
Abstract 
This paper contributes a preliminary report on the 
advantages and disadvantages of incorporating 
simultaneous human control and feedback signals 
in the training of a reinforcement learning robotic 
agent. While robotic human-machine interfaces 
have become increasingly complex in both form 
and function, control remains challenging for users. 
This has resulted in an increasing gap between user 
control approaches and the number of robotic actu-
ators which can be controlled. One way to address 
this gap is to shift autonomy to the robot. Semi-
autonomous actions of the robotic agent can then 
be shaped and refined by human feedback, simpli-
fying user control. Most prior work on human-
agent shaping has incorporated training with feed-
back, or has included indirect control signals. By 
contrast, in this paper we explore how a human can 
provide concurrent feedback signals and real-time 
myoelectric control signals to train a robot’s actor-
critic reinforcement learning control system. Using 
both a physical and a simulated robotic system, we 
compare training performance on a simple move-
ment task when reward is derived from the envi-
ronment, from the human, and from the combina-
tion of the two. Our results indicate that benefit 
may be gained by including human generated feed-
back in learning algorithms for this complex hu-
man-machine interactive domain. 

1 Introduction 
Human-robot interaction is becoming more complex with 
the advancement of actuator and sensor technologies. One 
key example is that of robotic prostheses: artificial limbs 
attached to the body to replace abilities lost through injury 
or illness. Prosthetic limbs that have comparable degrees of 
freedom (DoF) and movement to human limbs have now 
been developed. A principal limitation is the complex con-
trol of such devices [Castellini et al., 2014] by humans. One 
of the main reasons that users reject the use of prosthetic 
devices is the functional limitations of the limb. While state-
of-the-art prosthetic limbs can perform complex functions 

and movements, control of this functionality by humans is 
still limited [Biddiss et al., 2007]. New methods must be 
developed to help humans control complex robotic devices 
that are directly connected to them. Furthermore, such 
methods should incorporate some form of ongoing learning 
so that the device can adapt to the human who is wearing it.  

Myoelectric prostheses are a class of modern robotic 
prosthesis which monitor electrical signals produced by 
muscle tissue in the patient’s residual limb and use these 
signals to control the movement of a multiple-actuator ro-
botic appendage [Parker et al., 2006]. Myoelectric control 
aims to remove functionality barriers for patients, but can be 
a challenge for new amputees; the transition to a powered 
prosthesis often requires extensive training and repeated 
calibration of the limb by clinicians. This difficulty is partly 
due to the user’s inability to provide clear electromyograph-
ic (EMG) control signals, and partly due to control chal-
lenges in interpreting these complex multi-dimensional sig-
nals to guide robotic movements [Castellini et al., 2014].  

Another major limitation in most of the current prosthetic 
control schemes is the lack of adaptation over time. The 
need for adaptation may stem from changes in the patient 
physical and mental states, intents, and/or usage [Sensinger 
et al., 2009]. Changing learned control policies requires 
expert knowledge of a patient’s physiology and prosthetic 
hardware. Most users can not adaptively improve the control 
of their robotic limb independently, outside of the clinic.   

A significant amount of past work has been done to ad-
dress these challenges by incorporating machine learning 
into prosthetic control systems [Castellini et al., 2014, Par-
ker et al., 2006]. Examples include offline, supervised learn-
ing methods of dimensionality reduction [Englehart et al., 
2003, Artemiadis et al., 2010], artificial neural networks, 
and support vector machines [Oskoei and Hu, 2008], as well 
as unsupervised [Sensinger et al., 2009], and semi-
supervised [Nishikawa et al., 2001] techniques. A recent 
review by Castellini et al. provides a good overview of the 
state-of-the-art myoelectric prosthetic control research [Cas-
tellini et al., 2014]. Adaptive, real-time approaches to ad-
dressing challenges in myoelectric control have also been 
proposed and shown to work in simulation, and in prelimi-
nary experiments with able-bodied subjects and subjects 
with amputations [Edwards et al., 2015]. As well, previous 
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work describes how these advances in prosthetic device 
control can be viewed as increasing communicative capital 
between two goal-seeking agents, the prosthetic and the 
human wearing it [Pilarski et al., 2015]. One promising 
adaptive method pairs human training of controllers with 
continuous-action actor-critic reinforcement learning 
(ACRL) [Degris et al., 2012, Pilarski et al., 2011 and 2013]. 
We expand this ACRL approach in the present paper. 

Reinforcement learning (RL) was introduced as a theory 
of how humans and animals learn in response to positive 
and negative stimuli associated with actions towards a goal 
[Thorndike, 1898; Skinner, 1938]. In the early 1980’s Sut-
ton extended this concept to simulated learning agents and 
early work applied RL to difficult control problems [Sutton, 
1984; Barto et al., 1983]. RL is an approach for solving the-
se control problems through interaction between a learning 
system and the environment, and provides a theoretical 
backing of convergence in well defined domains [Sutton 
and Barto, 1998].  

RL methods, and specifically ACRL methods, are well 
suited to the prosthetic control learning task [Pilarski et al. 
2011]. ACRL methods are parameter based, allowing linear, 
incremental computation of variables, which in turn allows 
fast updates even with very large problems. ACRL does not 
store past samples in memory, thus memory requirements 
remain constant through learning, allowing for long term 
learning and deployment on embedded hardware with lim-
ited resources. The methods can use temporally extended 
credit assignment, making it theoretically possible to learn 
quickly with sparse reward signals. When combined with 
function approximation, these methods can scale well to 
continuous-space real-world tasks [Thomas et al., 2009]. 
Finally, ACRL provides an intuitive means for incorpora-
tion of human interaction in the form of scalar, goal-directed 
signals [Pilarski et al. 2011, Knox and Stone, 2015]. 

Similar past work has explored the applicability of incor-
porating ACRL methods in human-robot collaborative 
tasks. Peters and Schaal demonstrated ACRL learning of 
complex movement systems and motor primitives for hu-
manoid robotics [Peters and Schaal, 2008], Izawa et al. 
showed that RL allowed a simulated biological two-joint 
arm to learn a reaching task [Izawa et al., 2004], and Tamei 
and Shibata used a policy-based RL system which used 
EMG from an able bodied subject to control a robotic arm in 
a collaborative lifting task [Tamei and Shibata 2008]. 

Despite the body of past work, ACRL algorithms for the 
myoelectric control of prosthetics is still a largely unex-
plored domain. Most approaches in these problems rely on 
predefined reward signals based on knowledge of the task. 
This limits the ability for a user to adapt a control policy 
online based on a new task or goal. Further, it is not clear 
how well a user can provide both feedback and control sig-
nals, as this simultaneous interaction is not intuitive, and 
may demand a high cognitive burden for the human.  

In this work we first review the necessary background as 
well as ongoing research in the field of incorporating real-
time human-delivered feedback into a learning system. Then 
we explore a means by which the human and robot can col-
laborate interactively through control and feedback signals. 
We show how the human EMG signals define the robotic 
state space, and then explore the differences between using 
a conventional, task defined reward paradigms versus using 
human generated reward signal, and the combination of 
these reward sources. To demonstrate the challenges associ-
ated with simultaneous control of a robotic device and real-
time direct human feedback delivering reward, we briefly 
describe the system configuration and user experience. Ex-
periments in this paper provide new insight into the practi-
cality of simultaneous human control and feedback signals 
in the training of robotic systems with many DoF.  

2 Background 

2.1 Reinforcement Learning 
RL is a learning framework inspired by behaviorists 
[Thorndike, 1898; Skinner, 1938]. It describes how agents 
improve over time by taking actions in an environment with 
a goal of maximizing some reward signal [Sutton and Barto, 
1998]. The control policy is iteratively improved by select-
ing the actions which maximize future reward signals accu-
mulated by the agent. Commonly, RL problems are defined 
by Markov Decision Processes (MDPs) which are defined 
by the tuple: (𝑆, 𝐴, 𝑇, 𝛾, 𝑅). S defines the state, or the current 
observable environmental variables of the agent, A defines 
the actions which the agent can take, T is the transition 
probabilities between the current state s and the next state s’, 
given a specific action a was taken or more formally 
𝑇 𝑠’	 	𝑠, 𝑎 , 𝛾 defines the discount factor, or how much fu-
ture reward is valued by the agent and takes a value between 
[0,1] where 1 values all possible  future reward, and 0 val-
ues no future reward, R is a reward function based on state 
transitions.  

The goal of an RL agent is to determine the correct action 
execution order, or behavior, to maximize the expected sum 
of future discounted reward, or expected return. This behav-
ior is defined as the policy which dictates which action 
should be taken in a given state, or 𝜋 ∶ 𝑆 → 𝐴. RL ap-
proaches may be policy-based, searching the policy space 
directly, or value-based, estimating the value of possible 
actions in each state and then deriving a policy from these 
value estimations [Sutton and Barto, 1998]. The value, or 
quality, of a given state and action is defined by a Q-
function, 𝑄 ∶ 𝑆	𝑥	𝐴 → 𝑅. Temporal difference algorithms, 

Figure 1. Configration with A) results, B) Myo, C) 
Simulation/Learning/Feedback System, and D) Nao.  
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such as Q-learning [Watkins and Dayan, 1992], can approx-
imate this function by iteratively updating an estimate tem-
poral difference error. 

The MDP may define either discrete or continuous state 
and action spaces. In continuous domains, the MDP con-
tains an infinite set of states 𝑠	𝜖	ℝ45 and actions 𝑎	𝜖	ℝ, 
where ns is the number of dimensions of S. In this paper, we 
will denote 𝑠6, 𝑎6, 𝑟6	as the state, action, and reward at time t; 
note that action 𝑎6 may affect the reward accumulated on 
future time steps (𝑟689, 𝑡 > 0) but not the current 𝑟6. 

2.2 The Continuous Actor-Critic Algorithm 
In this paper we will focus on actor-critic algorithms, a sub-
set of policy gradient based algorithms. In these algorithms, 
the control policy 𝜋 𝑎 𝑠  is a function which defines the 
probability with which the system will select an action a in 
a state s. 𝜋 is characterized by a vector of parameters 
𝒘	𝜖	ℝ4,	we assume that for any state-action pair 𝜋 𝑎 𝑠 	is 
differentiable in w. The goal of policy-based methods is to 
find a policy 𝜋 which maximizes expected return. Policy-
based methods update the policy parameter vector w in the 
direction of the gradient of the return with respect to w 
[Williams, 1992]. This gradient can be estimated from sam-
ples of interaction between the learning agent and the envi-
ronment (𝑠6, 𝑎6, 𝑠689, 𝑟689)	[Sutton et al., 1999]. This gradi-
ent estimation technique can have high variance, and thus 
require a large number of samples to converge.  

Actor-critic (AC) methods aim to reduce this variance by 
using two learning systems: an actor and a critic. The actor 
shapes the policy 𝜋 and selects the actions, and the critic 
predicts the expected return while following the policy 𝜋. 
The critic represents the value function of the current policy 
𝜋 in the state s. While this value function is not known, it 
can be estimated using temporal difference learning, this 
estimate is then used to compute the change in the parame-
ter vector, or ∆𝒘. Because S is continuous in the variables 
defining it, a standard function approximation technique 
known as tile coding is often used to transform the state s 
into a high-dimensional binary feature vector 𝑥 𝑠 . This 
discretizes the space, and allows for generalization in the 
learned policies [Sutton and Barto, 1998]. Details in this 
paper are limited to those relevant to the experimental defi-
nition and results. More comprehensive details on ACRL 
algorithms are given by [Sutton and Barto, 1998] and [Pe-
ters and Schaal, 2008].  

2.3 Incorporating Human Feedback 
There are a variety of ways to incorporate human 

knowledge into a learning system, prior to, or during learn-
ing. Learning from demonstration, reward shaping, and in-
verse RL are all areas of active research closely connected 
with the work in this paper, a comprehensive review of 
those methods can be found elsewhere [Thomaz and 
Breazeal, 2008; Chernova and Tomaz 2014].  

Knox and Stone introduced the Interactive Shaping Prob-
lem or how the feedback from the human can be best incor-
porated into the learning agent in a sequential decision mak-
ing process [Knox et al. 2010]. Briefly, it is summarized as 

follows: given an agent is acting in an environment defined 
by an MDP, and a human who is observing the action per-
formance and providing feedback to the agent, how can the 
agent learn the best possible task policy as measured by task 
performance or cumulative human feedback, given the in-
formation contained in the human feedback [Knox and 
Stone, 2009]. Further, Knox and Stone have delineated 
some of the biggest confounding issues in the Shaping Prob-
lem, namely the positive circuits problem and the credit 
assignment problem [Knox and Stone, 2012; Knox and 
Stone, 2015]. Previous work shows one method to address 
the credit assignment problem by using a linear model of 
credit assignment, which allows feedback to be applied to 
past time steps. The history window to which credit can be 
applied can be varied with a meta-parameter [Knox and 
Stone, 2009; Vien and Ertel, 2013]. Vien and Ertel also 
showed that the human feedback model can be generalized 
to address the problems associated with periods of noisy, or 
inconsistent, human feedback [Vien and Ertel, 2013]. Re-
cent advancements in modelling human feedback with a 
Bayesian approach have improved on the work of Knox and 
Stone in discrete environments [Loftin et al., 2015].  

In this paper, we focus on incorporating direct human 
feedback into the MDP. This work is most similar to [Pilar-
ski et al., 2011 and 2013], where ACRL was used in a con-
tinuous robotic task. Those works used a variety of reward 
schemes, some of which depend on some knowledge of the 
problem domain.  While more advanced, task specific re-
ward schemes may help the agent converge faster than con-
stant positive or negative rewards, this knowledge may not 
be available during learning, and/or the task definition may 
change. 

3 Methods 

3.1 Aldebaran Nao and Myo EMG Data  
The experimental set up is shown in Figure 1. It is com-
posed of the Aldebaran Nao robotic platform (Aldebaran 
Robotics), the wireless Myo EMG armband (Thalmic Labs), 
and a Mac Book Air (Apple, 2.2 GHz Intel Core i7, 8GB 
RAM) for human feedback and running the learning agent.  

The Aldebaran Nao was chosen as a cost-effective physi-
cal test platform to experiment with algorithm development. 
Specifically, the upper arms were chosen to mimic some of 
the functionality of high DoF commercial myoelectric pros-
theses. Shown in Figure 1, the Nao has 25 DoF, the arm on 
the Nao has 6 DoF: shoulder pitch and roll, elbow yaw and 
roll, wrist yaw, and hand open/close. While the size of the 
Nao arm is less than that of commercial prosthetic devices, 
it provides a good test-bed for algorithmic development.  

Experimentation took place on the physical device as well 
as on the accompanying simulation software for the Aldeba-
ran Nao. This simulation software shares the dimensions 
and kinematic model of the physical device. On each time 
step, an angular change is sent to the joint which is autono-
mously controlled by the learning algorithm.  



 The EMG signals used in learning were recorded with the 
wireless Myo EMG armband. This mimics conventional 
control of some commercial myoelectric prostheses and the 
Myo has been used to supplement control signals in recent 
work from Johns Hopkins University. EMG data was sam-
pled from all the electrodes, and a single control signal was 
computed by rectifying the signal on all the channels, then 
computing the mean of the forearm flexor muscle sensors 
and subtracting the mean of the forearm extensor muscle 
sensors, the output of this computation was a clean two-
phase EMG-based control signal, 𝑠?@A . These locations 
were selected to maximize the signal strength and to simpli-
fy the control signal. The computed EMG signal was time 
averaged as follows: 𝑠?@A	 𝑡 + 1 = 1 − 𝜏 ∗ 	𝑠?@A 𝑡 +
𝜏 ∗ 	𝑠HIJ 𝑡 ; where 𝑠?@A	 0  = 0, and the time constant 
which defines the past averaging was set to	𝜏 = 0.05. While 
this signal preprocessing is theoretically non-essential in 
finding a successful policy, the dimensionality reduction of 
the state space decreased memory and processing require-
ments and allowed for faster policy convergence. 

3.1 The Learning Algorithm 
The continuous actor-critic algorithm used in this paper is 

a slightly modified version of an ACRL algorithm described 
previously [Pilarski et al. 2011; Pilarski et al., 2013]. The 
algorithm is detailed in Algorithm 1. The actor selects a new 
action a from a normal distribution 𝑁 𝜇, 𝜎P  defined by 
mean 𝜇 = 𝑤RS𝑥(𝑠) and standard deviation 𝜎 =
exp	(𝑤WS	𝑥 𝑠 ). Actions in this work are defined as continu-
ous angular increments or decrements. 𝑤X	and 𝑤W	are pa-
rameter vectors for the mean and standard deviation of the 
actor system. The system selects and executes an action a, 
which transitions the agent into new state s’ and generates a 
reward r, then the critic, which is defined by a parameter 
vector v, computes a TD-error from r, and the current esti-
mates of the value of the old state s and the new state, s’. 
Each learning system (actor and critic) is defined by alpha, 
or scalar step-size parameters. 

A major consideration in the RL framework is how to as-
sign reward to past state-action pairs which may have con-
tributed to the current state, this is known as the credit as-
signment problem. Eligibility traces are a common mecha-

nism to help address this issue. Eligibility traces may be 
either accumulating or replacing, and are defined by traces 
on the states and trace decay rates, 𝜆 [Sutton and Barto, 
1998]. Replacing traces for the critic and accumulating trac-
es for the actor are used to accelerate learning [Pilarski et 
al., 2013]. Often, more than one action is required by the 
agent, in these situations one set of actor parameters may be 
maintained for each action [Pilarski et al., 2011 and 2013, 
Tamei and Shibata 2009]. 

4 Experiments 
This work explores the incorporation of simultaneous con-
trol and direct human feedback into a RL agent running on 
an Aldebaran Nao. The goal of the task was to output joint 
velocity commands to the Nao’s left arm to track a two-
phase, periodic, target angle trajectory, demonstrated with 
the right arm, well within the maximum joint angle range. 

In learning an optimal control policy in a simple motion 
tracking sequence, 4 experimental reward conditions were 
considered: 1) fixed goal-based reward where 𝑟Z[\]^ = 1	if 
the joint is within a deviation threshold, ∆𝜃`I\, of the target 
joint angle, 𝜃6, else 𝑟Z[\]^ = −0.5, 2) relative goal-based 
reward where 𝑟H]aI6[b] = 1	if the joint is within ∆𝜃`I\	of 𝜃6, 
else 𝑟H]aI6[b] = −	|	𝜃 − 	𝜃6|	, 3) strictly human-delivered 
reward where the human could deliver a reward of 𝑟d =
1	𝑜𝑟 − 0.5	by pressing corresponding positive or negative 
keys, and 4) learning from the combination of fixed goal-
based and human reward conditions, 𝑟6f6Ia = 𝑟Z[\]^ + 𝑟d. 

The action space of the learning system consisted of a 
single continuous angular displacement value for the Left 
Elbow Roll of the Aldebaran Nao. This angular displace-
ment value was clipped in the range [-0.05, 0.05] to ensure 
smooth motion and exploration of the state space. As well, 
actions which would take the joint outside of the Nao's al-
lowable range were clipped to their allowable values. Ac-
tions were selected and performed on each time step as 
shown in Algorithm 1. A continuous state space consisting 
of 𝑠 =	< 	 𝜃]H, 𝑠?@A >	was used, where 𝜃]H indicated the left 
elbow roll joint angle, and 𝑠?@A	was the EMG control signal 
computed as described in  Section 3.1. All the components 
in s were normalized to the range [0, 1] according to their 
maximum and minimum possible values prior to use in 
function approximation [Pilarski et al., 2011 and 2013].  

The continuous state space was function approximated 
using tile coding to allow for discretization and generaliza-
tion of the state space [Pilarski et al., 2011 and 2013]. Tile 
coding was used to construct the state approximation vector 
x(s) used in learning. To capture a variety of generalization 
levels, x(s) was a concatenation which combined 𝑁S = 5 
offset tilings of s (which is 2-dimensional), at 3 different 
resolution levels, 𝑁h = 3,5,8 , along with a single active 
baseline unit. This resulted in a single binary feature vector 
consisting of (5 ∗ 	3P) + (5 ∗ 	5P) + (5 ∗ 	8P) + 	1 =
491	features, exactly 𝑚 = 16	 features in x(s) were active at 
a given time, one for each tiling at each resolution and one 
for the active baseline feature. The learning parameters were 
set as follows: 𝛼b	 = 0.01 𝑚, 𝛼X = 0.005 𝑚, 𝛼W	 = 𝛼X, 



𝛾 = 0.9, 𝜆J = 0.3, 𝜆b = 0.7, joint angles were limited by 
manufacturer specifications at 𝜃	 ∈ 	 [0.0349, 1.5446]. 
Weight vectors 𝒆b	, 𝒆X	, 𝒆W	, v, 𝒘X	and 𝒘W	 were initialized 
to 0 and standard deviation was bounded by 𝜎 ≥ 0.01. Pa-
rameters for the experimentation were set as follows: maxi-
mum number of time steps = 40000, frequency of iteration 
was ~33 Hz or , and angular deviation threshold was set to 
∆𝜃`I\ = 0.1, actions were selected and performed on every 
time step. 

The ACRL system was trained online, with EMG control 
signals being read directly from the user. Learning updates 
and action choice occurred at ~33Hz or every ~30 ms. Total 
training time steps were held constant for the experiments. 
Performance was measured by taking the average mean ab-
solute angular error from 1) all the data, 2) the last 10k 
steps, 3) the last 5k steps. This was done to compare the 
experimental results after some learning was completed; this 
helped to reduce the noise intrinsic in early learning. 

With this experimental set up we were able to test our 
four experimental conditions on the physical robot, with live 
EMG fed into the learning system, and we were able to test 
the performance of the learning using a simulated robotic 
agent, and a simulated EMG source. These simulations al-
lowed us to rapidly test the learning over a large number of 
repetitions. Figure 3 shows the comparison between the 
physical and simulated robot and real and simulated EMG. 

For the human EMG experiments the subject (1 healthy 
male, 28 yr.) gave informed consent to participate, and the 
trial was approved by the human research ethics board at the 
University of Alberta. The subject was directed to perform a 
repeated task; they were instructed to follow the movement 
of the robotic arm in reaching and retracting by flexing or 
relaxing their wrist. When the EMG signal was simulated it 
was derived from a noisy estimation of the target signal. As 
previously described by [Pilarski et al., 2011], to provide a 
human training signal (experimental conditions 3 and 4) 
across the fast learning algorithm, the reward signal on each 
time step following delivery was set to a decayed trace of 
the reward of the previous step, or: 𝑟689 = 0.01	𝑟6 + 𝑟d. 
This allowed human delivered feedback, which occurs on 
the second time scale to be smeared across actions occurring 
over the millisecond time scale. 

 5 Results 
Our results demonstrate a potential benefit to be had by in-
troducing human feedback into the robotic learning system. 
The inclusion of human shaping signals was shown to im-
prove performance over strictly environmentally derived 
reward, but increased the level of cognitive attention re-
quired of the user during training.  

Figure 2 shows the results of a single, representative, 40k 
time step learning experiment for combined human and 
fixed-goal based reward. It shows the total accumulated 
reward, the actual target angle and learning system actuated 
angle, as well as the learning agent mean and standard devi-
ation (as calculated in Algorithm (1). On the Actual and 
Follow Angle plot the target angle is light gray, the learning 
agent controlled joint is dark gray and the angular distance 

error threshold is shown dotted around the target angle. The 
agent learns a near optimal policy after ~15k time steps, 
after which it accumulates reward consistently. The agent 
mean and standard deviation plots show multiple phases 
learned by the agent; these are the repeating locations on the 
target trajectory learned as the agent gains certainty in opti-
mal actions to select in each phase.  

Figure 3 compares learning performance on the simula-
tion and physical robotic and EMG configurations. It shows 
the mean angle error (MAE) over varying numbers of times 
steps. MAE is the difference between the target and the 
learning system controlled joint angle, averaged over a) all 
time steps, b) the last 10k time steps and c) the last 5k time 
steps. For several conditions, multiple trials were run, as 
denoted by (n = number of trials) in the legend. In these 
cases, mean and standard deviation over the number of trials 
is reported. In the legend, when Nao or Myo is listed, it im-
plies that this performance was measured on the physical 
robot or Myo system as opposed to simulation. 

Figure 3 shows MAE over all time steps, the last 10k, and 
last 5k time steps for 1) constant reward, 2) relative reward, 
3) strictly human reward, and 4) constant + human reward 
sources. The graph also has comparitive data for physical 
and simulation robotic systems and EMG. When Myo or 
Nao is listed (e.g. C,D,G,H), it implies the physical system 
was used, otherwise, are from a simulation robot and/or 
simulated EMG data. Figure 3 shows a close correlation 
between real and simulated EMG signal experimental condi-
tions, and an important distinction between performance 
when learning on a simulated versus a physical robot. This 
result is to be expected; while the EMG control signal is not 
noisy and is simple to simulate, the difference between a 

Figure 2. Representative results from 40k learning steps with 
human reward combined with fixed-goal based reward. 



simulated versus physical robot is significant. As can be 
seen in Figure 3, the performance of relative error reward is 
superior to constant error reward learning in the simulated 
robotics. This provides an indication that our learning algo-
rithm is utilizing the information contained within the re-
ward signal to refine its policy and action selection. The 
results also indicate that strictly human reward based train-
ing performs the poorest over the given numbers of time 
steps. This is most likely due to the noise inherent in human 
delivered reward, as well as the potential errors in the hu-
man reward decay trace calculation. Figure 3 shows there 
may be benefit to incorporating human feedback into the 
learning system, potentially limited by the richness of the 
environmental reward. The MAE for Constant Reward on 
the simulated Nao with simulated EMG data is greater than 
the value for when human feedback is included. The MAE 
for Constant Reward with Human Feedback on the real Myo 
and Nao falls within the standard deviation of the simulated 
systems. This may be expected; while learning on physical 
robots may hinder, human feedback may improve learning.  

6 Discussion 
This work explores combinations of human and environ-
mental feedback in simulated and physical robotic systems 
with simulated and real EMG control signals. Simulation 
and physical experimentation show agreement, but some 
performance decrease may be expected with physical robot-
ic systems. This performance decrease may be due heat, 
inertia, and/or mechanical jitter. While there are benefits to 
development and testing on a simulated robot, including 
safety, controlled repeatability and batch processing, addi-
tional experimentation on physical robots is necessary to 
support human-feedback derived improvement.  

To speed up learning step size, 𝛾, EMG and human re-
ward decay parameters, and tile coding parameters were 
selected to maximize the reward accumulated on the simu-
lated Myo and Nao. These parameters may not be optimal 
for the physical Nao configuration, and could potentially be 
adapted online in the future [Sherstov and Stone, 2005]. 

The results indicate the poorest learning performance in 
strictly human feedback based learning. There are challeng-
es associated with simultaneously providing control and 
feedback signals. The cognitive burden is demanding, and it 
can be difficult to maintain attention and focus when provid-
ing both inputs. As well, providing clear, consistent feed-
back to the robot is difficult [Chernova and Tomaz 2014]. 
Shifts in concentration, distractions, or confusion on the 
intention of positive and negative feedback can result in 
noisy feedback signals. The research area exploring how to 
model and deliver consistent human feedback is rich with 
methods, such as reward shaping [Brys, 2015], TAMER 
[Knox and Stone, 2009], iSABL [Loftin et al., 2015], and 
Actor-critic and Tile-coding TAMER [Vien and Ertel, 
2013]. These algorithms generalize and model human feed-
back, and claim to extract additional shaping value based on 
predictions of the human proving the feedback. 

The combination of the MDP and human-delivered re-
ward signals may modify the agent’s task definition. If hu-
man feedback is inconsistent, the changing task definition 
may cause instability in the system. Potential-based reward 
shaping may address this and should be explored 
[Harutyunyan et al., 2015]. 

 In this experiment only single joint control was learned; 
it is possible to learn multiple joint policies concurrently. In 
these paradigms, it is often valuable to break down the task 
into regions of solvability to decrease the total time needed 
to learn complex composite behaviors. This scaffold ap-
proach has been shown to decrease convergence times, and 
make interactive human training easier and is a rich area for 
future research [Pilarski et al., 2011, Sanger, 1994].  

The main results reported here is the MAE overall and 
late learning. Additional performance metrics to be explored 
include convergence time, number of human interactions, 
and more qualitative measures including cognitive burden. 

7 Conclusions 
This paper contributes a first set of results on incorporating 
simultaneous human control and feedback signals in the 
training of a semi-autonomous robotic agent. Our results 
demonstrate performance increases by incorporating human-
feedback into existing algorithms, and show that human 
interaction may improve performance in complex robotic 
tasks. This work therefore provides a new viewpoint on the 
human training of a robotic system tightly coupled to a us-
er’s body, and suggests that seamless interaction with com-
plex hardware may demand a shift of autonomy from the 
human to the machine. Future work will explore methods to 
reduce cognitive burden on the human and to model, gener-
alize, and deliver consistent human feedback. 
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