
Chapter 3. Absolutely Continuous Functions

§1. Absolutely Continuous Functions

A function f : [a, b] → IR is said to be absolutely continuous on [a, b] if, given
ε > 0, there exists some δ > 0 such that

n∑
i=1

|f(yi)− f(xi)| < ε,

whenever {[xi, yi] : i = 1, . . . , n} is a finite collection of mutually disjoint subintervals of
[a, b] with

∑n
i=1 |yi − xi| < δ.

Clearly, an absolutely continuous function on [a, b] is uniformly continuous. Moreover,
a Lipschitz continuous function on [a, b] is absolutely continuous. Let f and g be two
absolutely continuous functions on [a, b]. Then f+g, f−g, and fg are absolutely continuous
on [a, b]. If, in addition, there exists a constant C > 0 such that |g(x)| ≥ C for all x ∈ [a, b],
then f/g is absolutely continuous on [a, b].

If f is integrable on [a, b], then the function F defined by

F (x) :=
∫ x

a

f(t) dt, a ≤ x ≤ b,

is absolutely continuous on [a, b].

Theorem 1.1. Let f be an absolutely continuous function on [a, b]. Then f is of bounded

variation on [a, b]. Consequently, f ′(x) exists for almost every x ∈ [a, b].

Proof. Since f is absolutely continuous on [a, b], there exists some δ > 0 such that∑n
i=1 |f(yi) − f(xi)| < 1 whenever {[xi, yi] : i = 1, . . . , n} is a finite collection of mu-

tually disjoint subintervals of [a, b] with
∑n

i=1 |yi − xi| < δ. Let N be the least inte-
ger such that N > (b − a)/δ, and let aj := a + j(b − a)/N for j = 0, 1, . . . , N . Then
aj − aj−1 = (b− a)/N < δ. Hence, ∨aj

aj−1f < 1 for j = 0, 1, . . . , N . It follows that

b∨
a

f =
N∑

j=1

aj∨
aj−1

f < N.

This shows that f is of bounded variation on [a, b]. Consequently, f ′(x) exists for almost
every x ∈ [a, b].
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Theorem 1.2. If f is absolutely continuous on [a, b] and f ′(x) = 0 for almost every

x ∈ [a, b], then f is constant.

Proof. We wish to show f(a) = f(c) for every c ∈ [a, b]. Let E := {x ∈ [a, c] : f ′(x) = 0}.
For given ε > 0, there exists some δ > 0 such that

∑n
i=1 |f(yi) − f(xi)| < ε whenever

{[xi, yi] : i = 1, . . . , n} is a finite collection of mutually disjoint subintervals of [a, b] with∑n
i=1 |yi − xi| < δ. For each x ∈ E, we have f ′(x) = 0; hence there exists an arbitrary

small interval [ax, cx] such that x ∈ [ax, cx] ⊆ [a, c] and

|f(cx)− f(ax)| < ε(cx − ax).

By the Vitali covering theorem we can find a finite collection {[xk, yk] : k = 1, . . . , n} of
mutually disjoint intervals of this sort such that

λ
(
E \ ∪n

k=1[xk, yk]
)

< δ.

Since λ([a, c] \ E) = 0, we have

λ
(
[a, c] \ ∪n

k=1[xk, yk]
)

= λ
(
E \ ∪n

k=1[xk, yk]
)

< δ.

Suppose a ≤ x1 < y1 ≤ x2 < · · · < yn ≤ c. Let y0 := a and xn+1 := c. Then

n∑
k=0

(xk+1 − yk) = λ
(
[a, c] \ ∪n

k=1[xk, yk]
)

< δ.

Consequently,
n∑

k=0

|f(xk+1)− f(yk)| < ε.

Furthermore,
n∑

k=1

|f(yk)− f(xk)| <
n∑

k=1

ε(yk − xk) ≤ ε(c− a).

It follows from the above inequalities that

|f(c)− f(a)| ≤
n∑

k=0

|f(xk+1)− f(yk)|+
n∑

k=1

|f(yk)− f(xk)| < ε(c− a + 1).

This shows that |f(c)− f(a)| ≤ ε(c− a + 1) for all ε > 0. Therefore, f(c) = f(a).
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§2. The Fundamental Theorem of Calculus

In this section we show that absolutely continuous functions are precisely those func-
tions for which the fundamental theorem of calculus is valid.

Theorem 2.1. If f is integrable on [a, b] and∫ x

a

f(t) dt = 0 ∀x ∈ [a, b],

then f(t) = 0 for almost every t ∈ [a, b].

Proof. By our assumption, ∫ d

c

f(t) dt = 0

for all c, d with a ≤ c < d ≤ b. If O is an open subset of [a, b], then O is a countable union
of mutually disjoint open intervals (cn, dn) (n = 1, 2, . . .); hence,∫

O

f(t) dt =
∞∑

n=1

∫ dn

cn

f(t) dt = 0.

It follows that for any closed subset K of [a, b],∫
K

f(t) dt =
∫

[a,b]

f(t) dt−
∫

[a,b]\K
f(t) dt = 0.

Let E+ := {x ∈ [a, b] : f(x) > 0} and E− := {x ∈ [a, b] : f(x) < 0}. We wish to show
that λ(E+) = 0 and λ(E−) = 0. If λ(E+) > 0, then there exists some closed set K ⊆ E+

such that λ(K) > 0. But
∫

K
f(t) dt = 0. It follows that f = 0 almost everywhere on K.

This contradiction shows that λ(E+) = 0. Similarly, λ(E−) = 0. Therefore, f(t) = 0 for
almost every t ∈ [a, b].

Theorem 2.2. If f is integrable on [a, b], and if F is defined by

F (x) :=
∫ x

a

f(t) dt, a ≤ x ≤ b,

then F ′(x) = f(x) for almost every x in [a, b].

Proof. First, we assume that f is bounded and measurable on [a, b]. For n = 1, 2, . . ., let

gn(x) :=
F (x + 1/n)− F (x)

1/n
, x ∈ [a, b].
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It follows that

gn(x) = n

∫ x+1/n

x

f(t) dt, x ∈ [a, b].

Suppose |f(x)| ≤ K for all x ∈ [a, b]. Then |gn(x)| ≤ K for all x ∈ [a, b] and n ∈ IN. Since
limn→∞ gn(x) = F ′(x) for almost every x ∈ [a, b], by the Lebesgue dominated convergence
theorem, we see that for each c ∈ [a, b],∫ c

a

F ′(x) dx = lim
n→∞

∫ c

a

gn(x) dx.

But F is continuous; hence,

lim
n→∞

∫ c

a

gn(x) dx = lim
n→∞

n

[∫ c+1/n

c

F (x) dx−
∫ a+1/n

a

F (x) dx

]
= F (c)− F (a).

Consequently,∫ c

a

F ′(x) dx = lim
n→∞

∫ c

a

gn(x) dx = F (c)− F (a) =
∫ c

a

f(x) dx.

It follows that ∫ c

a

[F ′(x)− f(x)] dx = 0

for every c ∈ [a, b]. By Theorem 2.1, F ′(x) = f(x) for almost every x in [a, b].
Now let us assume that f is integrable on [a, b]. Without loss of any generality, we

may assume that f ≥ 0. For n = 1, 2, . . ., let fn be the function defined by

fn(x) :=
{

f(x) if 0 ≤ f(x) ≤ n,
0 if f(x) > n.

It is easily seen that F = Fn + Gn, where

Fn(x) :=
∫ x

a

fn(t) dt and Gn(x) :=
∫ x

a

[f(t)− fn(t)] dt, a ≤ x ≤ b.

Since f(t)− fn(t) ≥ 0 for all t ∈ [a, b], Gn is an increasing function on [a, b]. Moreover, by
what has been proved, F ′n(x) = fn(x) for almost every x ∈ [a, b]. Thus, we have

F ′(x) = F ′n(x) + G′n(x) ≥ F ′n(x) = fn(x) for almost every x ∈ [a, b].

Letting n →∞ in the above inequality, we obtain F ′(x) ≥ f(x) for almost every x ∈ [a, b].
It follows that ∫ b

a

F ′(x) dx ≥
∫ b

a

f(x) dx = F (b)− F (a).
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On the other hand, ∫ b

a

F ′(x) dx ≤ F (b)− F (a).

Consequently, ∫ b

a

[F ′(x)− f(x)] dx = 0.

But F ′(x) ≥ f(x) for almost every x ∈ [a, b]. Therefore, F ′(x) = f(x) for almost every x

in [a, b].

Theorem 2.3. A function F on [a, b] is absolutely continuous if and only if

F (x) = F (a) +
∫ x

a

f(t) dt

for some integrable function f on [a, b].

Proof. The sufficiency part has been established. To prove the necessity part, let F be an
absolutely continuous function on [a, b]. Then F is differentiable almost everywhere and
F ′ is integrable on [a, b]. Let

G(x) := F (a) +
∫ x

a

F ′(t) dt, x ∈ [a, b].

By Theorem 2.2, G′(x) = F ′(x) for almost every x ∈ [a, b]. It follows that (F −G)′(x) = 0
for almost every x ∈ [a, b]. By Theorem 1.2, F − G is constant. But F (a) = G(a).
Therefore, F (x) = G(x) for all x ∈ [a, b].

§3. Change of Variables for the Lebesgue Integral

Let f be an absolutely continuous function on [c, d], and let u be an absolutely con-
tinuous function on [a, b] such that u([a, b]) ⊆ [c, d]. Then the composition f ◦ u is not
necessarily absolutely continuous. However, we have the following result.

Theorem 3.1. Let f be a Lipschitz continuous function on [c, d], and let u be an absolutely

continuous function on [a, b] such that u([a, b]) ⊆ [c, d]. Then f ◦u is absolutely continuous.

Moreover,

(f ◦ u)′(t) = f ′(u(t))u′(t) for almost every t ∈ [a, b],

where f ′(u(t))u′(t) is interpreted to be zero whenever u′(t) = 0 (even if f is not differen-

tiable at u(t)).

Proof. Since f is a Lipschitz continuous function on [c, d], there exists some M > 0 such
that |f(x)−f(y)| ≤ M |x−y| whenever x, y ∈ [c, d]. Let ε > 0 be given. Since u is absolutely
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continuous on [a, b], there exists some δ > 0 such that
∑n

i=1 |u(ti)−u(si)| < ε/M , whenever
{[si, ti] : i = 1, . . . , n} is a finite collection of mutually disjoint subintervals of [a, b] with∑n

i=1(ti − si) < δ. Consequently,

n∑
i=1

|(f ◦ u)(ti)− (f ◦ u)(si)| =
n∑

i=1

|f(u(ti))− f(u(si))| ≤
n∑

i=1

M |u(ti)− u(si)| < ε.

This shows that f ◦ u is absolutely continuous on [a, b].
Since both u and f ◦ u are absolutely continuous on [a, b], there exists a measurable

subset E of [a, b] such that λ(E) = 0 and both u′(t) and (f ◦u)′(t) exist for all t ∈ [a, b]\E.
Suppose t0 ∈ [a, b] \ E. If u′(t0) = 0, then for given ε > 0, there exists some h > 0 such
that |u(t)− u(t0)| ≤ ε|t− t0| whenever t ∈ (t0 − h, t0 + h) ∩ [a, b]. It follows that

|f ◦ u(t)− f ◦ u(t0)| ≤ M |u(t)− u(t0)| ≤ Mε|t− t0|

for all t ∈ (t0 − h, t0 + h) ∩ [a, b]. This shows that

(f ◦ u)′(t0) = 0 = f ′(u(t0))u′(t0).

Now suppose t0 ∈ [a, b] \ E and u′(t0) 6= 0. Suppose u(t) 6= u(t0). Then we have

(f ◦ u)(t)− (f ◦ u)(t0)
t− t0

=
f(u(t))− f(u(t0))

u(t)− u(t0)
u(t)− u(t0)

t− t0
.

Since u′(t0) and (f ◦ u)′(t0) exist, we obtain

lim
t→t0

(f ◦ u)(t)− (f ◦ u)(t0)
t− t0

= (f ◦ u)′(t0) and lim
t→t0

u(t)− u(t0)
t− t0

= u′(t0) 6= 0.

Consequently,

lim
t→t0

f(u(t))− f(u(t0))
u(t)− u(t0)

=
(f ◦ u)′(t0)

u′(t0)
.

Let r := (f ◦ u)′(t0)/u′(t0). For given ε > 0, there exists some δ > 0 such that

r − ε <
f(u(t))− f(u(t0))

u(t)− u(t0)
< r + ε ∀ t ∈ (t0 − δ, t0 + δ) ∩ [a, b].

Since u′(t0) 6= 0, there exists some η > 0 such that any x ∈ (u(t0) − η, u(t0) + η) ∩ [c, d]
can be expressed as x = u(t) for some t ∈ (t0 − δ, t0 + δ) ∩ [a, b]. Therefore,

r − ε <
f(x)− f(u(t0))

x− u(t0)
< r + ε ∀x ∈ (u(t0)− η, u(t0) + η) ∩ [c, d].

This shows that f ′(u(t0)) exists and f ′(u(t0)) = r = (f ◦ u)′(t0)/u′(t0), as desired.
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Theorem 3.2. Let g be a bounded and measurable function on [c, d], and let u be an

absolutely continuous function on [a, b] such that u([a, b]) ⊆ [c, d]. Then (g ◦ u)u′ is

integrable on [a, b]. Moreover, for any α, β ∈ [a, b],∫ u(β)

u(α)

g(x) dx =
∫ β

α

g(u(t))u′(t) dt.

Proof. Let
F (x) :=

∫ x

c

g(t) dt, x ∈ [c, d].

Since g is bounded, F is Lipschitz continuous. Moreover, F ′(x) = g(x) for almost every
x ∈ [a, b]. By Theorem 3.1, F ◦ u is absolutely continuous on [a, b] and, for almost every
t ∈ [a, b], (F ◦ u)′(t) = g(u(t))u′(t). Suppose α, β ∈ [a, b] and α < β. By Theorem 2.3, we
have

(F ◦ u)(β)− (F ◦ u)(α) = F (u(β))− F (u(α)) =
∫ u(β)

u(α)

F ′(x) dx =
∫ u(β)

u(α)

g(x) dx.

On the other hand,

(F ◦ u)(β)− (F ◦ u)(α) =
∫ β

α

(F ◦ u)′(t) dt =
∫ β

α

g(u(t))u′(t) dt.

This proves the desired formula for change of variables.

Theorem 3.3. Let g be an integrable function on [c, d], and let u be an absolutely con-

tinuous function on [a, b] such that u([a, b]) ⊆ [c, d]. If (g ◦ u)u′ is integrable on [a, b],
then ∫ u(β)

u(α)

g(x) dx =
∫ β

α

g(u(t))u′(t) dt, α, β ∈ [a, b].

Moreover, (g ◦ u)u′ is integrable if, in addition, u is monotone.

Proof. Suppose that g is integrable on [a, b]. Without loss of any generality, we may
assume g ≥ 0. For n = 1, 2, . . ., let gn be the function defined by

gn(x) :=
{

g(x) if 0 ≤ g(x) ≤ n,
0 if g(x) > n.

Then gn ≤ gn+1 for all n ∈ IN. Suppose α, β ∈ [a, b] and α < β. By Theorem 3.2 we have∫ u(β)

u(α)

gn(x) dx =
∫ β

α

gn(u(t))u′(t) dt.
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If u is monotone, then u′(t) ≥ 0 for almost every t ∈ [a, b]. Letting n → ∞ in the above
equation, by the monotone convergence theorem we obtain∫ u(β)

u(α)

g(x) dx =
∫ β

α

g(u(t))u′(t) dt.

Since g is integrable on [c, d], it follows from the above equation that (g ◦u)u′ is integrable
on [a, b]. More generally, we assume that (g ◦ u)u′ is integrable on [a, b] but u is not
necessarily monotone. Then |gn(u(t))u′(t)| ≤ g(u(t))|u′(t)| for all n ∈ IN and almost every
t ∈ [a, b]. Thus, an application of the Lebesgue dominated convergence theorem gives the
desired formula for change of variables.
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