To appear: Proc. of the 15th IEEE-RAS-EMBS International Conference on Rehabilitation Robotics ICORR 2017),
July 17-20, 2017, QEII Centre, London, UK, pp. 1-8. ©2017 IEEE

Representing High-Dimensional Data to Intelligent Prostheses
and Other Wearable Assistive Robots: A First Comparison
of Tile Coding and Selective Kanerva Coding

Jaden B. Travnik and Patrick M. Pilarski

Abstract— Prosthetic devices have advanced in their capa-
bilities and in the number and type of sensors included in
their design. As the space of sensorimotor data available to
a conventional or machine learning prosthetic control system
increases in dimensionality and complexity, it becomes increas-
ingly important that this data be represented in a useful
and computationally efficient way. Well structured sensory
data allows prosthetic control systems to make informed,
appropriate control decisions. In this study, we explore the
impact that increased sensorimotor information has on current
machine learning prosthetic control approaches. Specifically,
we examine the effect that high-dimensional sensory data
has on the computation time and prediction performance of
a true-online temporal-difference learning prediction method
as embedded within a resource-limited upper-limb prosthesis
control system. We present results comparing tile coding, the
dominant linear representation for real-time prosthetic machine
learning, with a newly proposed modification to Kanerva coding
that we call selective Kanerva coding. In addition to showing
promising results for selective Kanerva coding, our results
confirm potential limitations to tile coding as the number of
sensory input dimensions increases. To our knowledge, this
study is the first to explicitly examine representations for real-
time machine learning prosthetic devices in general terms. This
work therefore provides an important step towards forming
an efficient prosthesis-eye view of the world, wherein prompt
and accurate representations of high-dimensional data may be
provided to machine learning control systems within artificial
limbs and other assistive rehabilitation technologies.

I. INTRODUCTION

Prosthetic limbs and other assistive rehabilitation technolo-
gies rely on their sensors to respond appropriately to the
intentions and needs of their human users. In the specific case
of clinically prescribed upper-limb prosthetic devices, the
electromechanical sensor information available to a device’s
control system is typically limited to mechanical toggles or
a small number of myoelectric (EMG) signals recorded from
the tissue of the user’s residual limb [1], [2]. These sensors
provide enough information to design a prosthetic solution
wherein a patient may be able to control one or two prosthetic
actuators [3]. The use of machine learning approaches such
as pattern recognition allow available sensors to be further

This research was undertaken, in part, thanks to funding from the Canada
Research Chairs program, the Canada Foundation for Innovation, and was
supported by the Alberta Machine Intelligence Institute (Amii), Alberta
Innovates — Technology Futures (AITF), the Government of Alberta, and
the Natural Sciences and Engineering Research Council (NSERC).

J. B. Travnik and P. M. Pilarski are with the Department of Com-
puting Science and the Department of Medicine, University of Alberta,
Edmonton, AB T6G 2EIl, Canada. Please direct correspondence to:
travnik@ualberta.ca; pilarski@ualberta.ca

Fig. 1.
Arm [5]). The Bento Arm generates a continuous stream of position,
velocity, load, voltage, and temperature sensor signals for each of its five
actuators during its ongoing operation.

The upper-limb research prosthesis used in this study (the Bento

leveraged to increase the number of functions controllable by
a user [4]. There is now convincing evidence that machine
learning control approaches such as pattern recognition can
enable patients with amputations to sequentially control a
device with a robotic elbow, wrist, and hand with multiple
discrete grasp patterns—far more degrees of control than
were previously possible with conventional control solutions
[1], [4]. This increase in function can be attributed both
to an increase in the number of sensors deployed within a
prosthetic socket, and the efficient use and synthesis of the
information provided by these sensors. The combination of
sensorimotor signals into a useful summary of a system’s
state, termed a state representation, has become increasingly
important to the performance of prosthetic devices, especially
those that leverage pattern recognition, regression, or real-
time machine learning [1].

While sensors have played a critical role in increasing
the capabilities of clinically deployed prostheses, pre-clinical
research prostheses have also continued to evolved in terms
of their sensorimotor space to try and meet the function,
form, and feedback needs of users with amputations (c.f.,
[11, [2], [6], [7]). As one representative example, Fougner et
al. have shown that the addition of sensors to help resolve
residual limb position (e.g., accelerometers or inertial mea-
surement units) can dramatically increase the performance of
myoelectric pattern recognition as a subject with an amputa-
tion moves their limb through a range of common positions
[8]. Further, even without the addition of new sensors to a
prosthetic socket, the modern actuators and sensors within
multi-joint prosthetic limbs can now generate a wealth of

To appear: Proc. of the 15th IEEE-RAS-EMBS International Conference on Rehabilitation Robotics (ICORR 2017),
July 17-20, 2017, QEII Centre, London, UK, pp. 1-8. ©2017 IEEE

data of different frequencies, ranges, and modalities. If used
carefully, these signals present a valuable window into the
intent of a human user and their prosthesis’s interactions with
a changing, daily-life environment.

A. Towards Computationally Efficient Representations

A prosthesis must be able to approximate and react to
its sensor inputs within a short window of time in order to
remain effective [9]. If a representation can be formed for
a control system in an efficient way, even in the face of
high-dimensional sensor data, it can readily be computed,
stored, and used in real time on the computationally limited
hardware embedded within wearable prosthetic devices.

Previous work by our group has explored in detail the
use of real-time machine learning methods for prosthetic
control—we have to date performed a wide range of pros-
thetic prediction and control studies wherein subjects with
and without amputations used different techniques from the
field of reinforcement learning (RL) to operate a robotic
arm, e.g., [10]-[16]. In all of these studies we exclusively
relied on the linear representation method known as tile-
coding (c.f., [17]) to provide our RL prediction and control
systems with a view into the available space of prosthesis-
and user-derived sensorimotor signals. These linear represen-
tations were chosen because they are highly efficient in both
computation and data usage for a fixed (small) number of
input signals. However, as prosthetic devices improve and
the number of sensors available to the system increases, it
remains unclear how standard linear representations like tile-
coding are affected, and if more scalable representations exist
which would be more aptly suited for use in prosthetic limbs
and other wearable assistive rehabilitation technologies.

Finding a good representation of input signals in complex,
high-dimensional, and continuous environments is a difficult
problem faced not just in the adaptive control of prosthetic
limbs, but in a wide range of domains where designers seek
to deploy machine learning for real-world control tasks; no-
table examples range from speech recognition to self-driving
vehicles. However, unlike enterprise scale applications with
access to vast computational resources, the prosthetic setting
requires that all computation be limited to run on small,
power efficient processors that can be installed in a self-
contained way within the chassis of a prosthetic device. The
representation of high-dimensional continuous state informa-
tion therefore needs to be done in a computationally efficient
fashion. Furthermore, and specific to robotic applications, it
is often impossible to exactly represent the state of a system
to a control process; some approximation of the continuous
state of the system must be used. One method approximating
continuous signals and reducing high dimensional data is
principle component analysis (PCA) which compresses high
dimensional data to a much smaller set of salient features.
However, recent studies have found that the implicit encoding
of relevant variables PCA produces is not usable by a ma-
chine learner that requires representations of the interactions
between sensorimotor data to perform well [18].

In this work we therefore contribute a first study on the
effects of increasing the dimensionality of prosthetic sensory
data in terms of computation time and prediction accuracy
for linear tile-coding representations (the dominant function
approximation approach used in RL), and propose a novel
modification of a competitor coding approach that promises
to scale accurately and efficiently as the number of sensory
dimensions increases on an assistive device.

II. BACKGROUND
A. General Value Functions

An important idea from reinforcement learning is a map-
ping from the state of the agent to a prediction of an input
signal, known as a value function. Most control problems
in RL are concerned with the value function used to predict
the desirability of being in a certain state. However, value
functions can also be used to construct knowledge about
sensorimotor interaction such as predicting when a bump
sensor is activated or how a human wants to control a
prosthetic limb [16], [19]. These are known as general value
functions (GVFs) which can be used to ask questions about
the sensorimotor data experienced by robotic systems [19].
An online GVF can be used to ask questions about the
current behavior of the robotic system and can phrase these
questions by using a representation of the experience and a
termination function, v(S;). When + is set to a constant value
between 0 and 1, it represents how many timesteps into the
future to make a prediction as given by timesteps = 1%
Thus with a constant v = 0.9, an on-policy GVF will make
a prediction that is 10 timesteps into the future.

B. True Online Temporal-Difference Learning

A central part of RL is the temporal-difference learning
method known as TD(\)'. With its low computational cost
and good performance, it is frequently used when learning
on-policy GVFs. However, TD()) is known to not maintain
an exact equivalence with ideal mathematical outcomes for
learned predictions—termed the forward view. Recently, van
Seijen et al. proposed two small changes to the update rule
of TD()), allowing true online temporal-difference learn-
ing methods to be constructed that do have algorithmic
equivalence with the forward view [20]. These true online
methods have been used to approximate value functions
of sensorimotor interactions with superior performance over
regular TD(\) and Sarsa(A) [20]. Algorithm 1 shows the true
online algorithm as implemented in the present study.

C. Sparse Distributed Memory

Sparse Distributed Memory (SDM) is a mathematical
model of human long-term memory [21]. It models how
the distances between concepts in human minds is similar
to the distances between points of a high-dimensional space
where high-dimensional is at least in the hundreds. In the
original formulation presented by Pentti Kanerva, a high-
dimensional binary space could be represented with a set

I\ refers to the eligibility trace, a way of assigning credit for good and
bad outcomes to states seen in the past [17].

Algorithm 1 True Online TD(\)

Initialize 6 arbitrarily
loop {over episodes}
Initialize e = 0
Initialize S
Ug + 07¢p(S")
Repeat (for each step of episode):
generate reward R and next state S’ for S
Bgr < 0Tp(S)
0 +— R+ ~vdgr — ¥g
e — vAe + all — YAeTH(S)]H(S)
0 < 0+ de + ajos — 0T (S)]p(S)
Vg < Vg
S« 5
until S is terminal
end loop

of fixed randomly placed points known as prototypes [21].
Each prototype can be thought of as a memory element
where it’s address is its position in the space, and its value is
data that can be read from and written to. Binary prototypes
are declared similar if the hamming distance between their
addresses is smaller than a given value.

In order to write to SDM given an address and a value,
prototypes within a set radius of the specified address are
updated with the value by adding it to each activated proto-
type’s existing value (see Fig. 2). Although multiple values
being stored in each prototype can corrupt the value stored
there, reading from SDM is performed using the same radius
method where the read value is then the average of the values
from all activated prototypes. This read value is then a close
approximation of data written previously to addresses near
the specified address.

ITII. REPRESENTATION USING LINEAR METHODS

Approximating a value function using linear methods
is considered a standard approach because of the ease of
computing the gradient of the value function with respect to
the learned parameters or weights (e.g., the weight vector
6 in Alg. 1) [17]. This leads to a particularly simple form
of the gradient-descent update with the guarantee that any
convergence to a local optimum is a convergence to a global
optimum. On top of their theoretical results, linear methods
can excel in terms of computation and data efficiency but
this depends critically on how the dimensions of states
are represented in terms the representation’s feature vector,
¢. For instance, in continuous environments, it is natural
for a single feature, ¢(i), to represent a selected range of
continuous values such as “joint A’s angle is between 150
and 180 degrees.” For complex tasks using linear methods,
it is necessary to use features that represent combinations of
state dimensions because linear methods, by their nature, are
unable to represent interactions between their features.

® "o e o

Fig. 2. A depiction of SDM prototypes being activated within a fixed
radius of a specified address in the state space.

Fig. 3. 2D and 3D views of three overlapping tilings covering a 2D
state space with three tiles per dimension. The number of features for this
example is 27, where only three features are activated as given by the grey
dot and line inside their tiles.

A. Tile Coding

Tile coding (TC) is a linear representation that is often
chosen in RL for it’s efficiency in online learning. Tile coding
splits up the d-dimensional state space into m overlapping
partitions called tilings and each tiling is split into a set
of n tiles. Each tiling has an offset from each other (see
Fig. 3), which leads to a better generalization [17]. Each tile
represents a binary (0 or 1) feature that is activated when
the state lies within the tile. Finer granularity can then be
achieved by increasing the number of tiles, and thus the size
of a tile, in each tiling but has the trade-off of generalization
because states are less likely to activate the same tile.

A binary feature vector ¢ of length mm, can then be
constructed by concatenating all n features for all m tilings.
Since only m features are activated, tile coding has an
advantage when choosing a constant step-size parameter,
o, as the number of active features is independent of the
state. For example, a reasonable step-size parameter might
be o = 0.1m.

In order to capture the interaction between dimensions,
tilings must span the state space so that each tile represents a
small d-dimensional hyper-cube. This leads to exponentially
many features (dim(¢) = m * n?). For small dimensions
found in common control tasks, tile coding provides an easily
implementable representation with clear benefits. However,
as the dimension of the task grows, so does the memory cost.

A common method of reducing the memory requirements

is hashing, a pseudo-random compression of a large tiling
into a reduced set of tiles of a given memory size. Hashing
ensures that the memory requirements do not grow expo-
nentially in the number of dimensions but still has some
drawbacks. It is not clear how to choose a good memory
size and some hand-tuning must be administered in prac-
tice. Additionally, the hashing function is a pseudo-random
process which may have collisions leading to one feature
being activated by two or more distinctly different sensory
observations. Collisions may be accidentally beneficial if
the collisions occur between sensory observations that have
similarities and extend the generalization capabilities of the
representation. However, the odds are usually in favor of
a collision having negative affects. These tile collisions
become more common as the memory size shrinks relative
to the total number of tiles. Although it is possible to
make “safe”” hashing implementations of tile coding that take
preventative measures when a collision is detected, these
checks take additional time and require still more time to
handle a collision when one has occurred.

B. Kanerva Coding

Kanerva coding is the application of sparse distributed
memory as a representation in reinforcement learning (Alg.
2). Unlike tile coding, the number of features in Kanerva
coding does not grow with the number of dimensions. This
can lead to dramatic savings in necessary memory resources.
Although a common issue when using Kanerva coding in
RL is choosing an appropriate number of prototypes and
activation radius, in contrast to other approximators, e.g.,
neural networks, the structural parameters of Kanerva coding
can be easily changed without retraining the learned model.
In fact, several researchers have shown improved perfor-
mance by moving the prototypes around the representation
space or by growing the representation using experience
from the learner [22], [23]. These methods are effective but
add extra memory and computational complexity to keep
and examine different prototype statistics. Other work has
shown that Kanerva coding may successfully be applied
to continuous domains [24]. However, the computational
cost of high-dimensional continuous states has not yet been
explored. This is especially important in settings with limited
computation and where the representation must be computed
within a small amount of time.

Algorithm 2 Kanerva Coding
Initialize all K prototypes in P randomly
Choose an activation radius r and distance function d (e.g.
Euclidean distance)
Given state S
Fori=0to K-1
¢i <0
If d(P;,S) <r
¢i —1
return ¢

C. Selective Kanerva Coding

We propose a method of finding nearby prototypes with
minimal computation. The idea is to remove the activation
radius and simply find the c closest prototypes to the state
of the system using Hoare’s quickselect which can be used
to find the c shortest distances in an array of distances [25].
One way of choosing a good c is to choose a small ratio,
7 such that ¢ = | Kn|. Not only does this method, which
we refer to here as Selective Kanerva Coding (SKC), still
have the same O(K) complexity as computing how many
prototypes are within an activation radius, but it shares with
tile coding the guarantee of the same number of activated
features along with the associated benefits, e.g., in selecting
learning step sizes. Utilized alongside True Online TD()),
SKC promises to be an efficient, reliable representation for
computing GVFs.

Algorithm 3 Selective Kanerva Coding

Uses quickselect(D, c) which finds the ¢ smallest indicies
in array D of length K in O(K) complexity
Initialize all K prototypes in P randomly
Choose an n such that ¢ = |Kn] << K and distance
function d (e.g. Euclidean distance)
Given state S
Initialize D = 0
Fori=0to K —1
¢; <0
I « quickselect(D, c)
Fort=0toc—1
index < I;
Cbindew «—1
return ¢

A trivial extension of selective Kanerva coding, with an
extra O(n) sorting operation, would further enable normal-
ized real-valued features to be returned. In this setting, after
applying quickselect to find the closest ¢ prototypes, their
features would be the normalized value of their proximity
to the state, thus the closest prototype would have a feature
equal to 1 and the furthest activated prototype would have a
feature equal to 1/c. Further investigation into this real valued
selective kanerva coding is needed, as it has great potential
utility for assistive technologies.

IV. EXPERIMENT

A robotic arm designed to be worn as a research prosthesis
(the Bento Arm of Dawson et al., [5], Fig. 1) was used to
generate data for a prediction problem in order to compare
the time and prediction performance of selective Kanerva
coding and tile coding. This robot arm has shoulder and
elbow joints, wrist rotation and flexion, as well as a gripper
for a total of 5 degrees of freedom. Each joint contained
sensors for position, velocity, load, and temperature which
leads to 20 real valued sensor signals from all of the servos
(as shown using different coloured traces in Fig. 1).

The arm was controlled in a sorting exercise where three
different objects were picked up from the same location,
carried, and then dropped at different locations assigned by
their weight. A single trial consisted of the arm beginning at
one end of its shoulder rotation, closing its gripper around an
object, lifting its elbow while rotating its shoulder towards
the drop off location at which point the elbow would descend,
the gripper would release the object, and then the arm would
return to the initial position. 30 trials were performed for
each of the three objects, giving a total of 90 trials. Data from
all servos was collected during each of these trials. Since
each trial began and ended in the same location, the order
in which each trial was presented could and was randomly
shuffled. 5 long streams of continuous sensor information
were created using this method, each containing over 16
minutes of sensor readings.

The goal of the prediction task was then to predict what
angle the shoulder angle sensor would report over the next
10 timesteps (~0.3 seconds into the future). Predictions were
made through the use of an on-policy general value function
learned via true online temporal-difference learning (Alg. 1).
In order to predict 10 timesteps into the future, v = 0.9 was
used in specifying the GVF. Learning rate and the eligibility
trace parameters were empirically set to @« = 0.001 and \ =
0.99, respectively.

To examine the effect of the number of sensor dimen-
sions on prediction performance and computation time, three
different sensor combinations were used—representations
were constructed with 2, 8, and 12 sensory input signals.
In the 2-dimensional setting, only the elbow angle and
load were given as part of the representation, whereas in
the 8-dimensional setting, the angle, load, temperature, and
velocity of both the elbow and the wrist rotator were given.
Finally, the angle, load, temperature, and velocity of the
elbow, the wrist rotator, and the wrist flexor were given in
the 12-dimensional task.

Exactly 248 different combinations of tiles and tilings
were used to generate a wide range of tile coding configura-
tions and thus a wide range of features for each dimensional
setting, ranging from 128 to 331776 features. One reasonable
method of offsetting each tiling is to deterministically shift
each tiling using a deterministic knight’s-move pattern®.
Although this knight’s pattern is deterministic, by using the
five different long streams of data generated by shuffling the
trials, a more representative distribution of online learning
performance was calculated.

For selective Kanerva coding, the number of prototypes
ranged from 1000 to 20000 where each prototype was a point
in the 2, 8, or 12 dimensional space. Euclidean distance was
used to measure how close each prototype was to the ob-
served state. A constant ratio n = 0.025 of features (rounded
down) were active at anytime. For example, in the 1000
prototype case, the features of the 2 closest prototypes to the
observed state were activated. In the 8000 prototype case, the

2Similar to that in chess, the knight’s pattern used here shifted the tilings
over and up by an increasing amount for each new tiling, as per Miller and
Glanz [26].

features of the closest 200 prototypes to the observed state
were activated. To ensure that different random distributions
of the prototypes was accounted for, five different seeds were
used to randomly distribute the prototypes.

Thus each of the 248 configurations of tile coding and
all five seeds of selective Kanerva coding were used for the
2, 8, and 12 dimensional settings using all five of the long
streams of robot generated data. For each run, the prediction
performance as well as the length of time it took to calculate
active features, and the computation time per timestep, was
recorded. To reveal the relation between the number of
features that could be calculated and the calculation time
per timestep, the number of features that could be calculated
within 100 ms was also recorded.

V. RESULTS

Figure 4 compares the variation in both prediction error
and computation time for tile coding and SKC as their
number of features increases, up to a maximum computation
time per step cutt-off of 100ms (selected in this study as the
upper limit for real-time prosthesis control, c.f., [9]). After
removing low-feature outliers from the tile coding data which
were orders of magnitude worse than the trend seen in Fig.
4, the data indicates that both tile coding and SKC have
improved performance as the number of features increases
up until an optimum point at which the error increased or
the representation took too long to compute. The maximum
number of features calculated within 100 ms for the 12, 8,
and 2 dimensional settings for SKC are represented as points
I, II, and III, respectively. The mean number of features
that can be calculated within 100 ms using tile coding had
little variation on the log scale presented in Fig. 4, and is
represented by a single point IV. The exact numbers these
labeled points represent is shown in Tab. L.

The 100 ms processing limit had the effect that the 8
and 12 dimensional settings of tile coding did not improve
beyond what the 2 dimensional setting was able to achieve,
despite the possibility of improved prediction performance
if more computation was allowed. TC was quite unlike
SKC, which not only had similar performance trends across
different number of dimensions but utilized the additional
dimensions of the state space to have improvements in
performance using the same number of prototypes and thus
features. The best performance in terms of error across all
conditions was found to be SKC at 8000 prototypes for all
three different dimensionality conditions, with 12D SKC at
8000 features demonstrating the overall best performance on
the entire experiment.

TABLE I
THE MAXIMUM NUMBER OF FEATURES THAT CAN BE CALCULATED
WITHIN 100 MS ON A SINGLE-CORE PROCESSOR.

| Tile Coding | Selective Kanerva Coding

Dimensions | Mean Std | Mean Std
2 | 247439 302 | 19333 236
8 | 244496 534 | 12960 198
12 | 245724 620 | 10833 165

0.05

0.04

Mean Absolute Error of Last 10% of Timesteps by Number of Features

TC12

' TCS
S oo | N) -
g N 1 i
% 0.02 ﬁ % 4o ‘ﬂ_‘ . N
= -
T skcs 1 i |
: SKC12 (1|11 |III , 3%
0.00 L | | 1 I -} I 1 1 1 P 1 M M
10° 10* 10° 10°

Number of Features

Computation Time per Timestep by Number of Features

Mean Timestep Duration (milliseconds)

Number of Features

Fig. 4. Key result: comparison of prediction error and computation time for tile coding and SKC as their number of features increases, including (top)
the mean absolute prediction error on the last 10% of the combined data for SKC and tile coding on 2, 8, and 12 dimensions; and (bottom) the mean
computation time of the combined data for SKC and tile coding on 2, 8, and 12 dimensions. The maximum features computable in a 100ms timestep is
shown in both plots by blue lines and the points I, II, II, and IV for SKC12, SKCS8, SKC2, and TC2/8/12, respectively

Additionally, both tile coding and SKC had increased time
step duration as the number of features increased. Not only
was tile coding significantly more time efficient than SKC,
but because there were tile coding configurations with the
same number of features across different dimensions and
each tile coding feature is calculated at the same speed,
these different configurations had same computation time per
timestep and thus overlapped as seen in Fig. 4 (bottom). As
Euclidean distance was used to compute the distance be-
tween prototypes in SKC, the computation time per timestep
increased with additional dimensions. This decreased the
amount of features that be calculated within the 100 ms with
increasingly more dimensions as seen in Tab. L.

Although SKC required significantly more time to calcu-
late activated features, the extra time taken proved to have
a stronger influence on prediction accuracy up until the

optimal. After 8000 features, large numbers of additional
features proved to be detrimental to SKC’s performance
which resulted in the error having a convex form with a
minimum at 8000.

VI. DISCUSSION

Our results indicate that SKC is a representation that
should be explored further within the context of prosthetic
control, assistive or rehabilitation robotics, and other do-
mains where high-dimensional continuous signals must be
efficiently represented in real time to an adaptive or non-
adaptive control process.

The five different random distributions of prototypes cre-
ated for SKC did not lead to significant inter-distribution
variations in performance (i.e., SKC had a consistently small
standard error across prototypes distributions). This is an

improvement over standard Kanerva coding, where the distri-
bution of prototypes is known to play a significant role in the
performance of the predictor. By only activating the features
whose prototypes are the closest instead of within a radius,
SKC invokes a limit on the distance between the furthest
activated prototype and the state by the nature of distances in
higher dimensional spaces. As the number of dimensions of a
state space grows, the distances between random points in the
space grows exponentially. In standard Kanerva coding, this
growth along with the distribution of prototypes themselves
increases the difficulty of appropriately setting the activation
radius as it must grow exponentially as well. SKC, on the
other hand, uses a notion similar to K-Nearest-Neighbors and
locates the closest prototypes given that the majority of the
prototypes (assuming 1 < 0.5) are further away. Following
from the increasing distances between these prototypes, the
set of features activated by SKC is appropriately flexible to
changes in scale and dimension.

The error with respect to the number of features in SKC
follows a convex curve which indicates that there is an
optimal number of prototypes given an 7). This decrease
in performance as excessive prototypes are added to the
representation requires further investigation. However, fol-
lowing from previous work where the addition and deletion
of prototypes was explored, one could extend the present
work by applying gradient descent methods to learn the
optimal number of prototypes K and activation ratio 7
and where these prototypes should be positioned (e.g., via
gradient derivations similar to those of Sutton et al. [27]).
This would be an important result, as it could lead to a
representation with fewer prototypes, and thus features, that
still accurately represents a high dimensional state space.
With fewer features, the representation can be constructed
faster and the extra time can be devoted to making more
predictions or to engaging more computation-heavy methods
such as planning.

As the computation time increases with additional di-
mensions and features, there must exist an upper bound of
how many dimensions and features can be represented on
a single-core processor within a specified amount of time.
The results indicate that SKC might be a representation that
could provide accurate predictions until this upper bound is
reached. Although this study explored the effect of higher
dimensions within a limited time frame, further studies
are needed consider the utility of different methods given
variable time constraints and even higher dimensions.

Finally, it is natural to expect that to achieve the best
performance on a prosthetic prediction or control task, the
optimal number of or distribution of features in a SKC (or
other) representation may be specific to each individual.
That is, the best representation for a given prosthesis-user
partnership may depend on the unique characteristics of an
individual user’s signals, behaviours, and the capabilities and
operation of their prosthetic device. The best way to interpret
signals for use in a machine learning or conventional control
system may also change with time as the user’s interactions
with a device shift through experience and training. Explor-

ing adaptive extensions to SKC and comparing them with
other representation learning approaches to determine their
viability on resource-constrained prosthetic control systems
is therefore an important topic for future study.

VII. CONCLUSIONS

As the number of sensors available on prosthetic devices
grows with their capabilities, an appropriate synthesis of
sensorimotor signals into a useful representation becomes
vital to the performance of these devices’ machine learn-
ing control systems. If such a representation can remain
computationally efficient, it can readily be used on the
computationally limited systems residing within wearable
prosthetic technology. This study explored how increasing
the number of input signals affected performance and per
step computation time of a true-online reinforcement learning
system using both tile coding and a new, modified version
of Kanerva coding that we term selective Kanerva coding.

The presented results reaffirm previous findings about
tile coding’s increasing computational requirements on high
dimensional data. Our results further show that selective
Kanerva coding has better accuracy on an upper-limb robotic
prediction task than tile coding. We note that selective
Kanerva coding takes additional time to compute a represen-
tation, but also show that not only are there significant gains
in prediction performance with additional features but that
there is a performance gradient for a fixed activation ratio, 7.
These findings suggest that selective Kanerva coding merits
further study, and as such, this work contributes a significant
step towards accurately representing the high-dimensional
data of assistive technologies to a machine learning control
system such as a reinforcement learning agent.

ACKNOWLEDGEMENT

The authors thank their colleagues in the Bionic Limbs
for Improved Natural Control Lab and the Reinforcement
Learning and Artificial Intelligence Laboratory for a number
of helpful discussions relating to this work.

REFERENCES

[1] C. Castellini, P. Artemiadis, M. Wininger, et al., “Proceedings of
the first workshop on peripheral machine interfaces: Going beyond
traditional surface electromyography,” Frontiers in Neurorobotics, vol.
8, no. 22, Aug. 2014. doi: 10.3389/fnbot.2014.00022.

[2] P. M. Pilarski, J. S. Hebert, “Upper and lower limb robotic prostheses,”
in Robotic Assistive Technologies: Principles and Practice, Eds. P.
Encarnacao and A. M. Cook, pp. 99-144. Boca Raton, FL: CRC Press,
2017. ISBN: 978-1-4987-4572-1.

[3] P. Parker, K. Englehart, B. Hudgins, “Myoelectric signal process-
ing for control of powered limb prostheses,” Journal of Elec-
tromyography and Kinesiology vol. 16 no.6, pp. 541-548, 2006
doi:10.1016/j.jelekin.2006.08.006

[4] E. Scheme, K. Englehart, “Electromyogram pattern recognition for
control of powered upper-limb prostheses: State of the art and
challenges for clinical use,” Journal of Rehabilitation Research and
Development vol. 48, no. 6, pp. 643-660, 2011.

[5] M. R. Dawson, C. Sherstan, J. P. Carey, et al., Development of
the Bento Arm: An improved robotic arm for myoelectric training
and research, Proc. of MEC’14: Myoelectric Controls Symposium,
Fredericton, New Brunswick, August 18-22, 2014, pp. 60-64.

[6] D. J. Atkins, D. C. Y. Heard, W. H. Donovan, “Epidemiologic
overview of individuals with upper-limb loss and their reported
research priorities,” J. Prosthet Orthot., vol. 8, pp. 2-11, 1996.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

C. Antfolk, M. DAlonzo, B. Rosén, et al., “Sensory feedback in upper
limb prosthetics,” Expert Review of Medical Devices, vol. 10, pp. 45—
54, 2013.

A. Fougner, E. Scheme, A. D. C. Chan, et al., “Resolving the limb
position effect in myoelectric pattern recognition,” in IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 19, no.
6, pp. 644-651, Dec. 2011. doi: 10.1109/TNSRE.2011.2163529

T. R. Farrell, R. F. Weir, “The optimal controller delay for myoelectric
prostheses,” IEEE Transactions on neural systems and rehabilitation
engineering vol. 15, no. 1, pp. 111-118, 2007.

P. M. Pilarski, M. R. Dawson, T. Degris, et al., “Online human training
of a myoelectric prosthesis controller via actor-critic reinforcement
learning,” Proceedings of the 2011 IEEE International Conference on
Rehabilitation Robotics (ICORR), June 29-July 1, Zurich, Switzerland,
pp. 134-140. doi:10.1109/ICORR.2011.5975338

P. M. Pilarski, M. R. Dawson, T. Degris, et al., “Adaptive artificial
limbs: A real-time approach to prediction and anticipation,” IEEE
Robotics and Automation Magazine vol. 20, no. 1, pp. 53-64, 2013.
doi: 10.1109/MRA.2012.2229948

P. M. Pilarski, T. B. Dick, R. S. Sutton, “Real-time prediction learning
for the simultaneous actuation of multiple prosthetic joints,” Proceed-
ings of the 13th IEEE International Conference on Rehabilitation
Robotics (ICORR), June 24-26, 2013, Seattle, USA, pp. 1-8. doi:
10.1109/ICORR.2013.6650435

A. L. Edwards, M. R. Dawson, J. S. Hebert, et al., “Application of
real-time machine learning to myoelectric prosthesis control: A case
series in adaptive switching,” Prosthetics & Orthotics International.
vol. 40, no. 5, pp. 573-581, 2016.

A. L. Edwards, J. S. Hebert, P. M. Pilarski, “Machine learning
and unlearning to autonomously switch between the functions of a
myoelectric arm,” Proceedings of the 6th IEEE RAS/EMBS Inter-
national Conference on Biomedical Robotics and Biomechatronics
(BioRob2016), June 26-29, 2016, Singapore, pp. 514-521.

C. Sherstan, J. Modayil, P. M. Pilarski, “A collaborative approach to
the simultaneous multi-joint control of a prosthetic Arm,” Proceedings
of the 14th IEEE/RAS-EMBS International Conference on Rehabilita-
tion Robotics (ICORR), August 11-14, 2015, Singapore, pp. 13-18.
A. L. Edwards, “Adaptive and Autonomous Switching: Shared Control
of Powered Prosthetic Arms Using Reinforcement Learning,” M.Sc.
Thesis, University of Alberta, 2016.

R. S. Sutton, A. G. Barto. Reinforcement learning: An introduction.
MIT Press, Cambridge, 1998.

R. Legenstein, N. Wilbert, L. Wiskott, “Reinforcement learning on
slow features of high-dimensional input streams,” PLoS Comput Biol
vol. 6, no. 8, 2010. e1000894.

R. S. Sutton, J. Modayil, M. Delp, et al., “Horde: A scalable real-time
architecture for learning knowledge from unsupervised sensorimotor
interaction,” Proc. the 10th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), May 2-6, Taipei, Taiwan,
2011, pp. 761-768.

H. van Seijen, A. R. Mahmood, P. M. Pilarski, et al., “True online
temporal-difference learning,” Journal of Machine Learning Research
vol. 17, no. 14, pp. 1-40, 2016.

P. Kanerva. Sparse distributed memory. MIT Press, Cambridge, 1988.
W. Cheng, W. M. Meleis, “Adaptive Kanerva-based function approxi-
mation for multi-agent systems,” Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 1361-1364, 2008.

B. Ratitch, D. Precup, “Sparse distributed memories for on-line value-
based reinforcement learning,” European Conference on Machine
Learning. vol. 3201, Springer Berlin Heidelberg, 2004, pp. 347-358.
B. Ratitch, et al., “Sparse distributed memories in reinforcement
learning: Case studies,” Proc. of the Workshop on Learning and
Planning in Markov Processes-Advances and Challenges, 2004, pp.
85-90.

C. A. R. Hoare, “Algorithm 65: Find,” Communications of the ACM
vol. 4, iss. 7, pp. 321-322, 1961.

W. T. Miller, F. H. Glanz, “UNH CMAC version 2.1: The University of
New Hampshire implementation of the Cerebellar Model Arithmetic
Computer - CMAC,” Robotics Laboratory Technical Report, Univer-
sity of New Hampshire, Durham, New Hampshire, 1996.

R. S. Sutton, et al., “Fast gradient-descent methods for temporal-
difference learning with linear function approximation,” Proceedings
of the 26th Annual International Conference on Machine Learning.
ACM, 2009, pp. 993-1000.

