Maximum and Minimum Values

Let f be a function of two variables x and y. We say that f has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ for all points (x, y) in a neighborhood of (a, b). We say that f has a local minimum at (a, b) if $f(x, y) \geq f(a, b)$ for all points (x, y) in a neighborhood of (a, b).

If f has a local extremum (that is, a local maximum or minimum) at (a, b), and if the first order partial derivatives of f exist there, then

$$
\frac{\partial f}{\partial x}(a, b)=0 \quad \text { and } \quad \frac{\partial f}{\partial y}(a, b)=0
$$

Critical Points

A point (a, b) such that $\nabla f(a, b)=\mathbf{0}$, or one of the partial derivatives does not exist, is called a critical point of f. At a critical point, a function could have a local maximum, or a local minimum, or neither.

Example. Let $z=f(x, y)=x^{2}+y^{2}$. The only critical point is $(0,0)$. At $(0,0), f$ has a minimum.

Example. Let $z=g(x, y)=-x^{2}-y^{2}$. The only critical point is $(0,0)$. At $(0,0), g$ has a maximum.

Example. Let $z=h(x, y)=y^{2}-x^{2}$. The only critical point is $(0,0)$. At $(0,0), h$ has neither maximum, nor minimum. Indeed, for $a \neq 0$ we have

$$
h(0, a)=a^{2}>0 \quad \text { and } \quad h(a, 0)=-a^{2}<0
$$

The point $(0,0)$ is called a saddle point of the graph of h.

Quadratic Forms

Let $Q(h, k)=a h^{2}+2 b h k+c k^{2}$ be a quadratic form. Suppose $a \neq 0$. We have

$$
\begin{aligned}
Q(h, k) & =a\left[h^{2}+\frac{2 b}{a} h k+\frac{c}{a} k^{2}\right] \\
& =a\left[h^{2}+2 h \frac{b k}{a}+\left(\frac{b k}{a}\right)^{2}-\left(\frac{b k}{a}\right)^{2}+\frac{c}{a} k^{2}\right] \\
& =a\left(h+\frac{b}{a} k\right)^{2}+\frac{a c-b^{2}}{a} k^{2} .
\end{aligned}
$$

Let $D=a c-b^{2}$. We have the following properties:
(1) If $D>0$ and $a>0$, then $Q(h, k)>0$ for $(h, k) \neq(0,0)$.
(2) If $D>0$ and $a<0$, then $Q(h, k)<0$ for $(h, k) \neq(0,0)$.
(3) If $D<0$, then $Q(h, k)$ takes on both positive and negative values in a neighborhood of $(0,0)$.

The Second Derivative Test

Let f be a function of two variables x and y.
Suppose that all the second-order partial derivatives of f are continuous in a neighborhood of (a, b) and

$$
\frac{\partial f}{\partial x}(a, b)=0, \quad \frac{\partial f}{\partial y}(a, b)=0
$$

Let

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=f_{x x} f_{y y}-f_{x y}^{2}
$$

We have the following results:
(1) If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is
a local minimum.
(2) If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(3) If $D(a, b)<0$, then (a, b) is a saddle point.
(4) If $D(a, b)=0$, no conclusion may be drawn.

Example. Find and classify all critical points for the function $f(x, y)=x^{4}+y^{4}-4 x y$.

Solution. The partial derivatives of f are

$$
\frac{\partial f}{\partial x}=4 x^{3}-4 y \quad \text { and } \quad \frac{\partial f}{\partial y}=4 y^{3}-4 x
$$

Setting $f_{x}=0$ and $f_{y}=0$, we obtain $y=x^{3}$ and $x=y^{3}$. It follows that $x=\left(x^{3}\right)^{3}=x^{9}$. We observe that

$$
\begin{aligned}
x^{9}-x & =x\left(x^{8}-1\right)=x\left(x^{4}-1\right)\left(x^{4}+1\right) \\
& =x\left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
\end{aligned}
$$

Hence, the equation $x^{9}-x=0$ has three real roots: $x=0,1,-1$. Thus, the critical points of f are $(0,0)$, $(1,1)$, and $(-1,-1)$.

Next, we find the second-order partial derivatives of f :

$$
f_{x x}=12 x^{2}, \quad f_{x y}=-4, \quad f_{y y}=12 y^{2}
$$

At the critical point $(1,1)$, we have

$$
D(1,1)=\left|\begin{array}{cc}
12 & -4 \\
-4 & 12
\end{array}\right|=144-16=128>0
$$

Since $D(1,1)>0$ and $f_{x x}(1,1)>0, f(1,1)=-2$ is a local minimum of f. Similarly, $f(-1,-1)=-2$ is also a local minimum of f.

At the point $(0,0)$ we have

$$
D(0,0)=\left|\begin{array}{cc}
0 & -4 \\
-4 & 0
\end{array}\right|=-16<0
$$

Therefore, $(0,0)$ is a saddle point of the graph of f.

Absolute Maximum and Minimum Values

If f is a continuous function of two variables x and y on a closed and bounded region E in \mathbb{R}^{2}, then f attains an absolute maximum value and an absolute minimum value at some points in E.

To find the absolute maximum and minimum values of f on E :
(1) Find the values of f at the critical points of f in the interior of E.
(2) Find the extreme values of f on the boundary of E.
(3) The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Example. Find the absolute maximum and minimum values of the function

$$
f(x, y)=2+2 x+2 y-x^{2}-y^{2}
$$

on the triangular region in the first quadrant bounded by the lines $x=0, y=0$, and $y=9-x$.

Solution. Set $f_{x}=2-2 x=0$ and $f_{y}=2-2 y=0$.
The only critical point is $(1,1)$. We have $f(1,1)=4$.
At three vertices we have

$$
f(0,0)=2, \quad f(9,0)=-61, \quad f(0,9)=-61
$$

Let us consider values of f on three edges. On the line segment $y=0,0 \leq x \leq 9$, we have $g_{1}(x)=$ $f(x, y)=2+2 x-x^{2}$. Hence, $g_{1}^{\prime}(x)=2-2 x$ and $g_{1}^{\prime}(x)=0$ yields $x=1$. We have $f(1,0)=3$.

On the line segment $x=0,0 \leq y \leq 9$, we have $g_{2}(x)=f(x, y)=2+2 y-y^{2}$. Hence, $g_{2}^{\prime}(y)=2-2 y$ and $g_{2}^{\prime}(y)=0$ yields $y=1$. We have $f(0,1)=3$.

On the line segment $y=9-x, 0 \leq x \leq 9$, we have $g_{3}(x)=f(x, y)=-2 x^{2}+18 x-61$. Hence, $g_{3}^{\prime}(x)=-4 x+18$ and $g_{3}^{\prime}(x)=0$ yields $x=9 / 2$. We have $f(9 / 2,9 / 2)=-41 / 2$.

We conclude that f achieves the maximum value 4 at $(1,1)$ and the minimum value -61 at the points $(0,9)$ and $(9,0)$.

