the gripper
on one side, close the gripper on the other side, and rotate
the shoulder back and forth. The signal in red represents a
prediction of whether the individual controlling the arm is
going to switch to a different joint. Binary signals, indicating
times during the task in which the individual or the robot
arm switched, are shown in blue. The dotted line indicates
the threshold that predictions in red need to exceed for the
system to switch autonomously.

An alternative view of the same experiment is seen in Fig.
3. Each data point represents the magnitude of the prediction
at specific states in the task. Here we defined state visits as
times in which the arm was in the same unique state: not
moving and within a small fixed range of angular positions
corresponding to where the subject was instructed to switch
between functions. Green points indicate predictions for
when the shoulder actuator reached the rightmost side of
the space, and red points indicate predictions at the leftmost
side of the space. The dotted line represents the threshold
for autonomous switching.

B. Experiment 2

Fig. 4 compares the four control methods in terms of
the time series of switching sequences generated over the
3min testing period for one of the trials, clearly presenting
the onset of autonomous switching in Fig. 4d (results are
representative of the other three trials). Each repetition of
the task required several switching sequences. Depending on
the order of the joints in the list, each switching sequence
could require up to four switches (or more in the case of user
error) to select the desired joint. The results are presented as
the number of switches per switching sequence (left) and
the respective amount of time required for each switching
sequence (right). On the left, the red (dark) bars show the
number of manual switches initiated by the subject, whereas
the pink (shaded) bars are shown for all switches performed
autonomously by the system (autonomous switching).

Fig. 5 shows the average number of switches, the average
time spent switching, and the average number of times the
task was repeated during the 3min of allotted time. In Fig. 5a,



Fig. 2. The Bento Arm learns to switch autonomously during a simple task, then unlearns switching when the task is changed. The signals in red
represent predictions about switching to a different joint; the signals in blue represent binary switch signals; and the dotted line is the threshold above
which autonomous switching will occur.

Fig. 3. The magnitude of the switching predictions at similar states
throughout the task. The green line represents the prediction magnitude
as the Bento Arm’s shoulder reaches the right side of its range; the red line
represents the prediction magnitude as the shoulder reaches the left side.

red bars represent the number of manual switches made by
the individual controlling the arm for each control method.
The height of the pink bars, shown in the ‘Adaptive +
Autonomous’ data sets only, represents the total number
of switches (combined total of manual switches and au-
tonomous switches). Fig. 5b is the average amount of time
during the task that was dedicated to switching. The data in
Fig. 5c represents the average number of times the subject
was able to repeat the task fully in the given time. Times the
individual completed only part of the task were not counted.

IV. DISCUSSION

In this work, our first aim was to demonstrate that it is
possible to both learn and unlearn autonomous switching
behaviours. Our results show that learning and unlearning
of switching behaviour can be effected during ongoing robot
control using GVFs and TD learning. In the left bottom panel
shown in Fig. 2, the arm is learning to switch autonomously
and the predictions do not yet rise above the threshold of 0.3.
The prediction signal exceeds the threshold for autonomous
switching for the first time approximately 70 seconds from
the start of the experiment, at which point the arm begins to
switch autonomously (middle bottom panel). As the second
phase of the task begins, at first the arm continues to switch

(a) Non-Adaptive

(b) Adaptive

(c) Adaptive + Autonomous (No Feedback)

(d) Adaptive + Autonomous (With Feedback)

Fig. 4. An example of switching sequences for each of the control methods
in a simple, three-minute task. The number of switches per switching
sequence are shown in red; autonomous switches are shown in pink; and
the seconds per switching sequence are shown in green.



(a) Mean number of switches for each method.
Red bars represent manual switches by the subject;
pink shading represents autonomous switches.

(b) Mean time spent switching for each method.

(c) Mean task completions for each method.

Fig. 5. Results for an able-bodied subject completing the 3min task with
each of the four control methods, averaged over four semi-randomized trials.

autonomously to the gripper when it reaches the right side of
the space, but the user always switches back to the shoulder
joint, and therefore the prediction signal for that side begins
to decrease (right bottom panel). The user only reinforces
the switch back to shoulder three times before the prediction
signal falls below the threshold for autonomous switching
to occur, and the system has effectively “unlearned” that
autonomous switch. At that point, unless the user switches
again to a different joint on the right side of the space, the
arm will only switch autonomously on the left side.

Fig. 3 clearly demonstrates the relative magnitude of the
predictions compared to each other in similar states. It takes
four visits to the same state for the system to exceed the
threshold and learn to switch autonomously on either side
of the shoulder’s range. For the first seven state visits, the
green and the red lines overlap. This is because the maximal
height of the predictions at the left and the right are identical

in the first phase, since the subject is performing the same
actions on either side. It is only after the seventh consecutive
state visit on both sides that the green line diverges from the
red line, as the second phase begins and unlearning starts to
occur for the state on the right side.

Our second aim in this work was to demonstrate that
autonomous switching can significantly reduce the number
of manual switching interactions required of a user as
compared to previously presented methods. This reduction
can be seen in both Figs. 4 and 5. Fig. 4a, the non-adaptive
case, shows poor performance at the beginning of the task
and little improvement over the course of three minutes.
Throughout the task, the subject must often switch four
times to select a joint. Furthermore, sequences where the
subject must switch multiple times translate into much longer
switching times, typically exceeding four seconds. These
results are also reflected in Fig. 5, in which more switches
are made and greater time is spent on average compared to
the number of times the subject was able to complete the
task.

Unlike the non-adaptive case, in the adaptive experiment
performance can be seen to improve with time (Fig. 4b).
The number of required switches per switching sequence
decreased as a direct result of the adaptive switching list.
After a short period of learning by the system, the subject
typically did not need to switch more than once to select
a joint, and switching sequences often lasted two seconds
or less. We see a marked improvement in Fig. 5 as well,
where a decrease in switches and time resulted in the subject
completing more repetitions of the task. These results are
consistent with the adaptive switching results presented in
our prior work [14].

Figs. 4c and 4d demonstrate the performance of au-
tonomous switching when used in combination with adap-
tive switching. As a key result, autonomous switching with
feedback was found to significantly reduce the number of
manual switches required of the user—our primary measure
of success. In the first case, autonomous switching without
feedback, the subject was observed to make more errors
when switching than when feedback was given to them
about the system’s intent to autonomously switch functions.
These errors often arose out of uncertainty over whether
the system was going to switch autonomously or not. The
amount of time spent on each switching sequence is also
greater than when feedback was given. As a result, the
system only switched autonomously once in the three-minute
time frame. By contrast, when the user received vibration
feedback of increasing intensity as the system’s prediction
rose, autonomous switching dominated the latter part of the
experiment. Overall performance was better than that of
adaptive switching when averaged across the 3min period in
terms of less variability in switching time and significantly
fewer manual switches required of the user. For example,
in Fig. 4d, there were a total of 12 autonomous switches
made and a corresponding decrease in the average time
spent on each switching sequence. We expect that further
improvements in communication between the user and their



device will result in stronger correlations between reduced
switching interactions and saved time.

In this work, we implemented a simple task as a first
demonstration of autonomous switching. The simple task
described allowed us to determine the performance of au-
tonomous switching before scaling up to more complex tasks
such as the box-and-blocks task [20]. In our chosen task,
autonomous switching with feedback successfully decreased
the number of manual switches required while increasing
the number of times the task was completed. However, on
average, the amount of time spent switching was on par with
adaptive switching. Of note, the participant in our second
experiment reported that once the system learned to switch
consistently, feedback was less essential to the task because
he could accurately anticipate when the robot arm would
switch for him. This suggests that with practice a subject will
build up reciprocal predictions about the system’s behaviour,
allowing the subject to spend less time verifying the choices
of the system. We anticipate that autonomous switching will
result in greater time savings and less cognitive demand for
longer, more complex tasks, as both user and machine learn
to share control more effectively (e.g., in situations where
precision is important, or where it is hard for the user to
quickly decide on appropriate actions).

Shared control has potential rewards in human-machine
interaction. However, in practice, autonomy and the way in
which humans use machine autonomy is imperfect. Both
humans and machines make mistakes. For this reason, we
have demonstrated the ability of our approach to not only
learn switching behaviour, but also unlearn autonomy and
revert control to the user. The capacity for both learning
and unlearning important in a board sense, as there are
numerous examples of switching in assistive devices and
devices for rehabilitation. For example, exoskeletons and
powered orthotics can have multiple modes of operation
or gait patterns for different terrains [21], and are strong
candidates for the application of adaptive and autonomous
switching. We believe our approach will transfer well to
other switching-based domains, and that an expanded state
representation will allow a smooth translation to multi-task
settings and more continuous, daily-life environments.

V. CONCLUSIONS

This paper presents the first demonstration of real-time
learning and unlearning of autonomous switching for pros-
thetic control. Our results illustrate how autonomous switch-
ing in combination with adaptive switching and feedback
can reduce the number of manual switches required of
a user while operating a myoelectric arm. This points to
potential savings in more complex tasks and a reduction in a
user’s cognitive load while using a prosthesis. Autonomous
switching adds impact to adaptive switching, and promises
to increase its practical utility in multiple domains. The
next step in this work will be a larger study testing the
performance of autonomous switching on a more complex
task with multiple able-bodied and amputee subjects.
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