Face valuing: Training user interfaces with facial expressions
and reinforcement learning

Vivek Veeriah, Patrick M. Pilarski, Richard S. Sutton
Reinforcement Learning & Artificial Intelligence Lab
Department of Computing Science, University of Alberta
{vivekveeriah, pilarski, rsutton}@ualberta.ca

Abstract

An important application of interactive machine
learning is extending or amplifying the cognitive
and physical capabilities of a human. To accom-
plish this, machines need to learn about their human
users’ intentions and adapt to their preferences. In
most current research, a user has conveyed pref-
erences to a machine using explicit corrective or
instructive feedback; explicit feedback imposes a
cognitive load on the user and is expensive in terms
of human effort. The primary objective of the cur-
rent work is to demonstrate that a learning agent
can reduce the amount of explicit feedback required
for adapting to the user’s preferences pertaining to a
task by learning to perceive a value of its behavior
from the human user, particularly from the user’s
facial expressions—we call this face valuing. We
empirically evaluate face valuing on a grip selec-
tion task. Our preliminary results suggest that an
agent can quickly adapt to a user’s changing pref-
erences with minimal explicit feedback by learning
a value function that maps facial features extracted
from a camera image to expected future reward. We
believe that an agent learning to perceive a value
from the body language of its human user is com-
plementary to existing interactive machine learn-
ing approaches and will help in creating successful
human-machine interactive applications.

1 Introduction

One important objective of human-machine interaction is to
augment existing human capabilities, which requires ma-
chines and their human users to closely collaborate and form
a productive partnership. To achieve this, it is crucial for
the machines to learn interactively from their users, specifi-
cally their intents and preferences. In current research trends,
the user’s preferences are conveyed via explicit instructions
(Kuhlmann et al., 2004) or expensive corrective feedback
(Knox & Stone, 2015)—which can be in the form of pre-
defined words or sentences, push buttons, mouse clicks etc.
In many real-world, ongoing scenarios, these methods of
feedback impose a cognitive load on human users. More-
over, in complex domains like prosthetic limbs, it is demand-

ing for the user to provide these kinds of explicit feedback.
It is important to have an alternative approach that is both
scalable and would allow the machines to learn their human
users’intents and preferences via ongoing interactions.

In this paper, we explore the idea that a reinforcement
learning agent can learn a value function that relates a user’s
body language, specifically from the user’s facial expressions,
to expectations of future reward. The agent can use this value
function to adapt its actions to a user’s preferences quickly
with minimal explicit feedback. This approach is analogous
to an agent learning to understand the body language of its
human user. It could also be imagined as building a form of
communicative capital between a human user and a learning
agent (c.f., Pilarski et al., 2015). Learning from interactions
with a human user tend to be continual; reinforcement learn-
ing methods are therefore naturally suited for this purpose.

To the best of our knowledge, our system is the first to
learn a value function in real-time for a user’s body language,
specifically a value function that relates future reward to the
facial features of the user. Additionally, this work is the first
example of how such a value function can be used to guide the
learning process of an agent interacting with a human user.
Importantly, our approach does not utilize explicit reward
channels, for example those discussed by Thomaz & Breazeal
(2012) and by Knox et al. (2009). As it operates in real
time, we believe that our approach is well suited for realis-
tic human-machine interaction tasks and complements exist-
ing interactive machine learning approaches. Learning a lan-
guage between an agent and its user in the form of value func-
tions represents a new and powerful class of human-machine
interaction technologies, and we expect the approaches dis-
cussed in this work will have broad applicability in many dif-
ferent real-world domains.

2 Related Methods

Significant research effort has been directed toward creating
successful human-robot partnerships (e.g., as summarized in
Knox & Stone, 2015; Mead et al., 2013; Breazeal et al., 2012;
Pilarski & Sutton, 2012; Edwards et al., 2015). A natural
approach is for an agent to learn from ongoing interactions
with a human user via human-delivered rewards. Research by
Thomaz & Breazeal (2008), Knox & Stone (2009), Breazeal
et al. (2012), Loftin et al. (2015), and Peng et al. (2016)
adopts this perspective, and it has been extensively studied



in recent work by Knox & Stone (2015). In the TAMER ap-
proach of Knox and Stone (2015), a system was able to learn a
predictive model of a human user’s shaping rewards, such that
the model could be used to successfully train an agent even in
the presence of human-related delays and inconsistencies. As
a potential drawback of learning a reward model, when the
user needs to modify the agent’s behavior, the model would
have to be changed (e.g., via additional shaping rewards from
the user). We desire a method for delivering feedback that
does not require a large number of costly interactions from
the human, and that transfers well to new or changed situa-
tions without the need for retraining.

Another interesting approach to the interactive instruction
of a machine learner involves a human teaching a robot to
perform a task through demonstrations, a process aptly named
as learning from demonstration. This approach can also be
called programming by demonstration. There are numerous
works exploring learning from demonstration (e.g., Koenig &
Mataric, 2012; Schulman et al., 2013; Alizadeh et al., 2014).
One noted downside is that this form of learning is reported
to be at times a tiring experience for a human user. Many
approaches are also limited in their ability to scale up to a full
range of real-world tasks (e.g., it is impossible to tractably
provide demonstrations or instructions covering all possible
situations).

A key difference between many existing methods and our
approach is that we are concerned with designing a general,
scalable approach that would allow an agent to adapt its be-
havior to a user’s changing preferences with minimal explicit
human-generated feedback. This is in contrast to approaches
that seek to use body language like facial features as an input
channel to directly control a robot or other machine’s oper-
ation (e.g., Breazeal (1998) and Liu & Picard (2003)). As
a significant contribution of the present work, we describe
the use of facial features not as a channel of control but as a
means of valuation. To this end, we propose to learn a value
function that is grounded in the user’s body language, inde-
pendent of the features of a task, and to use this value func-
tion to help influence an agent’s real-time decision making in
a way that spans multiple tasks and settings of use.

3 Reinforcement Learning

In a reinforcement learning setting (Sutton & Barto, 1998),
a learning agent interacts with an unknown environment in
order to achieve a goal. In this setting, the goal is to maximize
the cumulative reward accumulated by adapting its behavior
within the environment.

Markov Decision Processes (MDPs) are the mathematical
notations used for formalizing a reinforcement learning prob-
lem. An MDP consists of a tuple <S A pory >, consist-
ing of S, set of all states; A, set of all actions; p(s'|s, a),
a transition probability function, which gives the probability
of transition to state s’ € S at the next time-step given for
the current state s € S and action a € A; r(s,a,s’), the
reward function that gives the expected reward for a transi-
tion from state s € S to s’ € S by taking action a € A;
~ is the discount factor, that specifies the relative importance
between immediate and long term rewards. In episodic prob-

lems, the MDP can be viewed as having special states called
terminal states, which terminate an episode. Such states ease
the mathematical notations as they could be viewed as a sin-
gle state with single action that results in a reward of 0 and
transition to itself. The return at a time instance ¢ is defined
as the discounted sum of rewards after time #:
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where R;;; denotes the reward received after taking an
action A; in state S;.

Actions are taken at discrete time stepst = 0,1,2,--- ac-
cording to a policy 7 : § x A — [0, 1] which defines a selec-
tion probability for each action conditioned on the state. Each
policy 7 has a corresponding state-value function v, (s), that
maps each state s € S to the expected return GG; from that
state by following the policy 7,

ve(s) = E{Gy|S; = s,7}

The state-value functions are significant when the given
task requires prediction. On the contrary, if the given task
requires control, then it is important to use the action-value
functions ¢ (s, a) which gives the expected return G by tak-
ing an action a from state s and then following the policy 7:

gn(s,a) = E{Gt|St =s5A = a,ﬂ}

4 Grip Selection Task

To evaluate the face valuing approach, we introduce a grip
selection task that was inspired by a natural problem in a
prosthetic arm domain where the agent needs to select an ap-
propriate grip pattern for grasping a given object. The task
consists of a set of n grips and m objects. Depending on the
experiment, there could be many possible grips for a given
object, with the correct grip being defined according to the
user’s preference. The task could also consist of uncountable
number of objects, making grip selection with pure trial-and-
error a non-trivial problem.

This task was formulated as an undiscounted episodic
MDP with a reward of O for every time step, and with O re-
ward for completing an episode. At the beginning of each
episode, a single object was randomly picked from a large set
of objects and the agent was tasked with choosing a grip from
a limited set of grips; once the agent selected a grip it needed
to move a fixed number of steps towards the object to finish
the grasping motion, thereby completing an episode. A hu-
man user provided reward to the agent by pressing a single
button which delivered a reward of -5 for the corresponding
time step. Moreover, pressing the button forced the agent to
return back to its initial position regardless of its current po-
sition. The experimental setup is shown in Fig.

As in real-world grasping tasks, a user could have personal
preferences over which grip was suitable to grasp a given ob-
ject. These preferences could change from episode to episode
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Figure 1: (a) Overview of the face valuing agent: the user observes the simulated task and can provide a negative reward to the SARSA agent
during the task. The agent can observe user’s face via a webcam, and learns to behave based on the user’s preferences. (b) Grip selection
task: Solid colored box denotes the object; the thin blue lined object denotes the grip selected by an agent. The initial position of the agent is
called “grip-changing station”. The agent has to learn to select, based on the user’s preference, an appropriate grip — the grip’s width needs
to be equal to the object’s width. The figure on the left denotes one correct combination while the figure on the center denotes an incorrect
grip for the given object. The figure on the right denotes a scenario where the agent is forced to return to its initial position, as the user has
pushed the reward button. To complete an episode, the agent has to select one of the correct grips; move forward and grasp the object.

and from experiment to experiment. Further, these prefer-
ences were hidden from the learning agent and the only way
the agent could infer this is from the changing facial expres-
sions of the human user. Therefore, in this work, we asked
the human user to be as expressive as possible so as to pro-
vide clear cues for the learning agent to begin forming its
behavioral choices.

5 Experimental Setup

For our experiments, two Sarsa(\) (Rummery & Niranjan,
1994; Sutton & Barto, 1998) agents (one that uses face valu-
ing and one without face valuing) are compared on the above
described task. All the experimental results in this paper were
performed by a well-trained user in a blind setting, i.e., the
user did not know which of the two methods was currently
being evaluated. The user provided the same form of rewards
to both learning agents via their button pushes. The two main
instructions we gave to the human user were 1) to express
their pleasure or displeasure with the agent via any simple,
repeatable, and minutely distinguishable facial expressions,
and 2) to push the button whenever the learning agent was
not behaving as per the user’s expectations.

5.1 State space

| Agent State space

w/o face valuing
w/ face valuing

current grip and object ids + bias term
23 feature points + bias term

Table 1: State space of the agents compared in the experiments are
displayed.

The state spaces for both the agents are briefly described in
Table[T] The agent without face valuing has the id of the cur-
rent grip and id of the current object in its state space along
with a bias term. The id of the current grip chosen by the

agent is one-hot encoded to form vector of length n. Simi-
larly, the id of the object is also one-hot encoded to a vector
of length m and concatenated with the vector corresponding
to the current grip. So, the entire state space for this method
is of length m 4 n + 1 where m is the total number of ob-
jects during the entire experiment and 7 is the total number
of grips available to the agent during an experiment.

For the face valuing agent, 68 key points from a frame con-
taining a human’s face are detected through a popular facial
landmark detection algorithm (Kazemi et al., 2014). These
key points are simple two dimensional coordinates that de-
note the position of certain special locations of a human’s
face. These points from each frame were normalized and
23 points that correspond to the positions of eye brows and
mouth of a human’s face were selected. Each of these 23
points, were tile-coded with 4 tilings and each tiling of size
10 x 10 resulting in a feature vector of size 9200. These key
points seems to produce sufficient variations between differ-
ent facial expressions.

Figure 2: Features extracted from face: facial landmarks corre-
sponding to eye brows and mouth of a user’s face are the only fea-
tures extracted from the face.These are marked as yellow circles.
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Figure 3: Total time steps taken for different grip and object settings: the face-valuing agent learned to adapt faster compared to a conventional agent
in most settings. Moreover, in difficult settings where there are more number of appropriate object-grip combinations, the face-valuing agent required
less human generated rewards for achieving this level of performance. Each plot was generated by averaging data obtained from 5 independent runs
and each run consisted of 15 episodes.



5.2 Action space

The complete action space for both the agents consisted of
{grip1, gripa,-- - , gripn, 1,4} actions where the first n ac-
tions implied in choosing that particular grip. The remain-
ing two actions were the move one step forward towards the
object and move one step back towards the grip-changing
station. The actions available to the agent depended on its
position relative to the object and the grip-changing station.
When the agent was in the grip-changing station, the available
actions were {grip1, gripa, -+ , grip,, 1} whereas when the
agent had left the grip-changing station, only the {1,]} ac-
tions were available. When the user pushed the reward but-
ton, the agent lost all its actions except {|} until it reached
the grip-changing station.

The agent observed the state space once every one-tenth of
a second and had to take an action on every time step. The
agent, however, had the freedom of choosing the same action
for many consecutive time steps which allowed the human
user to expressively respond to the learning agent.

6 Experiments

6.1 Experiment 1: Different object-grip settings

The first experiment compared the two agents with multiple
grip & object settings. The plots of total time steps and to-
tal human generated rewards accumulated by the agents are
shown in Fig. 3} The plots (Fig. [3] (a), (b), ---, (1)) rep-
resent the total time taken by a learning agent to complete
a successful grasp across episodes. The plots (Fig. [3] (j),
(k), (1)) display the total number of human generated rewards
given to an agent to successfully adapt to user’s preferences.
These graphs (Fig. [3) were generated from the same user
experiments conducted in a blind manner. A perfect agent
would have no human generated reward in all these settings
and would take only 11 time steps to complete an episode.

From the plots (Fig. [ (a), (b), ---, (i)), it can be ob-
served that the agent with face valuing quickly adapted with
the user’s preferences in all the different object and grip set-
tings. Also, from the plots (Fig. 3] (), (k), (1)), the total num-
ber of human generated rewards for the face valuing agent
was comparatively lower than the agent without face valuing
in the difficult settings of this experiment.

During the initial phase of the experiment, the face valuing
agent utilized the human generated reward to learn to per-
ceive a value of its actions from the human user’s face. This
learned value was leveraged to adapt the agent’s actions in
later phases of the experiment. In simple experiment settings
where there are fewer number of object-grip combinations,
like the 2 grips experiment setup, the agent without face valu-
ing could quickly learn the appropriate behavior from button
pushes provided by the user and this resulted in a better per-
formance compared to an agent with face valuing. However,
in setups with large number of possible combinations of grips
and objects, the agent without face valuing lost this advan-
tage and failed to scale up. The face-valuing agent performed
comparatively better in these scenarios as it learned to per-
ceive a “goodness” of its actions which guided the agent in
choosing the correct action at a given time instance.
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Figure 4: Experiment with Infinite objects & 5 grips: Plot of total
time steps for limited grips and infinite objects setting. An experi-
ment setting where a new object is introduced every episode and the
agent needs to grasp this object from one of its grip. Each bar repre-
sents the total time steps taken by the agent to complete 15 episodes
of this task. The plot was generated from data obtained from 5 inde-
pendent runs. This is a key result of our approach as it clearly shows
the performance improvement obtained through face valuing.

For the agent without face valuing, the user’s preferences
could be communicated only through the reward channel.
Naturally, this approach was more expensive in terms of the
number of manual rewards compared to the face-valuing ap-
proach. On the other hand, the face-valuing approach uti-
lized the user’s facial features, which conveyed the prefer-
ences over the grips—a simple approach observed in the user
was to for them to have a neutral or a sad expression when the
agent was not selecting the correct grip and to display a posi-
tive expression when the agent selected the correct grip. Inter-
estingly, by learning a value function over the face, this agent
learned to wait for an affirmative expression from the human
user before moving forward to grasp the object. When there
were no such expressions from the user, the agent switched
from one grip to another until the user gave a “go ahead” ex-
pression.

6.2 Experiment 2: Infinite objects and finite grips

A second experiment (Fig. [) showed the performance im-
provement obtained through our approach in a different and
more difficult setting: one where a new object was generated
for each episode and no object was ever seen more than once
by the agent throughout the experiment. This experiment
therefore explored the ability of face valuing to address new
or changed tasks, and highlighted the importance of adapting
quickly to a user’s preferences.

The Fig. [] denotes the total time steps taken by the agents
to complete this experiment whereas the Table [2] shows the
total number of instances of human explicit feedback required
by the agent to successfully complete this task. Data was
generated from experiments with a single user.

From the plot in Fig. [ it can be observed that the face-



valuing agent was much quicker in adapting to the user’s pref-
erences. It learned to complete the task quicker than an agent
without face valuing. From the Table[2] it is clear that that to-
tal number of instances of human generated feedback to com-
plete this task was less for the face-valuing agent.

Since a new object was introduced in every episode,
the agent without face valuing could not learn the possi-
ble grip/object combinations only from human-generated re-
wards. This was the cause for it requiring more human feed-
back in completing this task. In the face-valuing approach,
as the learning agent relied on values related to facial fea-
tures, it could adapt easily in these situations. Effectively, the
agent with face valuing learned to keep switching the grips
periodically until the user gave a “go ahead” expression. Un-
fortunately, the agent without face valuing did not have this
advantage and could not perform effectively in this setting.

\ Agent Total no. of button pushes |
w/o face valuing 623.6
w/ face valuing 137.4

Table 2: Total number of button pushes provided for adapting an
agent to the user’s preference in experiment 2. The values represent
the total number of button pushes given by the human user to an
agent for the complete experiment setting that lasted 15 episodes.
Average obtained from 5 independent runs.

7 Discussion

In our experiments, the learning agent with face valuing had
the ability to perceive a human user’s face and, eventually,
learned to perceive a value of its behavior from its user’s fa-
cial expressions. Our preliminary results therefore suggest
that, by learning to value a human user’s facial expressions,
the agent could adapt quickly to its user’s preferences with
minimal explicit corrective feedback. This learning occurred
as follows: during the initial phase of the experiment, the
agent used the explicit corrective feedback to learn a value
function from the user’s facial gestures; these gestures served
as useful clues about future rewards based on the agent’s cur-
rent behavior, and guided it’s behavior.

Several studies have shown that users, to a certain extent,
are willing to teach machines to perform tasks automatically.
For example, in medical domains, it is already common for
people with amputations to extend their capabilities or lim-
itations through a partnership with machines (Williams, T.
W., 2011). However, currently available technology does not
identify and adapt quickly to the different preferences of their
users; this is a serious bottleneck to intelligence or physi-
cal amplification in human-machine partnerships. Our work
helps begin to address these limitations.

For evaluating our approach, we introduced a grip selec-
tion task wherein the learning agent had to figure out the goal
through its interaction with the user; this agent can be readily
termed a goal-seeking agent (Pilarski et al., 2015). To demon-
strate the significance of our approach, we performed two
sets of experiments: the first one involved multiple object-
grip settings on the grip selection task; we termed the second

experiment as the infinite objects setting, because one new
object was generated for every episode and the agent needed
to grasp this object by selecting one grip from its limited set
of grips. This infinite objects settings is pertinent to real-
world scenarios, where there are uncountable number of ob-
jects which can be grasped from a limited set of grip patterns.

The results from the first user experiment (Fig. [3] (a), (b),
-+, (1)) suggest that the face-valuing agent learns to adapt
quicker to its user’s preferences in this task. From the plots in
Fig. [3 (), (k), (1), it can be observed that the face-valuing
agent learns to adapt to its user’s preferences with signifi-
cantly lesser number of explicit human generated feedback
signals, particularly in difficult experiment settings. From the
second user experiment (Fig. ), we empirically show a sce-
nario where conventional methods can fail. From both the
experiments, it can be observed that the face-valuing agent
successfully learns to adapt and completes one episode after
another by relying only on facial expressions, specifically the
value learned from facial expressions. On the other hand, the
agent without face valuing could rely only on human gen-
erated feedback for identifying the correct grip for a given
object, which resulted in a greater number of button pushes
being given by the user. Moreover, we observed that the face
valuing agent learned to wait for an affirmative facial expres-
sion before moving towards the object. Otherwise, the agent
would switch from one grip to another at the grip-changing
station until the user provided an affirmative expression.

Though our experiments were simulated, we believe that
our approach can be much more valuable in a realistic robot
setting—we expect a robot’s behavior would elicit more ex-
pressive facial feedback from the user than our simple sim-
ulated domain, and thus more powerful features for a face-
valuing agent. In a robot setting, the user can observe the
robot’s actions and their consequences in a real-world envi-
ronment, where it is natural for the user to implicitly emote
through various facial cues. Robotic experiments are needed
to help quantify the advantage of a face-valuing approach to
human-machine interaction.

8 Conclusions

We introduced a new and a promising approach called face
valuing for adapting an agent to a user’s preferences, and
showed that it can produce large performance improvements
over a conventional agent that learns only from human-
generated rewards. By allowing the agent to perceive a value
from a user’s facial expressions, the total number of expen-
sive human generated-rewards delivered during a task was
substantially reduced and the agent was quickly able to adapt
to its user’s preferences. Face valuing learns a mapping from
facial expression to user satisfaction; it formalizes satisfac-
tion as a value function and learns this value function through
temporal-difference methods. Most work on the use of facial
features in human-machine interaction uses facial features as
control signals for an agent; surprisingly, our work seems to
be the first to use facial expressions to instead train a learning
system. Face valuing is general and largely task agnostic, and
we believe it will therefore extend well to other settings and
other forms of human body language.
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