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ABSTRACT

Image analysis and pattern recognition are key elements of many biomedical analysis schemes. In this work,
we show the use of pattern recognition and classification for the study of an interesting biomedical problem—
the prediction of organelle arrangement within a cell based on wide-angle light scattering patterns. Organelle
distribution is known to relate to disease and drug resistance. However, up until this point it has been unclear
how changes to organelle distribution relate to the composition of wide-angle light scattering patterns. As such,
we use a rapid new scattering simulation method and standard pattern analysis techniques to demonstrate
clear correlations between scattering pattern composition and organelle distribution. The texture of scattering
images—specifically the spot and edge content of samples—is found to directly relate to the type and size of
organelle distributions within a cell. These relationships are used to quickly classify organelle distributions to a
high degree of accuracy.

Keywords: biomedical image analysis, wide-angle light scattering, mitochondria, rapid simulation, medical
diagnostics, organelle distributions, pattern classification, texture analysis, attribute selection, cytometry

1. INTRODUCTION

Image analysis and pattern recognition are key elements of many biomedical analysis schemes.1 In a number
of cases, the decomposition of an experimental image into a set of representative features and attributes allows
biomedical data to be quickly analyzed, classified, and used to supplement clinical diagnostic practices.1,2 One
relevant new domain for this kind of analysis is the prediction of organelle arrangement within a cell from a
sample of its wide-angle light scattering pattern.

Recent work has shown that the distribution and aggregation of organelles within a cell can have great
predictive value.3,4 Changes to organelles and their distribution have been related to the progression of a
number of common disorders, ranging from cancer to neurodegenerative disease,5,6 and can also predict drug
resistance (e.g. a cell’s response to treatments like chemotherapy3,4).

Unfortunately, there are few non-invasive methods to detect changes to the distribution of organelles within
a cell.3 Wide-angle cytometers provide one viable analysis method, as they do not rely on invasive labeling
techniques and are able to capture the wide-angle light scattering from a single live cell.7,8 However, up to this
point it has been unclear whether changes to the distribution of organelles will lead to detectable and consistent
changes to the composition of a cell’s wide-angle scattering pattern. This is primarily a question of pattern
analysis and correlation detection.

A number of groups have demonstrated pattern analysis methods able to identify a link between light scat-
tering patterns and other aspects of cell structure. Methods are available to detect cell size,9–12 organelle
content (cell granularity),12 hemoglobin concentration,9 and optical properties9–11 from a two-angle and/or a
one-dimensional scattering sample. As yet there have been no demonstrated methods that can relate wide-angle
scattering patterns to organelle distribution.

In the present work we demonstrate clear correlations between the arrangement (distribution) of organelles
within a cell and the composition of wide-angle scattering patterns, thus identifying scattering trends that are
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independent of cellular rotation and the inherent randomness of organelle position within a cell. Small changes
to scatterer organization can dramatically alter the resulting pattern, making this a non-trivial problem.13,14

In addition, we have obtained qualitative and quantitative descriptions of the identified scattering trends, and
present an example of their potential for use in automated cell classification.

1.1 Rapid Scattering Simulation

To pursue pattern-based correlation analysis, a comprehensive database of labeled images is typically required.1,2

For the present case, a database would ideally contain scattering patterns from a wide range of different cellular
orientations and organelle distributions. This would make it possible to identify correlations that can determine
organelle distribution independent of specific organelle placement.

An image database with these specifications was previously very difficult or impossible to generate for the
case of cellular light scattering, due to the large computational cost of simulation (e.g. using Finite Difference
Time Domain methods7,13 (FDTD)), the lack of well-labeled testing data, and restrictive simulation models.15

However, we recently demonstrated a computational method—the mtPatterns algorithm—that is capable of
rapidly simulating wide-angle light scattering from 3D distributions of organelles within a single cell.7,15 Ex-
periments show that mtPatterns scattering simulations agree well with both experimental scattering patterns
and FDTD simulations,15 providing labeled scattering data without the high computational cost of FDTD—each
pattern can be generated in minutes on a desktop computer.15 This makes it possible to create a large and varied
database of labeled wide-angle scattering images. In the present work, we expand the mtPatterns algorithm to
allow the placement of organelles of varying size in constrained distributions, and apply it to the study of the
interaction between the distribution of intracellular organelles and their observed light scattering patterns.

1.2 Background on Mitochondria and Disease

For this work we focus on one specific intracellular organelle: the mitochondrion. Not only are mitochondria
responsible for the majority of wide-angle light scattering,16 making them a primary determinant of scattering
pattern composition,15 but their form and function have been found to relate to the progression of a number
of ailments.3–6,16,17 Specifically, mitochondria are critical to cellular energy production. Mutations that af-
fect mitochondria and related proteins have been identified in disorders such as cancer,5,6, 16 cardiomyopathy,5

diabetes,6 and common neurodegenerative disorders like Parkinson and Alzheimer Diseases.6,7

Despite a debate surrounding the exact shape, size, and distribution of mitochondria within human (and
other mammalian) cells, it appears their morphology is highly cell-dependent,16 and they are commonly held to
be able to alter their shape, size, aggregation, and location within a cell based on external stimulus.3,4, 18 Table
1 presents a summary of experimentally and theoretically obtained mitochondrial geometries for selected cell
types relevant to this work. Mitochondrial clustering can take many forms, including perinuclear (distributed
around the nucleus), peripheral (distributed around the outside of the cell), diffuse (evenly distributed within a
cell), and aggregate (in tight clumps within a cell). These distributions are shown in Fig. 1.

For many disorders, there is a noticeable genetic or structural difference between the mitochondrial popula-
tions of healthy and damaged cells.3,7, 16 In particular, the distribution and aggregation of mitochondria within
a cell has been shown to relate to different disease-related metabolic states, and can help predict a damaged
cell’s response to treatment.3 The presence of perinuclear mitochondrial clustering in cultured cancer cells has
been shown to indicate a sensitivity to chemotherapy, while a peripheral distribution in the same culture indi-
cates potential chemotherapy resistance.3,4 In a similar fashion, a differentiation between diffuse and perinuclear
clusters can help distinguish between normal and transformed cells,3 and the detection of aggregates can help in
cell classification.3,16

If it were possible to rapidly assess mitochondrial distribution, it could be used as a powerful indicator
of cellular heath. Unfortunately, there are few—if any—current techniques that can non-invasively identify
mitochondrial clustering trends in mixed cell populations.3 However, as shown in this work, wide-angle light
scattering analysis could provide one method to perform non-invasive, label-free distribution analysis when
supplemented with image analysis and pattern recognition tools.
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Table 1. Comparison of selected mitochondria dimensions presented in the literature

Length Width Cell Type Number Shape Source
0.25–1.0μm 0.25–1.0μm Human (diseased, Rajia) 83–677 sphere (7)
0.68–0.73μm 0.68–0.73μm Human (normal) 1012cm−3 sphere, rod (16,19)
0.75–0.83μm 0.75–0.83μm Human (diseasedb) 1012cm−3 sphere, rod (16,19)
1.0–2.0μm 0.5–1.0μm Human (diseased) varies oval (20)
2.1/2.3μm 2.1/2.3μm Human (diseased, Siha/MCF7c) varies sphere (21)
a Raji (Burkitt’s lymphoma) cells have an outer diameter of 16μm and a nuclear diameter of 8μm.7

b Deficiencies relating to cytochrome oxidase enzyme.19

c Siha/MFC7 (cervical carcinoma) cells have an outer diameter of 15μm and a nuclear diameter of 9μm.21

Figure 1. Four different organelle distributions: (A) a perinuclear distribution,3 where organelles are distributed close to
the nuclear wall (ri = rnucleus) but still inside an outer sphere of radius ro; (B) a diffuse distribution3 where organelles are
randomly placed throughout the entire volume between the cell wall and the nuclear wall; (C) a peripheral distribution,3

where organelles are placed in a spherical shell of inside radius ri and outer radius ro = rcellwall; and (D) an aggregate
distribution,3,16 where organelles are distributed in one or more tightly packed spherical regions of radius rd (e.g. a highly
organized collection of mitochondria16).

2. METHODS

To evaluate the correlation between mitochondrial placement and scattering pattern composition, we utilized a
rapid light-scattering simulation method—the mtPatterns algorithm15—to generate wide-angle scattering pat-
terns for the different diseases-related mitochondrial distributions described in the previous section. The resulting
database of scattering images was evaluated using a set of standard biomedical image analysis routines.1,22 From
this evaluation, image characteristics with the greatest predictive value were identified using a bank of estab-
lished attribute selection methods.2 The selected attributes were then analyzed for their relationship to organelle
distribution, and used in four different classifiers to demonstrate their predictive ability. Image generation and
simulation setup, image analysis methods, and attribute selection methods are described in detail below. Results
and a discussion of the data will be presented in the following section.

2.1 Simulation Setup

For the tests described in this study, we based the simulation model parameters on an immune cell from the Raji
celline—an example of Burkitt’s lymphoma. This cell model has been previously described in Su et al. 20077 and
Pilarski et al. 2008.15 As indicated in Tab. 1, it assumes an outer cell radius of 8μm, a nuclear radius of 4μm,
and approximately 83–677 mitochondria distributed within the available cell volume (i.e. between the outer wall
and the nucleus, a volume of approximately 151μm3.) Refractive index values for this cell model are described
by Su et al.7 Using the Raji cell parameters as a base, we examined the four mitochondrial distributions shown
in Fig. 1—perinuclear, diffuse, peripheral, and aggregate clustering.

We created examples of each distribution type at three mitochondria concentration levels: when they con-
tained 83 mitochondria, 250 mitochondria, and 677 mitochondria—the full range expected for the Raji immune
cell.7 The effective size of mitochondria—in terms of their achievable spacing within a cell—was also varied for
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Table 2. Breakdown of texture analysis classes and attributes used

Parameter Labels and Attributes

Class Labels (7): Perinuclear (r=4.0–4.8μm), Perinuclear (r=4.0–5.6μm), Perinuclear
(r=4.0–6.4μm), Aggregate (rd = 1.0μm), Aggregate (rd = 1.5μm), Pe-
ripheral (r=7.8–8.0μm), Diffuse (r=4.0–8.0μm)

Texture Attributes (21): variance, skewness, kurtosis, haralick-f1-homogeneity, haralick-f2-
contrast, haralick-f3-correlation, haralick-f4-sumofsquares, haralick-f5-
local-homogeneity, haralick-f6-sumavg, haralick-f7-sumvar, haralick-
f8-sumentropy, haralick-f9-entropy, haralick-f10-diffvar, haralick-f11-
diffentropy, law-l5, law-e5, law-s5, law-s5x2, law-s5x4, law-r5, law-w5

Data Points (170) 85 (dmt = 0.25μm data), 85 (dmt = 0.75μm data)

each test model, and results are presented for organelles placed using an effective diameter of dmt = 0.25μm
and dmt = 0.75μm (spherical mitochondria, as per the examples shown in Tab. 1; scattering as described by
Pilarski et al.15). For each distribution type and concentration level, we performed the simulation five times,
each with a different randomly generated organelle arrangement (i.e. five different random seeds) within the
specified distribution to simulate cell rotation and other variability inherent in real experimental systems. This
resulted in a total of 170 different cell models for simulation and analysis.

Using these cell models, we applied the mtPatterns algorithm15 to generate the final database of 170 scat-
tering images. The mtPatterns algorithm was implemented as described by Pilarski et al.,15 and initialized with
an incident light wavelength of λ = 632nm, a receptive field area of 3mm× 3mm, and with the center of the cell
model placed d = 5mm below the center of the receptive plane. As indicated by Pilarski et al., this setup gives
a viewable side-scatter region between 77.3o and 106.7o in both the θ and φ axes (e.g. a cone of � 30o).15

2.2 Image Analysis

Image analysis is an important part of most biomedical analysis systems,1 where it is commonly used to extract
a set of shape and texture attributes from experimental images. These attributes are then evaluated for medical
significance, usually through the use of attribute selection and classification routines.1 Within the set of possible
attributes, texture attributes have the advantage that they are largely objective with respect to the determination
of region boundaries and ground truth values;1 as such, they provide a robust numerical platform for examining
the image composition of complex light scattering images. For this work, we utilized three common approaches
to image texture analysis, as described by Rangayyan: statistical texture measures, Haralick texture measures,
and Law texture energy.1 These measures each focus on different aspects of an image’s composition in terms of
grey-level intensity, and together form a compact but descriptive image signature.

Statistical texture measures evaluate the distribution of an image’s grey-level histogram. Histograms are
analyzed for variance, skewness (how off-center a distribution is) and kurtosis (the peakedness of a distribution);
for this work, computation was performed as described by Rangayyan.1 While statistical metrics are based on
an intensity histogram, irrespective of spatial arrangement, the fourteen Haralick texture metrics (F1–F14) are
based on local relationships in the image derived from a grey-level correlation matrix (GLCM).1 This matrix is a
measure of how likely a pixel of a given intensity level will be next to—at a given distance and angle—a pixel of
another intensity level (computed for all different intensity levels). As per Rangayyan, we used a pixel distance of
one, and averaged over relationships at 0o, 45o, 90o, and 135o.1 After forming a GLCM for each image, a number
of Haralick measures were extracted that indicate the level of homogeneity, correlation, variance, consistency,
and entropy in a scattering image. In the interest of space, the exact form and meaning of each Haralick equation
used in this work can be found in Rangayyan 2004.1
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Table 3. Attribute selection results

Method Selected Attributes or Subsets (top five, in order of decreasing rank)
dmt = 0.25μm
CFS Subset Eval.23 law-e5, law-s5, law-s5x2
ReliefF23 law-s5x2, law-e5, law-s5, law-r5, law-w5, ...
InfoGain23 law-s5x2, law-e5, law-s5, law-w5, law-r5, ...
Consistency23 haralick-f7-sumvar, law-e5, law-s5
Wrapper (BayesNet)23 haralick-f3-correlation, law-e5, law-s5x2
ChiSquared2 law-e5, law-s5, law-s5x2, law-w5, law-r5, ...

dmt = 0.75μm
CFS Subset Eval.23 law-e5, law-s5, law-s5x2, law-w5
ReliefF23 law-s5x2, law-e5, law-s5, law-w5, law-s5x4, ...
InfoGain23 law-s5x2, law-s5, law-e5, law-w5, law-r5, ...
Consistency23 haralick-f7-sumvar, haralick-f8-sumentropy, haralick-f11-diffentropy,

law-e5, law-s5x2, ...
Wrapper (BayesNet)23 haralick-f9-entropy, haralick-f10-diffvar, law-s5x2
ChiSquared2 law-s5x2, law-e5, law-s5, law-w5, law-r5, ...

Bold indicates the most relevant attribute, as ranked by each routine.

Law texture measures give a more qualitative view of image texture, and are based on the convolution of a
5× 5 filter kernel with the target image. The summation of intensity (energy) in the filtered image can be used
to evaluate a texture’s edge content (law-e5), spot content (law-s5), wave content (law-w5), and ripple content
(law-r5). For this work we also implemented two additional spot measures, law-s5x2 and law-s5x4, that measured
spot content at two and four times the scale of the standard law-s5 filter. This was done by reducing the size
of the filter’s input image by a factor of two and four, respectively. A more detailed discussion of Law texture
measures and their meaning can be found in Rangayyan 2004.1

All tests were done for an image reduction level to 25 pixels by 25 pixels. After analysis, each vector of
features (statistical, Haralick, and Law; twenty-one attributes in total) was labeled with the class of the organelle
distribution used to generate the image. A full list of attributes and class labels used in the work can be found
in Tab. 2. Once labeled, the data could be used for attribute selection and classification.

2.3 Attribute Selection

Attribute selection is the process of determining which of a number of attributes (in this case texture measures)
contains the most information about the class label of a data point. There are a number of different attribute
selection techniques, each with their own areas of specialty and modes of operation.23 As such, it is important to
use a suite of different attribute selection techniques, to allow for better identification of relevant features. At-
tributes indicated (voted for) by the majority of selection techniques are most likely to hold predictive information
about the class of a sample.

For the task of identifying texture attributes that relate to organelle distribution, we applied five of the
attribute selection mechanisms implemented by Hall et al. in their 2003 benchmarking study.23 This includes CFS
Subset Evaluation, ReliefF, Information Gain, Consistency, and a Wrapper Bayes Network.23 For co-
mpleteness, we also used a Chi-Squared selection routine.2 As done by Hall et al., all selection tasks were
performed using the Weka environment (v3.4.11), a widely-used Java-based data mining toolkit.2

All twenty-one texture attributes (described in Tab. 2) were presented to each attribute selection routine.
The top five results of each selection process are shown in Tab. 3, in decreasing order of relevance (left to right);
some techniques selected a subset of less than five attributes. As shown in Tab. 4, attributes were then ranked
by the number of votes they received—i.e. the number of times they were selected in the top five or top three
by a given selection routine. As determined by these tests, the top three attributes were Law features measuring

Proc. of SPIE Vol. 7187  71870J-5



Table 4. Attribute selection results: votes per attribute, out of twelve selection tests

Attribute Rank Votes (in top 5) Votes (in top 3)
law-s5x2 1* 11 10
law-e5 2** 11 10
law-s5 3 9 8
law-w5 4 7 0
law-r5 5 5 0
haralick-f7-sumvar 6** 2 2
haralick-f3-correlation 7** 1 1
haralick-f9-entropy 7** 1 1
haralick-f8-sumentropy 8 1 1
haralick-f10-diffvar 8 1 1
haralick-f11-diffentropy 8 1 1
law-s5x4 9 1 0

* selected as most relevant attribute 5 out of 12 times, more than any other attribute.

** selected as most relevant attribute at least once.

the edge content of the image, law-e5, and the spot content of the images at two different scales, law-s5 and
law-s5x2 (Tab. 4, above the dotted line). These attributes were consistently selected in the top three by almost
all of the attribute selection routines.

Given that wide-angle mitochondrial scattering images are semi-ordered or disordered arrangements of bright
spots, known to vary in size and spacing with the distribution and number of organelles,15,24 it logically fol-
lows that these selected Law measures would contain predictive information about distribution class. For the
remainder of this work, data trends will be presented in terms of these three attributes; the trends shown are
also mirrored by a number of the other attributes, but with a lesser degree of class separation.

2.4 Extensions to the mtPatterns Algorithm

For use in this work, the mtPatterns algorithm of Pilarski et al. was extended by adding a collision checking
routine to ensure the realistic placement of each scattering point given a set of physical constraints—when placing
organelles within the available distribution volume, a spherical boundary was used to check for collisions with the
cell wall, nucleus, and other organelles. In this way, the scattering points placed by the mtPatterns algorithm
could maintain realistic spatial relationships, and avoid positions that would be not physically achievable for
organelles with volumes similar to those of the mitochondria in Tab. 1. While this resulted in a slightly more
demanding modeling algorithm, it was found to reduce the variability in recorded distribution data due to
unobtainable organelle positions, and more closely matches the optical conditions present in a real cell.

3. RESULTS & DISCUSSION

We observed distinct qualitative and quantitative differences between the scattering patterns of each distribution
type. In the aggregate case, the scattering pattern consisted of a small number of broad and smoothly changing
bright intensity patches (Fig. 2, A). For the peripheral distribution, the number of intensity regions was much
larger, while the size of each region was only a fraction of the image’s width (Fig. 2, E). The other distributions
were found to fall between these two extremes, in relation to distribution size and type (Fig. 2, B,C,D).

Tables 5 and 6 show that this change in image composition between distributions is reflected in the law-
e5, law-s5, and law-s5x2 texture energy measures. As noted above, these measures represent an image’s edge
content (law-e5) and spot content at two different scale sizes (law-s5 and law-s5x2). Table 5 shows that the
aggregate distribution did in fact have a much lower edge and spot content than the other distributions; this
corresponds to the smoothness observed in Fig. 2, A. For the case of dmt = 0.25μm mitochondria, as the size
of the distribution increased, there was a corresponding increase in the values of law-e5, law-s5, and law-s5x2
(Tab. 5, top), significant in terms of the standard deviation of the samples (Tab. 5, bottom). Though not shown,
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A B C D E
Figure 2. Qualitative comparison of five different mitochondrial distributions: (A) an aggregate distribution of 125 small
organelles clustered within a 2μm-diameter spherical region next to the nucleus; (B) a perinuclear distribution of 250
organelles, tightly clustered within 0.8μm of the nucleus; (C) a perinuclear distribution of 250 organelles, clustered within
1.6μm of the nucleus; (D) a diffuse distribution of 250 organelles; and (E) a peripheral distribution of 250 organelles,
tightly clustered within 0.8μm of the outer cell wall.

Haralick attributes also indicated a greater level of local homogeneity in aggregate samples, when compared to
the other distributions.

These trends were also found to be present for the case of dmt = 0.75μm mitochondria (Tab. 6). However,
through a comparison of the data in Tabs. 5 and 6, we found that spot and edge attributes were on average slightly
higher for each distribution in the dmt = 0.75μm mitochondria case. This is likely due to the greater separation
between scattering points due to physical constraints; as demonstrated in our recent work, spacing between
scattering points is inversely proportional to the size and spacing of intensity regions in the scattering image.15

Spacing in fact appears to be the dominant cause of changes to scattering image composition, as changes to the
size and arrangement of a distribution were much more closely linked to consistent image attribute variation
than were changes to the mitochondria concentration. Correlations between image texture and mitochondria
concentration will be explored at length in future work.

The importance of the law-e5, law-s5, and law-s5x2 texture attributes for classification and prediction can
be observed by plotting them in relation to each other, where data points are labeled with the class of each
distribution. This is shown in Figs. 3 and 4 for the plot of law-e5 energy v.s. law-s5x2 energy (the two most
informative attributes, as identified in Sec. 2). As seen in Fig. 3, there is a clear differentiation between the four
major distribution types, with almost no overlap between the class clusters for aggregate distributions (purple
stars and diamonds; bottom left, 0.25μm plot only), perinuclear distributions (blue circles, crosses, and downward
triangles; middle), diffuse distributions (green upward triangles; mid to top right), and peripheral distributions
(red stars; top right). Aggregates are not shown for the dmt = 0.75μm case (Fig. 4), as it was impossible to pack
83 or more organelles within either the rd = 1.0μm or rd = 1.5μm aggregate containing volume.

It was also possible to identify the different size sub-classes for each distribution. As shown in Fig. 3, top,
there was a clear delineation between the rd = 1.0μm and rd = 1.5μm aggregate volumes. There was also
an observed stratification within the three types of perinuclear distribution, with the average Law values being
arranged in increasing order of distribution size (i.e. data points for larger values of ro were closer to the top
right). In the interest of space, only the relationships between law-e5 and law-s5x2 energy were included in
this document; the observed relationships were also present in all other combinations of the three most relevant
attributes, and to a lesser degree for other attributes selected by the routines in Sec. 2. These trends are very
important for classification, as they allow the distinction of not only distribution class, but also sub-class size
directly from image texture attributes. This facilitates the rapid classification of experimental images.

3.1 Classification of Distributions

To identify their use in the classification and prediction of organelle distributions in single cells, the law-e5,
law-s5, and law-s5x2 texture attributes were given as input to four different machine learning systems under
10-fold cross-validation (CV-10)—the data was divided into ten folds, trained on nine of the folds and then
tested on the remaining, previously unseen, fold2,25 (i.e. systems were tested for classification accuracy only
on data they had never seen in training). For these tests, we used the standard Weka2 implementation of

Proc. of SPIE Vol. 7187  71870J-7



Table 5. Comparison of Law texture energy for scattering from mitochondria with d = 0.25μm (averaged over 5 trials)

Mean

Test Type E5 S5 S5x2
Perinuclear (ro = 4.8μm) 132.5 144.5 139.5 20.0 22.1 22.8 58.7 68.0 68.5
Perinuclear (ro = 5.6μm) 142.2 141.1 149.8 21.3 22.4 23.0 67.4 68.6 75.1
Perinuclear (ro = 6.4μm) 150.1 154.0 154.7 23.9 25.3 24.3 78.2 84.6 82.5
Diffuse 172.6 171.6 168.6 29.9 29.4 28.4 109.9 105.7 102.1
Peripheral (ri = 7.2μm) 190.4 192.6 193.2 40.0 42.5 42.4 142.4 147.1 148.0
Aggregate (rd = 1.0μm) 19.9 – – 11.3 – – 20.3 – –
Aggregate (rd = 1.5μm) 27.1 – – 12.6 – – 22.7 – –

83mt 250mt 677mt 83mt 250mt 677mt 83mt 250mt 677mt

Standard Deviation

Test Type E5σ S5σ S5x2σ

Perinuclear (ro = 4.8μm) 8.96 8.45 3.19 1.17 1.60 0.65 6.91 4.66 3.27
Perinuclear (ro = 5.6μm) 8.67 4.27 3.41 1.25 1.11 0.90 5.23 5.57 3.13
Perinuclear (ro = 6.4μm) 3.42 13.62 4.59 1.31 1.99 0.95 5.60 9.76 5.08
Diffuse 5.37 3.83 5.59 1.69 1.57 1.55 7.97 3.01 6.04
Peripheral (ri = 7.2μm) 3.16 6.73 2.49 3.07 4.56 2.21 5.91 10.92 3.78
Aggregate (rd = 1.0μm) 1.52 – – 0.75 – – 1.76 – –
Aggregate (rd = 1.5μm) 2.45 – – 0.87 – – 1.65 – –

83mt 250mt 677mt 83mt 250mt 677mt 83mt 250mt 677mt

(–) dashes indicate tests where it was impossible to fit all organelles within the specified containing volume.

a random decision tree (trees.RandomTree), support vector machine (functions.SMO), multilayer perceptron
(functions.MultilayerPerceptron, 2000 epochs), and Bayes network (bayes.BayesNet). This was done to
cover a wide range of algorithmic assumptions and methods of handling the data. Classifiers were provided with
the entire data set of 150 valid data points for both the dmt = 0.25μm and dmt = 0.75μm cases (models where
all organelles could not be placed within a containing volume were not included). Each data point was labeled
with one of four classifications: aggregate, perinuclear, diffuse, or peripheral.

The results of these tests are shown in Tab. 7. All classifiers showed a consistently high classification accuracy,
corresponding to a misclassification of between 7 (Bayes network) and 10 (multilayer perceptron) instances. It
was possible to accurately identify all four distribution types. From an examination of the confusion matrix
for each classifier, in all cases except the multilayer perceptron, all misclassifications were between the diffuse
and perinuclear classes. This is to be expected, as in Figs. 3 and 4 we can see some class overlap between
clusters for the larger radius perinuclear distribution (ro = 6.4μm) and the diffuse distribution, especially for the
dmt = 0.75μm case. The higher error for the multilayer perceptron is due to its misclassification of one aggregate
distribution as a perinuclear distribution, most likely due to confusion with the ro = 4.8μm perinuclear sub-class.

3.2 Relationship Between Distribution Average Radius and Image Complexity

Figure 5 demonstrates the correlation between image complexity and distribution size—as the outer radius of the
distribution increased, there was a corresponding increase in the complexity of the image (Fig. 5, A). This increase
in complexity was much more pronounced as the average radius of the distribution increased (i.e. an increase
in both the inner and outer radius values, as opposed to just an increase in outer radius; image complexity ∝
ravg = (ri + ro)/2). Scatter from a shell distribution with increasing ravg is shown in Fig. 5, B; the increase in
complexity is much more noticeable than in Fig. 5, A. This was further confirmed using Weka regression analysis
with Pace Regression2 and Linear Regression,2 which showed that linear combinations of the law-e5, law-s5, and
law-s5x2 attributes could approximately model the relationship between image composition complexity—in terms
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Table 6. Comparison of Law texture energy for scattering from mitochondria with d = 0.75μm (averaged over 5 trials)

Mean

Test Type E5 S5 S5x2
Perinuclear (ro = 4.8μm) 140.8 151.0 – 21.1 23.7 – 64.9 75.4 –
Perinuclear (ro = 5.6μm) 138.1 148.5 – 21.9 23.9 – 68.8 77.2 –
Perinuclear (ro = 6.4μm) 153.2 162.9 168.2 24.8 26.9 28.0 82.3 93.7 98.6
Diffuse 171.0 170.3 178.4 29.2 30.2 33.2 106.8 106.4 120.9
Peripheral (ri = 7.2μm) 190.9 194.7 199.5 43.3 46.3 50.8 148.4 154.3 163.8
Aggregate (rd = 1.0μm) – – – – – – – – –
Aggregate (rd = 1.5μm) – – – – – – – – –

83mt 250mt 677mt 83mt 250mt 677mt 83mt 250mt 677mt

Standard Deviation

Test Type E5σ S5σ S5x2σ

Perinuclear (ro = 4.8μm) 7.59 5.79 – 1.37 0.33 – 6.04 3.90 –
Perinuclear (ro = 5.6μm) 7.59 12.39 – 0.78 1.18 – 5.60 7.08 –
Perinuclear (ro = 6.4μm) 7.23 4.58 7.25 1.41 1.10 1.16 5.67 2.89 4.30
Diffuse 5.92 6.99 3.85 1.37 1.90 2.20 6.72 6.97 5.84
Peripheral (ri = 7.2μm) 3.84 5.35 3.39 1.76 3.71 3.09 5.41 7.10 7.21
Aggregate (rd = 1.0μm) – – – – – – – – –
Aggregate (rd = 1.5μm) – – – – – – – – –

83mt 250mt 677mt 83mt 250mt 677mt 83mt 250mt 677mt

Underline indicates an increase from the dmt = 0.25μm case.

Table 7. Classification accuracy for different learning methods using CV-10 (four classes, 150 data points)

Learning Method % Correct Classifications
Bayes Network 95.3
Random Tree 94.7
SVM 94.0
Multi-layer Perceptron 93.3

Four classes used: perinuclear, aggregate, peripheral, diffuse.

Attributes used in classification: law-e5, law-s5, law-s5x2.

of spot and edge content—and average distribution radius with the resulting correlation coefficients exceeding
0.97 in both cases (e.g. with models ravg = [−0.3581 + 0.0247(law-e5)+0.0191(law-s5)+0.0145(law-s5x2)] for
Pace Regression, and ravg = [0.0238(law-e5)+0.0202(law-s5x2)−0.221] for Linear Regression).

4. CONCLUSIONS

In this work we used image analysis and pattern recognition methods to identify relationships between wide-angle
scattering pattern composition and the distribution of organelles (in this case mitochondria) within a cell. This
was done using a library of scattering patterns generated by the mtPatterns algorithm15 and a series of standard
image analysis, attribute selection, and machine learning tools.

Scattering pattern composition—in terms of twenty-one image texture measures1—was found to vary in a
predictable and consistent way between different organelle distributions and aggregations. Notably, the size and
spacing of intensity regions were inversely proportional to the radius of the scattering distribution; this was
reflected in the amount of edge and spot content detected in the images using Law texture measures. Very little
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Figure 3. Plot of the law-e5 and law-s5x2 Law texture energy measures, labeled by mitochondria distribution class (colour
and shape of each data point), for 0.25μm diameter organelles. Clear separation is visible between distributions that are
clustered in aggregates (purple diamonds and stars; bottom left), around the nucleus (blue crosses, circles, and downward
triangles; middle), diffusely (green upward triangles; mid to top right), and around the cell wall (red stars; top right).
Similar trends were observed for all other combinations of law-e5, law-s5, and law-s5x2 measures.

overlap between classes was observed in plots of edge v.s. spot content, and it was also possible to distinguish
(to a first approximation) the average radius of a distribution from the data in these plots.

Using these identified trends, it was possible to classify different mitochondrial distributions directly from
their wide-angle scattering patterns using Law texture measures for edge and spot content and standard machine
learning techniques. This is important, as mitochondrial distribution has been shown to directly relate to
cellular health and susceptibility to treatment.3,4 Based on the agreement between mtPatterns simulations and
published FDTD and experimental cytometry results,7,15 these predictive trends are expected to extend well to
the image composition of scattering patterns from actual patient samples. This will be explored in future work.
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