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Overview

✤ Prostheses: Upper Arm Myoelectric Control
✤ Clinical relevance.
✤ The challenges of multi-function myoelectric control.
✤ Changing data & the need for adaptation.

✤ Reinforcement Learning Artificial Intelligence

✤ Applications of RL to Prosthetics and Myoelectric control.
✤ Results from an EMG-based control task.

✤ Conclusions and Thoughts to Leave With
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Multi-Function Prosthetics

✤ Devices that monitor electrical 
signals produced by muscle 
tissue in limb-deficient patients 
(EMG signals).

✤ Use these signals to control the 
movement of a multiple-actuator 
robotic appendage.

✤ Can be from physiologically-
mapped muscle sources, or from 
other muscle areas (Targeted 
Muscle Reinnervation, TMR).
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Clinical Motivation

✤ Recent amputees find the transition to their new prosthetic device  
challenging & frustrating, often due to the complex control scheme.

✤ Use patterns and patient physiology change, often requiring ongoing 
calibration of the artificial limb by patients and physiotherapists. 

✤ Adaptive, intuitive prostheses could help increase controllability and 
learning rates for patients, but there are no examples in clinical use. 

✤ Current work at the U of A focuses on an inexpensive training tool for 
use by new TMR patients at the GRH (Dawson, Carey, Fahimi: MTT).
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The Myoelectric Training Tool

Video by Michael Rory Dawson 5



Complex Time-Varying Data

✤ Patient intent is not mapped directly to EMG data; the same intended 
command may generate widely varying muscle activation patterns.

✤ EMG signals from different muscle groups may overlap in 
unpredictable and/or detrimental ways.

✤ Signal amplitude and frequency components may change as the body, 
sensors, and environmental conditions change.

✤ Signal drift can happen over a period of minutes, days, or weeks.

Parker et al., Journal of Electromyography and Kinesiology (2006)  
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Open Questions for Research

1. How best to translate multiple and possibly overlapping muscle 
signals into usable control commands for a mechanical limb.

2. How to automatically tailor the system to needs and specific physical 
conditions of individual patients, without constant manual 
intervention and periods of frustration and/or reduced function.

3. How to improve limb control based on (sparse) patient feedback.

These directly relate to fundamental problems for BCI/HCIs.

Parker et al., Journal of Electromyography and Kinesiology (2006)  7



Reinforcement Learning 
Artificial Intelligence
✤ Reinforcement learning (RL) involves an agent and an environment.

✤ The agent perceives the state of the environment via a set of 
observations and takes actions. 

✤ It then receives a new set of observations and a reward from the 
environment.

✤ These observations and rewards are used to predict future rewards, 
and to change the agent’s policy (how it selects actions).

✤ Key point: RL methods involve semi-supervised learning. A single, 
scalar reward signal drives learning.

Sutton and Barto, MIT Press (1998) 8



Continuous Actor-Critic 
Reinforcement Learning 
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Continuous Actor-Critic 
Reinforcement Learning 
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This has roots in Bhatnagar et al., Automatica (2009); Williams, Machine Learning (1992) 



What does this mean for 
real-world applications?

✤ RL systems can learn well when an end goal or desired behaviour is 
known but it is difficult (or impossible) to model the problem domain.

✤ Fast computation and low memory requirements allow for realtime 
deployment, especially on embedded or distributed systems.

✤ This also permits online adaptation: the learner can change in 
response to user needs and variation in the environment. This 
increases the robustness and versatility of systems.

✤ Very little hand tuning is required, and automatic tuning further 
reduces the need for ongoing maintenance. This saves human labour.
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... and Specifically for Amputees?

✤ These artificial intelligence techniques can be used by health 
professionals and patients to increase the power of existing methods 
without the requirement for detailed technical knowledge (human 
training with no computer programming skills needed).

✤ Methods can flexibly adapt to the needs of individual patients and are 
not dependent on a fixed set of calibrations or sensor positions.

✤ Because these RL methods operate and learn in real-time, they can 
improve with time and training, and change with the patient (both in 
terms of biology and use patterns).

✤ Ability to perform fluid, multi-joint actions, not just staged motion.
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Example: EMG-based Control
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✤ Learning a robotic arm control policy with input from an able-
bodied subject: human performs a reaching task, and rewards the 
robotic arm when it performs the desired (correct) movements.



Results
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Results
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Key Messages to Leave With

✤ Reinforcement learning artificial intelligence methods are well suited 
to use in a biomedical problem domain (semi-supervised & flexible).

✤ Adaptive control methods of this type will increase the speed and 
success with which amputees can learn to use their powered 
prostheses, and improve patient artificial limb function. 

✤ Facilitates devices that adapt to daily use patterns and changes in the 
patient, without the need for constant intervention by specialists.

✤ This points to more customized treatment, increased patient 
engagement, and reduced load on the medical system.
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