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Exploring the Impact of Machine-Learned Predictions
on Feedback from an Artificial Limb
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Abstract— Learning to get by without an arm or hand can
be very challenging, and existing prostheses do not yet fill the
needs of individuals with amputations. One promising solution
is to improve the feedback from the device to the user. Towards
this end, we present a simple machine learning interface to sup-
plement the control of a robotic limb with feedback to the user
about what the limb will be experiencing in the near future. A
real-time prediction learner was implemented to predict impact-
related electrical load experienced by a robot limbj; the learning
system’s predictions were then communicated to the device’s
user to aid in their interactions with a workspace. We tested this
system with five able-bodied subjects. Each subject manipulated
the robot arm while receiving different forms of vibrotactile
feedback regarding the arm’s contact with its workspace. Our
trials showed that using machine-learned predictions as a basis
for feedback led to a statistically significant improvement in task
performance when compared to purely reactive feedback from
the device. Our study therefore contributes initial evidence that
prediction learning and machine intelligence can benefit not just
control, but also feedback from an artificial limb. We expect that
a greater level of acceptance and ownership can be achieved if
the prosthesis itself takes an active role in transmitting learned
knowledge about its state and its situation of use.

I. INTRODUCTION

The loss of a limb, especially an upper limb, can have
a significant impact on an individual. A person may be
missing a limb from birth, or it could be the result of
illness or injuries sustained over the course of one’s life.
Artificial limbs, also called prosthetic limbs, are often seen
as a means of mitigating the absence of a biological limb.
In all cases, but particularly when a limb is lost later in life,
it can be very difficult to adapt to interacting with the world
through a mechanical or electronic device [1]-[8]. There
are many prostheses on the market that attempt to fill the
needs of individuals with amputations, and many of these
have tremendous potential to restore lost functionality and
independence to the user; however, even the best prostheses
currently available have limitations [1]-[3]. There are two
major areas where current prostheses begin to show the
strain of insufficient technology to properly support them.
The first area is a lack of feedback [3], [4], [7], [8]—
e.g., the sense of touch—and more important to this work,
lack of proprioception when using a prosthesis [2], [7].
The second area is insufficient control [2]-[6]. Under most
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Fig. 1. Wearable robot limb system used in these experiments. The four
degree-of-freedom arm is controlled by a joystick in the user’s hand which
sends signals to an ADC and then to a laptop, which in turn commands the
servos. A vibrotactile feedback sleeve can provide feedback to the user.

current techniques, the person who needs to control the limb
has fewer control channels available to them than their device
has functions [4]-[6]. This leads to some clever, but non-
natural, control solutions such as routing some of the control
channels to alternate locations on the user’s body. A final
challenge which results from the first two is acceptance of
the prosthesis by the user [1]-[3]. Despite the great clinical
potential of many modern prostheses, as a result of the first
two limitations a prosthetic can be perceived by the user as
insufficient or as a reminder of the functionality that they lost
and that the device simply cannot restore [1]-[3]. Lack of
acceptance is especially prominent in the newer myoelectric
(EMG) prostheses, i.e., electrically driven robot limbs, versus
the older mechanical types despite the increased potential
that myoeletric prostheses have in overcoming the other
challenges [2], [5].

Operating a device that interacts with the world is a
learned motor function. As infants, we learn the way our
limbs interact with our environment through general motion
and play [9]-[11]. This develops the control channels and
models required for us to use our bodies to sense and manip-
ulate the world we live in [9]. This interaction involves two
parts [9], [10]. The first is the internal forward copy of the
action—in effect, knowledge that moving specific muscles
will cause a motion which results in the desired sensory
feedback. There is also a reverse copy that is processed at the
same time. The reverse copy starts at the desired interaction
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with the environment and links the required muscle action to
it. In order to skillfully interact with the environment, both
the forward and reverse models must be present [9], [10].

Artificial intelligence offers a promising solution to the
control problems encountered by the users of electromechan-
ical prostheses [12]. Offline machine learning in the form
of pattern recognition is for the first time seeing use in
commercial prostheses, and is considered to be the state-
of-the-art in controlling multiple prosthetic joints [4], [5].
Real-time machine learning has also recently been used to
ease the control burden on a user by learning joint activation
sequences as a limb is being used [13], [14]; as one example,
predictions about a user’s control choices have been learned
so as to minimize the number of switches between joints,
and consequently the time required to perform a task [13].

A lack of feedback is frequently responsible for abandon-
ment of prosthetic devices, especially upper-limb prostheses
[21]. Feedback is an important aspect of control, and how to
provide feedback from upper-limb prostheses to individuals
with amputations is an active area of research [7] [20]. There
are many modalities and means of feedback that are being
explored currently. Some examples are substitution, where
a signal that is not meant to imitate the lost physiological
system is used, and modality matched, where an attempt is
made to imitate the physiological sensations [20]. Providing
feedback in these ways has been shown on subjects without
amputation to improve performance on grasping tasks, as
outlined by Schofield et al. (2014) [20]

The primary contribution of the present work is to suggest
that machine intelligence can be used to enhance not just
control—the focus of most prosthesis-related machine intel-
ligence research to date—but also feedback from a prosthesis.
This feedback was part of a user’s intact biological system,
and contained information used in operation of their natural
limb. In the case of a prosthetic limb, motor awareness and
forecasting are now at least partly encoded in the hardware
of the prosthesis rather than in a user’s biology. Therefore,
we may need to provide assistance to the natural system in
interfacing with its electronic components. We suggest that
machine intelligence can be used to take the internal state
of the assistive device and interpret it in ways the biological
system cannot do naturally; the results of this interpretation
can be communicated to the user in a variety of ways to
improve their control over the device. Thus, using machine
intelligence, we can help create a forward prediction of an
action electrically and communicate it to the user, similar to
the operation of the intact biological system.

This work therefore contributes a preliminary exploration
of the application of machine-learned predictions, expanding
upon the work started by Parker et al. [22]. A simple system
for communicating machine-learned predictions is used to
assist a user in refining their own forward model of motor
actions while using a prosthetic limb analog. Specifically,
temporal-difference learning is used to generate a prediction
about the electrical load the servos of a human controlled
robot arm will experience as they near a potentially danger-
ous collision with objects in the user’s environment. This

prediction is communicated to the user through a vibration
motor. In this way, we emulate the forward predictive model
present in a biological limb’s motor function. We expect
that, similar to the way that the biological operation of
a limb is dependent on its forward copy, the addition of
an electronic/computational equivalent during human-robot
collaboration will yield control improvements over purely
reactive feedback. In this study, the amount of load experi-
enced by a servo over the course of an experimental run when
the user receives this predictive feedback is compared to the
same user receiving the same indication when the servo is
actively experiencing high load (reactive feedback).

II. METHODS
A. Robot and Experimental Platform

The experimental platform used in this work was a
custom-designed robotic arm called the ExArm (Fig.1),
which was wearable by individuals without amputation. The
arm was designed to model the gross motor functionality of
joints in a human arm. It had four controllable actuators:
shoulder, elbow, wrist flexion, and hand open/close (AX-
12/18+ Dynamixel servo motors). Subjects used a 2-axis
thumb joystick (SparkFun) to control the motion of the
ExArm’s joints, and pressing the joystick could change the
active joint. The joystick was connected to an ADC (DI-
149 data acquisition starter kit, DATAQ Instruments), which
digitized the 3.3 V signal modified by the user’s control
of the joystick. The resulting output signal was sent via
USB to a computer, which interpreted the signals and sent
commands to the robot’s servos. The control software only
utilized information from a single axis of the joystick for
motion, as well as the joystick button press to indicate a
joint switch, to emulate EMG control of a prosthetic limb.
The velocity of motion was fixed for all participants in all
trials; speed of arm motion was a constant value.

AX-12/18+ servos used in the design of the ExArm pro-
vided several useful output signals, including their angular
position, angular velocity, motor temperature, voltage, and
load. To communicate feedback about these sensors to the
user, we designed a custom sleeve embedded with four
vibration motors (termed tactors) similar to those used in a
cellphone or pager. With the sleeve donned, one tactor each
was located over the user’s shoulder, elbow, wrist, and hand,
as shown in Figs. 1 and 2. The platform therefore emulated
the capacity for actuation in many commmon prosthetic
devices while adding vibrotactile feedback.

B. Experimental Procedure

Five subjects were asked to participate in experiments
with the ExArm, and gave informed consent in accordance
with the study’s institutional review board approval. Each
user wore the sleeve containing the vibration tactors and
controlled the back-and-forth motion of the robotic arm’s
shoulder joint using the thumb joystick. The other joints of
the arm as well as the joint switching functionality were
not used for this experiment to restrict the motion of the
arm to a single path. The ExArm was affixed to a stationary



Fig. 2. The experimental setup: a confined workspace (red), the robotic arm
(green), and as in Fig. 1, an experimental subject with attached vibrotactile
feedback sleeve (seated to the left of the workspace, not shown).

mannequin as shown in Fig. 2 to ensure each experiment
began with the robotic arm at a constant position and to
mitigate the effect of a user’s trunk movement. Thus, for
this initial work, the position and movement of the user was
unrelated to the outcome of the experiment. The workspace
was a subspace of the shoulder joint’s total range of motion,
bounded by a 27 cm square box that was fastened in place.
Prior to each experiment, the end effector was centered with
respect to the workspace, perpendicular to the rear wall of
the box and equidistant from the left and right walls. Each
subject was asked to perform four separate five-minute tasks,
structured as follows:

1) Training Task: The first task was designed to provide
users with practice controlling the ExArm. For this training
task, the user was asked to move the arm repetitively
from one side of the box to the other using the joystick,
pausing briefly (<1 second) upon reaching the center of
the workspace. At the left and right walls of the box, the
user was tasked with pushing the robotic arm against the
wall until the arm was fully flexed, causing a temporary
increase in the load reported by the servo motor. The user’s
shoulder vibration tactor was programmed to vibrate at a load
threshold of 650 out of a maximum reportable load reading
of 1024. This vibration communicated to the user that the
load had exceeded the maximum threshold considered safe
for the robotic arm, and the arm should be moved away from
the wall. In addition to providing each user with practice
manipulating the arm, this task produced the source data for
prediction learning (described below).

2) No-Feedback Task: Each subject performed the second
task without any knowledge of the position of the arm
within the workspace other than its starting location. In order
to establish a baseline with no visual, auditory, or tactile
feedback, subjects were given a blindfold and listened to
music through earphones throughout the task. The volume of
the music was increased to a comfortable level at which they
could not hear the arm tapping the walls of the box. During

this task, vibratory feedback about load was also turned off.
The instruction given to the user for this task and those that
follow was to avoid excessive load on the servos by not
colliding with the barriers too harshly while approaching the
left and right walls closely in an alternating fashion.

3) Reactive-Feedback Task: The next task was identical
to the no-feedback task; participants were blind-folded and
sound isolated and asked to navigate from wall to wall
without stressing the servos with collisions. For this trial
the participant was provided with reactive vibration feedback
when the current load experienced by the robot arm’s shoul-
der servo reached a threshold of more than 420, determined
experimentally. The maximum value of the load recorded
during the trials was 827.87, which means the threshold
was 50.7% of the maximum experienced. Thus, the tactor
triggered every time the user hit a wall but not during
travel in between. This task provided an indication of the
effectiveness of having reactive tactile feedback only, and
specifically examined how well the user could approach each
wall without incurring a forceful impact when feedback was
delivered at the moment the arm first contacted the wall.

4) Predictive-Feedback Task: For the final task given
to participants, users were again blindfolded and sound-
isolated, and given the same task as the previous two trials.
In this case, they were provided with tactile feedback from
predictions of the electrical load on the robot’s arm servo
motor. Predictions were provided by a real-time machine
learning system trained while the participant was performing
task 1. This prediction learning system is described in the
following section. When the load prediction rose above
900, determined experimentally, the shoulder tactor was
programmed to vibrate. The maximum prediction during the
trial was 3857.5, which means the threshold was 23.3%
of the maximum prediction value. This task was designed
to determine how communicating the learned prediction of
load changed the user’s ability to approach the wall without
incurring a forceful impact.

All load and prediction thresholds used were determined
from the analysis of data prior to experiments. We deter-
mined the noise level of the load signal while traversing
the workspace and set the thresholds so they would not
trigger during travel. The prediction threshold and learning
parameters were also set so as not to signal an impending
high load event too early in travel.

C. Machine Intelligence and Prediction Learning

The main component of this study is an incremental pre-
diction learner to generate expectations about future impact
given learned knowledge about the user’s previous motion
choices, their outcomes, and the current state of the robot
arm. To make predictions about the world, intelligent systems
require sensory inputs. These inputs can then be divided
into discrete states for increased or decreased resolution. The
shoulder joint of the ExArm has a rotation range of 300°. In
our protocol, we used the servo encoders value to determine
the position of the shoulder joint as a sensory input, divided
into 32 distinct states (termed bins). These states were



motion-dependent; as such, each of the 32 states was further
expanded into three: one set of 32 position bins used to
represent the state when the servo is moving clockwise, a
second set to represent the position while the servo is moving
counter-clockwise, and a third set that represent the position
when the servo is not moving. The immediate state of the arm
was noted in a feature vector (denoted x, of length 96) as a
single active bit indicating the current position and direction;
this feature vector also contained a single active baseline unit.
A weight vector of corresponding length, denoted w, was
used to store the learned predictions about the interactions
between the robot arm and the walls of the workspace.

The weight vector w was learned from data using standard
techniques from temporal-difference learning and recent gen-
eralized value function methods, as outlined for the prosthetic
setting in Pilarski et al. [12] and more generally in Modayil et
al. [15]. Weights w were updated on each time step according
to the temporal difference between the instantaneous load
being reported by the servo (denoted 7) and predictions about
the immediate and next load readings (the inner products
wlxy and yw] x4 1, respectively, where v is the timescale
or level of temporal abstraction for the prediction of interest).
The update to the weight vector on each timestep ¢ was done
according to:

T T
W1 = Wy + Tg1 + YWy Ty — Wy Ty) Ty,

where o represents a step-size (learning rate, set to o =
0.1 in these experiments). The temporal abstraction for
predicting the load signal of interest was set to v = 0.92; this
means the prediction learner was acquiring knowledge about
the exponentially discounted expectation of the electrical
load experienced by the robot’s shoulder servo motor over the
next ~12 time steps, or 0.6 seconds; the system learned and
operated within a control cycle of roughly 20 Hz (50 ms time
steps). This knowledge could then be retrieved and used in
predictive feedback by reporting the prediction as the inner
product w] z;. As noted above, in the predictive feedback
task, vibratory feedback to the user was triggered when the
prediction’s value exceeded a fixed threshold, indicating an
impending collision with the walls of the workspace.

Learning was only enabled during the training task, such
that the system acquired and updated user-specific predic-
tions about servo motor load while each subject was perform-
ing their first task. Learning weights were then frozen (i.e.,
o = 0) during all remaining tasks, including the predictive
feedback task. Learning could in principle continue during
all tasks; however, for clear assessment of the principles of
interest, our experimental protocol featured defined training
and testing periods.

ITII. RESULTS

When compared to the case where purely reactive feed-
back was given to the user, giving learned predictive infor-
mation as feedback was found to reduce the load experienced
by the shoulder actuator of the robot limb. One way repeated
measures ANOVA was used to analyze the difference in
load when the feedback system was triggered differently. As
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Fig. 3. Key finding: the use of predictive feedback reduced the load (a
measure of impact intensity) experienced by the system during use. The
load shown is averaged across all five participants and the entire duration
of each trial.

shown in Fig. 3, the average load across all participants (N =
5) for each entire trial was significantly less with predictive
feedback than with reactive feedback. For these comparisons,
Maulchy’s W indicated sphericity could be assumed (0.602).
The uncorrected F statistic was F(2, 8) = 16.385, p = 0.001.
The difference is specifically between the predictive feedback
case and the other two (no feedback to predictive feedback p
= 0.031, reactive feedback to predictive feedback p = 0.038).
No significance was found between the no feedback and
reactive feedback cases.

There was a notable increase in visits to more central
positions when using predictive feedback. Figure 4(a—c)
shows the frequency of visits to each position as seen by
the system (bin). Results shown are the average for each
trail across all five participants, where again a one way
repeated measures ANOVA was used for statistical analysis.
Maulchy’s W indicated sphericity could not be assumed (<
0.050). The Greenhouse-Geisser epsilon was < 0.75 (0.081),
so this correction was used. The corrected F statistic was F(2,
9) = 4.994, which is above the critical value of 4.26, and
significance was detected (p = 0.030). The N = 5 potentially
interferes with some bins being significant, as the variance
is high. Despite this however, significance is noted in bins
15-19. Significance was not found on the extreme end bins,
13 and 22, due to the high variance. When using reactive
feedback, subjects were observed to contact both walls of
the workspace with approximately even frequency as can be
seen in Fig. 4(b), with the robot arm deflecting noticeably
on both sides due to the contact. When predictive feedback
was provided to the user, the robot arm was also observed
to approach the two sides of the workspace symmetrically,
but with much less or no visible deflection to the arm upon
contact. The figures show increased visits in central regions
of the workspace under predictive feedback compared to the
other feedback modes.

The edges of the workspace show less average load for
the predictive feedback case than the other feedback cases
examined here. The relationship between the feedback type,
position, and load can be seen in Fig. 4(d—f). The load is
shown as an average across all 5 participants, using the



visits per bin to average the load in each bin individually. As
with previous analyses, one way repeated measures ANOVA
was used to determine any statistical significance. Again,
Maulchy’s W indicated sphericity could not be assumed
(< 0.050), but the Greenhouse-Geisser epsilon was again
< 0.75 (0.088) so was again used to correct the results.
The Greenhouse-Geisser correction returns an F statistic of
F(2,10) = 6.805 compared to a critical value of 4.10, with
p = 0.010. Examined on a bin by bin basis, significance
was found in bins 13, 20, and 21. Bin 22 was not found
have statistically different results between the feedback types.
The figures show greater load on the extreme ends of travel
for the no feedback and reactive feedback cases. This is the
region where collisions with the barrier of the workspace
would occur. The load that is incurred in this region is
not seen in the predictive feedback case. The visitation
frequencies in Fig. 4(a—c) appear to coincide with the lower
load experienced by the system in the end region.

IV. DISCUSSION

Feedback is an important aspect of skilled control. As
noted above, we defined the control of the robotic device
to be successful and skilled if the load experienced by the
device while moving near the border of the work area is
low—the task objective given to our subjects during testing
was to closely approach but not impact the walls of the
workspace. With different forms of feedback or different
settings, we expected a subject might never get near the wall
(overly sensitive predictions, thresholds, or too much tempo-
ral extension), that they might do so with high variability (as
when operating with minimal feedback), or that they might
impact the wall consistently but forcefully if feedback comes
too late (e.g., with overly delayed or reactive feedback). Our
observations support these expectations.

When the machine-learned predictions about collisions
were used in providing feedback to the user, the user was
able to reduce the overall strain on the system. Figure
3 demonstrates the effect that different types of feedback
had on skilled control of the robotic device. In the no
feedback case, the load experienced by the device was large
and variable (the maximum load that can be reported by
the servos is 1024). The variance improved in the reactive
feedback case, but while the overall load decreased, it was
not enough improvement for a study with N=5 to find
statistical significance. No matter how sensitive the threshold
is to initiate the reactive feedback, the user must still perceive
the feedback and act in an appropriate, timely way; load is
inevitable since it is already occurring. The strain on the
system can potentially be reduced via fast human reaction
time—subject-specific reaction time is one possible source
of the variance in Fig. 3.

The similarity in the means of the no feedback and
reactive feedback cases has interesting implications. It seems
that if we only cared to limit the load experienced by the
system during operation that there is little reason to use
reactive feedback, which would be a typical first solution,
over no feedback. This has major implications as to the

importance of feedback in the operation of prosthetic devices.
The significance of the predictive feedback case is a little
surprising for the small sample size. Increasing the sample
size may begin to differentiate the no feedback and reactive
feedback cases, but that there is significance in the predictive
feedback case with such a small sample size suggests it’s
power. The simple machine learning agent is capable of
learning something that when communicated to the human
user improved their performance according to at least one
outcome measure.

The source of the overall reduced load can be seen in how
participants moved the arm differently using the different
feedback sources. A more detailed indication of the motion
of the device is illustrated in Fig. 4(a—c). In particular, the
figures highlight differences in the feedback modes in the
area of travel between the borders of the workspace (between
bins 14 and 21). Specifically in bins 15 to 18 the bin-by-bin
cumulative visits are shown to be higher for predictive feed-
back than the same measures using reactive or no feedback.
Despite this, all three modes have similar grand means, as
would be expected for the constant fixed velocity motion
the participants used. The higher frequency of visits in the
central region is an indication of successful operation, as it
shows that the device spent a greater portion of the moving
time during the trial transitioning from border to border
rather than impacting the walls, under which condition the
servo can move a small amount while the arm flexes. This
observation is further supported by the differences that can
be seen between the types of feedback at and beyond bins
13 and 21—the borders of the workspace. With predictive
feedback, the user moved into the borders of the workspace
less frequently (Fig. 4c)). The impact this had on the load
can be seen in the bin by bin comparisons of Fig. 4(d—f). As
a result of the system visiting the border cases less frequently
the system experienced significantly less (or no) load in
bins 13 and 21-22 (Fig. 4(c—f)), indicating less time spent
under impact conditions or flexing of the physical device.
The similarities in average load reported by the servo for the
central bins, bins 15 to 18 is expected as these bins are where
the arm would be moving steadily with no perturbations to
cause changes in the load experienced. This also aligns with
the area more frequently visited with predictive feedback.
There is some discontinuity in the load and position values
for bins 20-22 when compared to bins 13 and 14. This may
be the result of the discretization of the encoder positions
not being related to the physical workspace—the difference
in load reported on the left and right sides may be because the
physical workspace barrier fell in between two bins, causing
the load from contact with the wall to divide between two
locations as perceived by the system.

The lack of notable difference between the no feedback
and reactive feedback cases is also seen in Fig. 4. Despite
having no awareness of the robot arm during the no feedback
trail, participants still navigated the full space between the
boundaries of the workspace, although with much greater
variance. For this low sample size, the way participants
moved under the no feedback and reactive feedback cases can
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Fig. 4. Aggregate results for all five subjects showing (a—c) the frequency of visiting any given servo motor positional bin and (d—f) the average load in

each bin as reported by the servo, using the frequency of visits to average.

be seen to be similar. It took the addition of machine-learned
predictions to minimize the load and improve participants
ability to travel inside the workspace. This reinforces the im-
portance good feedback solutions for device users; machine-
learned predictions, we suggest, are one such solution.

A. Tuning, Training, and Adaptability

With predictive feedback and the settings described above,
we qualitatively observed subjects stopping the robot arm’s
motion such that it made only light, unloaded contact with
the wall. This level of contact could be modified by varying
the learning parameters of the artificial intelligence, and
parameters could be adjusted in a number of ways to achieve
a number of outcomes. There is no one ‘“correct” setting
for sensitivity; instead, there are a number of possibilities
for how the device can assist the user in achieving their
objectives. Learning parameters could be tuned to provide
feedback behaviour that duplicates that of the reactive feed-
back case. The converse is not true—reactive feedback is
not capable of providing preemptive feedback about future
events. Also, when using predictive feedback, we observed
that the threshold for indicating an impending load could be
made less sensitive than the equivalent reactive load without
incurring false positives. The reactive threshold was set to
the lowest value that would not be triggered by the normal
noise of motion. As the learned predictions are mathematical
expectations conditioned on servo position, they are not
affected by spurious load variance or noise due to motion,
as would be a purely reactive approach, and allowed us to
set a much lower threshold for triggering feedback in the
predictive case.

For clarity of assessment, the artificial intelligence system
in this preliminary study only acquired and updated its
predictive knowledge during a defined training period. In

any machine learning setting with a fixed training period,
variability in training can noticeably affect learning system
performance, but should not affect fixed or reactive ap-
proaches. Differences to the training of the learning system
or a slight shift in the experimental setup may have resulted
in an earlier feedback prompt to this user in terms of
absolute servo-motor position on one side of the workspace.
Omissions during training or changes to the domain of use
may be corrected or updated through the use of continuing
or ongoing machine learning. This has been suggested in
prior work [12], and is a natural way to robustly extend the
present study. As learning is already done in a per-time-step,
incremental way during training, there are no technical or
algorithmic barriers to continuing the learning of feedback-
related predictions during operational use. Specifically, off
policy algorithms would allow the system to learn in real
time during the trials. The issue with the current learning
approach is that when the system is successful in avoiding
collisions with the workspace, it “forgets” the workspace is
there. Off-policy learning offers a solution to this issue, and
will be tested in a subsequent study. While many offline or
batch prediction learning methods could potentially be used
to generate expectations for use in feedback (e.g., the work
of Pulliam et al. [16]), the continuing and computationally
inexpensive nature of our chosen learning approach makes
it well suited for use in a prosthetic environment [12]. Our
prediction learning approach is suitable for subject-specific,
task-specific learning with no requirement for a priori domain
knowledge; it is also well suited for adapting to ongoing
changes in a task or a user’s behaviour during persistent,
real-time use.



B. Feedback Modalities

As noted above, much work is being done to restore
missing feedback to prosthesis users [7], [8], [20]. Focus has
been placed on restoring touch, including sensations such
as pressure, texture, temperature, and even pain. A large
body of this research has explored feedback using sensory
substitution, wherein one sensation is replaced with another
different sensation that the user must be trained to skillfully
interpret; use of this approach is largely due to the physio-
logical constraints of prosthetic human-machine interaction
[7]. Modality-matched feedback is also receiving growing
attention; in matched feedback, sensations are restored either
invasively or non-invasively to the natural or proxy locations
that convey sensations of the lost or damaged biological
system as closely as possible [7], [8], [20].

Our present study can be thought of as a form of sub-
stitution feedback—predictions about the electrical current
drawn by the device during operation (perhaps thought of
as the device’s “pain” or motor fatigue) are communicated
to the user via a vibratory buzzing sensation in order to
prompt the user to take action to prevent it. This buzzing
is not a natural sensation, and it is not communicated at an
equivalent natural location on the user’s body. What separates
this choice from the usual form of sensory substitution is
that fact that the information being transmitted from the user
to the device is not a biological sensation—it is specific to
the internal hardware of the device and encodes a prediction
about future changes to that hardware. While communicating
these anticipations is helpful to the successful operation of
the device, it is not a natural thing for the user to feel; as
with most substitution feedback, it takes training to interpret
such a sensation (as noted in Hebert et al. [8]). This training
need was perhaps minimized for our participants because of
the precedent in modern society to interpret the vibration of
personal device as a prompt to act (e.g., cellphone vibration
in response to a new text message).

However, our work should not be thought of solely in
terms of sensory substitution. Our study is intended to be
a small window into a larger area for research: the use of
machine intelligence as a method for filtering, selecting, and
communicating salient information about the internal state
of a complex device. This communication can be thought of
as a form of transparency, as used by Thomaz and Breazeal
[17]. Communication of such non-biological knowledge to
the device’s user—e.g., prompts regarding a device’s internal
state, decisions, and anticipatory knowledge—promises to
streamline human-machine interaction in many domains,
and should be equally suited to feedback via both sensory
substitution and modality-matched percepts.

C. Future Work

The results presented in this work are preliminary, and
there is much room for further study in this area. The
incremental learning algorithm used in this experiment was
effective but monolithic. If a control-learning system were
used in conjunction with the present prediction-learning
algorithm, it may be possible for a device to adapt the timing

and magnitude of its feedback to better suit its domain of
use. For instance, the feedback threshold or level of temporal
abstraction v could be tuned on the basis of reward-like
signals of approval or disapproval delivered by the user,
using techniques from related work on the human training
of machine learners [17]-[19]; predictive load information
could be communicated at distances from the collision which
have been learned to be appropriate for a specific user and
their task preferences. Exploration could also be done into
how effective the predictive feedback is when it is learned in
real time while the user is doing the task, rather than freezing
learning during the trials. Further, as artificial intelligence
use in artificial limbs becomes more prevalent, finding ways
of communicating the actions that the system has learned to
the user, rather than solely a predefined environmental signal,
may help allow more control to pass to the prosthetic—the
case of shared control and sliding-scale autonomy. Trans-
parent communication between the operator and their device
could be the keystone which allows an intelligent prosthetic
and a human user to co-operate, combine processing power,
and more effectively restore lost function.

V. CONCLUSIONS

Feedback is important to prosthetic limb control. While
machine intelligence has been used to improve the interpre-
tation of control signals given to a limb from the user, its
use in modulating feedback is often overlooked. This article
contributed a look at the potential value of predictions and
machine learning in feedback to close the loop between a
human and their artificial limb. To our knowledge, this is
the first study investigating the use of real-time prediction
learning in the feedback path of a human controlled robotic
limb, and suggested the potential value of continuing this
line of exploration.

When compared to strictly communicating momentary
electrical load to the user, communicating a machine-learned
forecast of the same load was found to decrease the load
experienced by a robotic limb as a result of impacts with a
workspace, and to increase the ability of our subjects to nav-
igate the limb despite the absence of all other feedback. The
increase in precision in terms of both position and load for
the predictive feedback case over the no feedback case was
dramatic, especially given the low subject pool. Additionally,
the improvement in load minimization over purely reactive
feedback was significant. Though preliminary, these results
promise two related outcomes for the user of a prosthetic
limb. First, we expect that increased communication from
the device about its internal state and setting of use may
allow the user more personalized and more trustworthy
options for control. Over the long term, predictive feedback
could therefore lead to greater acceptance and assimilation
of the device as part of the user. Further, by creating a
computational predictive forward copy of an action and
communicating it to the user, operating an assistive device
may become more precise. These expectations remain to be
verified during the use of predictive feedback in real-life
functional tasks.
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