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Abstract—Predictions are a key component to intelligence and
necessary for accurate motor control. In reinforcement learning,
such predictions can be made through general value functions
(GVFs). This paper introduces prosthetic arms as a domain for
artificial intelligence and discusses the role that predictions play
in prosthetic limb control. We explore the use of multilayer
predictions, that is, predictions based on predictions, using
robotic and simulation experiments. From these experiments two
observations are made. The first is that compound predictions
based on GVFs are viable in a robotic setting. The second, is
that strong GVF predictors can be built from weaker ones with
different input and target signals, similar to boosting. Finally,
we theorize how such topologies might be used in transfer
learning and in the simultaneous control of multiple actuators.
Our approach to integrating machine intelligence with robotics
has the potential to directly improve the real-world performance
of bionic limbs.

I. GENTLE INTEGRATION

When combining machine intelligence systems with elec-
tromechanical devices such as mobile or mounted robots, it
is natural to think of the machine intelligence as providing
most or all of the key aspects of the robot’s control system.
Integration of this kind is often challenging—it simultaneously
addresses many important barriers faced by our computing
technology—but is incredibly fruitful for both the fields of
robotics and artificial intelligence. Another, complementary
approach is the use of machine intelligence to supplement
an existing control system or sensorimotor interface. Machine
learning and artificial intelligence (AI) can augment the ca-
pacity of existing systems in small but important ways. While
more modest in its aims, this kind of staged deployment is
well suited to the refined study of individual machine learning
methods as they impact real-world domains of use. It further
provides a smooth pathway to machine intelligence seeing
practical use within complete, deployed systems.

In this paper we look specifically at the second, more gentle
approach to integrating machine intelligence within a robotic
device. In particular, we highlight one area where our group
has made recent progress: improving robotic artificial limbs
(Fig. 1) through real-time learning and utilization of tempo-
rally extended predictions. This setting lends itself well to
translating algorithmic and conceptual advances into tangible
benefit within a deployed environment; machine learning can
improve the ability of people with amputations to control

Fig. 1. Augmentative and restorative prosthetics are of specific interest for
incrementally integrating AI into a robotic setting. Top: commercial limb
system prescribed to an amputee for use during daily life. Bottom: research
robot limb system with direct access to a rich sensorimotor stream [4].

their bionic limbs. Sharing the challenges and opportunities of
prosthetics as a domain for AI Robotics is the first contribution
of our paper. We present a brief overview of our machine
learning work within the prosthetic domain, and follow on
this overview with a concrete example on a simple robotic
platform of how real-time predictions can be beneficially
combined into a learning hierarchy. Lastly, we discuss how
multilayer predictions can be integrated back into prosthetic
control approaches to further extend their practical reach.

II. BIONIC LIMBS

Bionic limbs are robotic devices fixed directly to the body
of someone with a motor impairment or complication (e.g,
someone with an amputation), or for the purposes of extending



or augmenting the abilities of healthy individuals. These
devices have multiple actuators and sensors, both on and off
the human body, and use this sensorimotor information to
interpret a user’s intent and actuate the joints of the robot
limb accordingly. Despite the growing availability of dexterous
robotic prosthetic arms, amputees often reject these arms due
to the difficulty they find in their control [1]–[3]. The most
common approach to controlling such arms is the use of
electromyographic signals (EMG), which are the electrical
activities of muscles. Unfortunately, the number of control
signals available from EMG is much lower than the control
space of the robot arms, creating a large gap between user
intent and achievable motor outcomes. There are a number
of techniques people have tried to address this gap, some on
the software side, such as pattern recognition [2], and some
on the clinical side, such as targeted muscle reinnervation1

[5]. However, control remains difficult and indeed, there will
almost always be a disparity between signal and control
spaces.

Our goal is to apply artificial intelligence to the control of
these arms, in such a way as to make using them more intuitive
and functional for the users [6]–[9]. We propose that a more
complete way to think about the prosthetic control problem
is that we are looking to create an assistive, context aware
robot, which happens to be a prosthetic arm. The techniques
we are developing here are also applicable beyond the scope of
prosthetic arms. Our approach has been to incrementally apply
AI techniques to existing control schemes for other assistive
and augmentative devices. One of the great benefits of working
with prosthetic devices is that the users of these devices have
clear objectives that they need the prostheses to address, and
concrete measures for the success of the system. Additionally,
there is a clear path to commercial and clinical use.

III. IMPROVEMENT FROM ONGOING EXPERIENCE

Making forward predictions is believed to be a key compo-
nent in making accurate motor commands [10]–[12]. Further
more, predictions have been shown to be an important way to
think about and formalize the state information being provided
to a learner (for example, predictive representations of state
[13]). By learning and maintaining predictions in real time, it
is possible for a robotic system to acquire and self-verify small
pieces of knowledge in an autonomous fashion as it interacts
with the world [14]–[17].

Incremental, ongoing knowledge can be acquired using
techniques known as general value functions (GVFs), a gen-
eralization of the reward-based value functions common in
reinforcement learning (RL) [14]. While other forms of ma-
chine learning might be used for prediction, RL algorithms
are somewhat unique in their ability to learn online and
continuously in a computationally efficient manner. In GVFs,
replacing reward with a target signal allows a system to

1Targeted Muscle Reinnervation is a surgical procedure where the nerves
that would have gone to the missing limb are transplanted into new host
muscle tissue in the residual limb, such as the biceps, triceps or pectoral
muscles [5].

learn either cumulative, Eq. (1), or instantaneous, Eq. (2),
predictions for any scalar signal. For example, we can ask
“How much total current will the shoulder servo use in the
next 10s?” or “What will the light sensor read in 3s?” GVFs
can also be used to give the probability of a binary event
occurring, e.g., “What is the probability of colliding with the
wall in the next 5s?” GVFs can be thought of as representing
temporally extended knowledge about a robot, its environment,
and the interaction between the two.

The GVF algorithm is composed of three main steps:
calculation of the temporal difference (TD) error (Eq. 1, 2),
calculation of traces (Eq. 3), and weight vector update (Eq. 4).
Note that Eq. (3) shows the form of replacing traces used in
the experiments described in this paper, but other types of
traces may be used (we suggest the approach of Van Siejen
and Sutton [18]).

δt+1 = rt+1 + γφTt+1θt − φTt θt (1)

δt+1 = βrt+1 + γφTt+1θt − φTt θt (2)

where

δ temporal difference error
r in GVFs this represents the target signal to be predicted
γ continuation probability, # timesteps lookahead= 1/(1− γ)
φ input feature vector
θ learned weight vector
β termination probability = 1− γ

et+1 = λγet +
αφt

max(1, ||φt||0)
(3)

where

e is the eligibility trace
λ trace decay rate (amount of bootstrapping)
α learning rate

θt+1 = θt + δt+1et (4)

GVFs have seen some promising application with robots.
Sutton et al. demonstrated that GVFs were able to simultane-
ously learn to predict large numbers of sensorimotor signals in
an online fashion on a mobile robot [14], [15]. Some studies
have also looked at using GVFs in control. In particular,
Modayil and Sutton have used prediction with a nexting
approach to control a simple mobile robot [16], such that,
when a prediction exceeds a threshold the robot will activate
and follow a fixed, hand-coded behavior. Specifically, when
their mobile robot predicted a future over-current condition it
would shut off the motors. This approach is similar to many
prediction-based reflexive reactions found in humans and other
animals [11], [12].

The idea to make a predictive link to known control be-
haviors also fits well within the domain of artificial limbs. A



Fig. 2. Topology. From bottom up: φ1 and φ2 are primary layer feature
vectors, which may or may not be the same, depending on the experiment.
Primary layer GVFs are grouped by the target signal, with one or more
lookahead values (γ). The output of the primary layers are then used as input,
possibly with other inputs, as features to a secondary layer GVF.

typical control setup for using EMG to control a prosthetic
arm is to use two EMG signals to proportionally control
the velocity of one joint at a time. Active joint selection is
performed by toggling through a fixed joint list via another
EMG signal or a mechanical switch. As one can imagine,
this is a very tedious way to control an arm. Edwards et
al. have demonstrated improved task performance using an
adaptive switching order based on learned predictions. When
an amputee user begins a toggle sequence, the joints are
selected in the order that the learner predicts will be most
likely needed at the moment; this was found to reduce the
number of voluntary switching interactions needed to complete
a simple manipulation task, and thus also the time needed to
complete the task [8]. Users appeared to be happy with the
improvement and to develop increased trust in the system.
Additionally, Pilarski et al. controlled the wrist joint of a 3
DOF robot arm where the objective was to have the controller
place the wrist in the position it predicted it should go
in the near future, given the current state [7]. This study
demonstrated the ability to use GVF predictions as direct target
signals for control as well as in combination with actor-critic
RL agents (e.g., as predictive state information).

Our present paper now proposes an extension of these
examples through the use of multilayer predictions, i.e. predic-
tions based on predictions (Fig. 2). Predictions such as these
represent compound knowledge about the environment and in
some cases can be thought of as hierarchies where each layer
represents a level of abstraction. Imagine that we have two
predictors: 1. “Is a Tiger nearby?”, 2. “Will I have an asthma
attack in the near future?” A very important prediction to make

Fig. 3. Create recording session.

is, “Am I in danger?”, for which the previous two predictions
would be valuable. In the context of a robotic arm we can
imagine similar scenarios. For example, in a prosthetic task
we could structure a set of GVF predictions as follows:

• Where is the elbow moving to? Where is the shoulder
moving to? → Where should the wrist move to?

• Where is my hand moving to? Does Joe want coffee? Is
there coffee in front of Joe? → Should I open my hand?

IV. EXPERIMENTS

To examine the feasibility of multilayer GVF predictions in
prosthesis use, we first performed a set of preliminary tests
on a more controlled experimental setting. Architectures like
those shown in Fig. 2 were tested in several contexts: first in
simulation with a series of deterministic square pulses, next
with a series of stochastic square pulses, and finally on an
iRobot Create mobile robot (Fig. 3). However, for the sake of
brevity, only a subset of these experiments are discussed here.

GVF learning was conducted as described in prior work [6],
[15], [16]. The feature vectors used in temporal difference
learning of the GVFs had the following form. Each feature
vector had a bias unit of 1, followed by a signal transform,
which was some representation of the input signals for that
layer. Lastly, a representation of history of the signal transform
was optionally appended depending on the experiment:

No recurrence was used, that is, the output of a GVF was
not used as input to itself. The representations used meant that
the feature vector was completely binary, i.e. every feature was
0 or 1. Additionally, the length of the feature vectors were
constant. Scalar signals, such as sensor values and the GVF
outputs, were converted to binary features using tile coding
function approximation (e.g., as done in [15]), which allows
for nonlinear transforms on the signal space.

A. Create Robot
The Create robot (iRobot, Inc.) is a very simple mobile

robot with a limited number of sensors, similar to a Roomba
vacuum. The sensors used in this experiment were:
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Fig. 4. Create predicting the thresholded right cliff sensor at different
timescales. Black line: Actual Right cliff sensor, Blue line: Prediction at 4
timesteps, Dashed Green Line: Prediction at 30 timesteps.

• 4 downward facing cliff sensors along the front edge.
Thresholded to a binary on/off signal.

• 1 forward facing wall sensor. Value range: 0 to 4095
• wheel speed sensors. Value range: -500 to 500

The goal for this experiment was to accurately predict the
turning on and off of three of the cliff sensors (Left, Front-Left,
Front-right) at the primary layer and then make predictions
about the fourth cliff sensor (Right) based only on the outputs
of the primary layer. The Create rotated counter-clockwise for
20 minutes, randomly changing speed every 2 minutes. As the
Create spun it passed over various surfaces: black tape, blue
tape, beige tiles and black tiles. Additionally, objects were
placed around the Create, which gave readings for the forward
facing wall sensor. Under this behavior the Right cliff sensor
would be the last sensor in the sequence to pass over a given
surface. Fig. 3 shows the experimental setup.

Control and data recording was performed on a Raspberry
Pi running the Robotic Operating System (ROS). Prediction
was performed offline after recording.

The outputs of the primary layer GVFs were tile coded
individually, and in pairs. Additionally, a history was used in
the input feature vector to the secondary layer GVF.

At the primary layer, reasonable predictions of the Left,
Front-Left, Front-right, and Right (used for comparison with
the secondary layer) sensors were learned. Using the repre-
sentation described, it was indeed possible to learn to make
predictions for the Right cliff sensor using the outputs of
the primary layer GVFs (excluding the reference primary
Right cliff sensor predictors) as shown in Fig. 4. While these
results are expected, it is important to establish the validity
of the topology and implementation used. In comparing the
predictions of the secondary GVF and the reference primary
GVF for the Right cliff sensor, the secondary GVF actually
had a lower error, as compared against the ideal predictor, than
the primary. It is important to note that the representations used
produced a significantly larger feature vector for the secondary
layer, which likely accounts for the lower error observed, i.e.,
the secondary layer GVF had a higher resolution view into the
data than did the primary layer.

B. Combining Weak Predictors to
Produce a Stronger Predictor

We also examined whether combining weak predictors
could produce a stronger predictor, akin to the concept
of boosting in machine learning [19]. This scenario was
tested using three square pulses of the same size, but dif-
ferent temporal offsets, as targets and input signals. In this
setting GV F1(Target=S1, timescales=2,4,8,10 timesteps) and
GV F2(Target=S2, timescales=2,4,8,10 timesteps) used an im-
poverished feature space that was not sufficient to predict the
signal. Each of φ1 and φ2 contained only a bias feature, the
target signal, and the inverse of the target signal (1-Target).
The output of the primary layer GVFs was then tile coded
individually and in pairs. GV F3’s target was the third square
pulse, S3, and was predicted at a lookahead of 4 timesteps.
No history was used in the features at either level. The best
that the primary layer GVFs could do with such an inadequate
state space was to chase the signal. Despite this, GV F3 was
able to learn to accurately predict S3 as shown in Fig. 5.

Essentially, the output of the primary GVFs served as a
form of history for the two signals, providing more information
about the signals than was directly available from the repre-
sentation used. It seems reasonable to conclude that we should
expect this sort of boosting behavior as long as the primary
GVFs are at least somewhat temporally correlated with that
secondary layer target.

V. MOVING FORWARD:
OPPORTUNITIES FOR INTEGRATION

We believe that the use of GVFs and hierarchies of GVFs
will prove beneficial to the simultaneous multi-joint control
of prosthetic arms. In particular, we propose two applications
that go beyond what has already been demonstrated with the
adaptive switching work demonstrated by Edwards et al. [8].

A. Transfer Learning between Simulation and Real-world

Learning on a robot is expensive in terms of time and risk
to hardware. For these reasons it is very desirable to be able to
train in simulation and then transfer what is learned to the real
world. One approach in RL is to learn a policy in simulation
and then use that learned policy in the real world, although
this has had limited success [20]. The topologies of GVFs
presented in this paper suggest an approach like the one shown
in Fig. 6. In this scenario, a GVF learns to predict some signal,
such as joint angle, in simulation. In the real world, another
GVF learns to predict the same signal, using the output of the
simulation learned GVF as an adviser, in coordination with
other input data. In theory, this should allow for more rapid
learning in the real world, with GVFs that are already partially
learned. In reality, we do not expect that the transferred GVF
should predict that well, given the difficulty of accurately
simulating. However, the results presented in this paper, where
a strong predictor was based on weak ones, lead us to believe
that we should still see some benefit using this technique. Our
hope is that this will greatly reduce the amount of time needed
for an amputee to train their prosthetic. Additionally, this
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Fig. 5. Weak and Strong predictors. Top: A Weak predictor, target=S1, which
is only able to chase the signal, not predict it. The distinctive shape of the blue
line is a clear indicator that the state space is insufficient. The graph for target
S2, not shown, is the same, just shifted in time. Bottom: A Strong predictor,
target=S3 is learned with only weak predictors as input. Solid Green: Target
signal, Solid Blue: Prediction at 4 timesteps, Dashed Pink: Ideal prediction
for 4 timesteps calculated from post-processing.

Fig. 6. Transfer learning using a multilayer topology of GVFs.

Fig. 7. Integration approach: machine intelligence and automatically acquired
knowledge—in this case a multilayer topology of predictions—is used to
extend the capacity of conventional control systems within an artificial limb.

technique could also be used with aggregated learning where
the adviser is a GVF representing the cumulative predictive
advice learned by many robots or from interactions with many
users.

B. Predictions for Simultaneous Multi-joint Control

Ultimately, our aim is to use predictions for control (Fig.
7). One particular challenge of interest is the simultaneous
control of multiple joints of a prosthetic limb via limited input
channels—an open issue in the prosthetic domain [2].

As was mentioned, prior studies have shown clear, task
specific ways of basing control on predictions [7]–[9], [16].
Predictions represent a type of temporal forward model, which
are useful to thinking agents, be they biological or mechanical,
and are a necessary component in developing good motor
control, asking questions like, “Where is my hand moving?”,
“Am I going to collide with something?”, and “What direction
will I be heading 3s from now?” They are also important for
higher levels of intelligence and control. For an intelligent
assistive robot, such as the prosthetics we are creating, under-
standing a user, their environment and the current situation are
long term goals. In order to do this, higher level predictions
are necessary, such as, “Is the user upset?”, “Is the user
hungry?”, “Is the user in danger?”, “Which object might the
user want to grab?”. At both levels predictions are useful
and understanding them at the more primitive level is an
incremental step towards understanding the more complicated
types of predictions needed for the higher level.

For low-level control there are specific ways in which
we might leverage hierarchies of predictors. For example, it
may be useful to make a prediction about the target position
of the wrist given predictions about the target positions of
all the other joints in a robot arm. Additionally, by using
hierarchies of predictions we have the potential benefit of
speeding learning, where, under certain circumstances, we can
imagine a reduction in state space at the secondary or higher
levels of predictors. Finally, under certain circumstances, we
would expect to see a gain computationally where a particular



prediction might be leveraged in many hierarchies. This would
be more efficient than having each of the secondary layers
calculating predictions directly from the data themselves, each
performing the same calculations.

VI. CONCLUSION

As a first contribution of this work, we identified one
domain—that of robotic artificial limbs—where the integration
of machine intelligence with robotic systems has both clear
utility and immediate areas for incremental progress. The
second contribution of this work was to examine the use of
multilayer topologies of prediction learners, particularly as
they would apply to robots. Two main results were observed
from these experiments. The first is that it is possible to
learn a reliable prediction during robot operation when using
the output of other predictors as input. To our knowledge,
this is the first example of multilayer GVFs being applied
during robot control. The second result is that it is possible
to combine the output of weak GVF predictors with different
target signals and input spaces to create a strong predictor
of a third target signal. These two results will be useful in
developing robust control methods for prosthetic robots; as a
final contribution of this paper, we suggested two ways that
multilayer predictions could be beneficially deployed within
bionic limbs and other robotic applications. Future work in
this area promises to benefit both the users of human-machine
interfaces and researchers seeking to better understand the
links that can be made between robot control and advances
in machine intelligence.
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