Chapter 3. Absolutely Continuous Functions

\S 1. Absolutely Continuous Functions

A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be absolutely continuous on $[a, b]$ if, given $\varepsilon>0$, there exists some $\delta>0$ such that

$$
\sum_{i=1}^{n}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<\varepsilon
$$

whenever $\left\{\left[x_{i}, y_{i}\right]: i=1, \ldots, n\right\}$ is a finite collection of mutually disjoint subintervals of [$a, b]$ with $\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|<\delta$.

Clearly, an absolutely continuous function on $[a, b]$ is uniformly continuous. Moreover, a Lipschitz continuous function on $[a, b]$ is absolutely continuous. Let f and g be two absolutely continuous functions on $[a, b]$. Then $f+g, f-g$, and $f g$ are absolutely continuous on $[a, b]$. If, in addition, there exists a constant $C>0$ such that $|g(x)| \geq C$ for all $x \in[a, b]$, then f / g is absolutely continuous on $[a, b]$.

If f is integrable on $[a, b]$, then the function F defined by

$$
F(x):=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b
$$

is absolutely continuous on $[a, b]$.
Theorem 1.1. Let f be an absolutely continuous function on $[a, b]$. Then f is of bounded variation on $[a, b]$. Consequently, $f^{\prime}(x)$ exists for almost every $x \in[a, b]$.

Proof. Since f is absolutely continuous on $[a, b]$, there exists some $\delta>0$ such that $\sum_{i=1}^{n}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<1$ whenever $\left\{\left[x_{i}, y_{i}\right]: i=1, \ldots, n\right\}$ is a finite collection of mutually disjoint subintervals of $[a, b]$ with $\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|<\delta$. Let N be the least integer such that $N>(b-a) / \delta$, and let $a_{j}:=a+j(b-a) / N$ for $j=0,1, \ldots, N$. Then $a_{j}-a_{j-1}=(b-a) / N<\delta$. Hence, $\vee_{a_{j-1}}^{a_{j}} f<1$ for $j=0,1, \ldots, N$. It follows that

$$
\bigvee_{a}^{b} f=\sum_{j=1}^{N} \bigvee_{a_{j-1}}^{a_{j}} f<N
$$

This shows that f is of bounded variation on $[a, b]$. Consequently, $f^{\prime}(x)$ exists for almost every $x \in[a, b]$.

Theorem 1.2. If f is absolutely continuous on $[a, b]$ and $f^{\prime}(x)=0$ for almost every $x \in[a, b]$, then f is constant.

Proof. We wish to show $f(a)=f(c)$ for every $c \in[a, b]$. Let $E:=\left\{x \in[a, c]: f^{\prime}(x)=0\right\}$. For given $\varepsilon>0$, there exists some $\delta>0$ such that $\sum_{i=1}^{n}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<\varepsilon$ whenever $\left\{\left[x_{i}, y_{i}\right]: i=1, \ldots, n\right\}$ is a finite collection of mutually disjoint subintervals of $[a, b]$ with $\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|<\delta$. For each $x \in E$, we have $f^{\prime}(x)=0$; hence there exists an arbitrary small interval $\left[a_{x}, c_{x}\right]$ such that $x \in\left[a_{x}, c_{x}\right] \subseteq[a, c]$ and

$$
\left|f\left(c_{x}\right)-f\left(a_{x}\right)\right|<\varepsilon\left(c_{x}-a_{x}\right)
$$

By the Vitali covering theorem we can find a finite collection $\left\{\left[x_{k}, y_{k}\right]: k=1, \ldots, n\right\}$ of mutually disjoint intervals of this sort such that

$$
\lambda\left(E \backslash \cup_{k=1}^{n}\left[x_{k}, y_{k}\right]\right)<\delta
$$

Since $\lambda([a, c] \backslash E)=0$, we have

$$
\lambda\left([a, c] \backslash \cup_{k=1}^{n}\left[x_{k}, y_{k}\right]\right)=\lambda\left(E \backslash \cup_{k=1}^{n}\left[x_{k}, y_{k}\right]\right)<\delta .
$$

Suppose $a \leq x_{1}<y_{1} \leq x_{2}<\cdots<y_{n} \leq c$. Let $y_{0}:=a$ and $x_{n+1}:=c$. Then

$$
\sum_{k=0}^{n}\left(x_{k+1}-y_{k}\right)=\lambda\left([a, c] \backslash \cup_{k=1}^{n}\left[x_{k}, y_{k}\right]\right)<\delta
$$

Consequently,

$$
\sum_{k=0}^{n}\left|f\left(x_{k+1}\right)-f\left(y_{k}\right)\right|<\varepsilon
$$

Furthermore,

$$
\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<\sum_{k=1}^{n} \varepsilon\left(y_{k}-x_{k}\right) \leq \varepsilon(c-a)
$$

It follows from the above inequalities that

$$
|f(c)-f(a)| \leq \sum_{k=0}^{n}\left|f\left(x_{k+1}\right)-f\left(y_{k}\right)\right|+\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<\varepsilon(c-a+1)
$$

This shows that $|f(c)-f(a)| \leq \varepsilon(c-a+1)$ for all $\varepsilon>0$. Therefore, $f(c)=f(a)$.

\S 2. The Fundamental Theorem of Calculus

In this section we show that absolutely continuous functions are precisely those functions for which the fundamental theorem of calculus is valid.

Theorem 2.1. If f is integrable on $[a, b]$ and

$$
\int_{a}^{x} f(t) d t=0 \quad \forall x \in[a, b]
$$

then $f(t)=0$ for almost every $t \in[a, b]$.
Proof. By our assumption,

$$
\int_{c}^{d} f(t) d t=0
$$

for all c, d with $a \leq c<d \leq b$. If O is an open subset of $[a, b]$, then O is a countable union of mutually disjoint open intervals $\left(c_{n}, d_{n}\right)(n=1,2, \ldots)$; hence,

$$
\int_{O} f(t) d t=\sum_{n=1}^{\infty} \int_{c_{n}}^{d_{n}} f(t) d t=0
$$

It follows that for any closed subset K of $[a, b]$,

$$
\int_{K} f(t) d t=\int_{[a, b]} f(t) d t-\int_{[a, b] \backslash K} f(t) d t=0 .
$$

Let $E_{+}:=\{x \in[a, b]: f(x)>0\}$ and $E_{-}:=\{x \in[a, b]: f(x)<0\}$. We wish to show that $\lambda\left(E_{+}\right)=0$ and $\lambda\left(E_{-}\right)=0$. If $\lambda\left(E_{+}\right)>0$, then there exists some closed set $K \subseteq E_{+}$ such that $\lambda(K)>0$. But $\int_{K} f(t) d t=0$. It follows that $f=0$ almost everywhere on K. This contradiction shows that $\lambda\left(E_{+}\right)=0$. Similarly, $\lambda\left(E_{-}\right)=0$. Therefore, $f(t)=0$ for almost every $t \in[a, b]$.

Theorem 2.2. If f is integrable on $[a, b]$, and if F is defined by

$$
F(x):=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b
$$

then $F^{\prime}(x)=f(x)$ for almost every x in $[a, b]$.
Proof. First, we assume that f is bounded and measurable on $[a, b]$. For $n=1,2, \ldots$, let

$$
g_{n}(x):=\frac{F(x+1 / n)-F(x)}{1 / n}, \quad x \in[a, b] .
$$

It follows that

$$
g_{n}(x)=n \int_{x}^{x+1 / n} f(t) d t, \quad x \in[a, b] .
$$

Suppose $|f(x)| \leq K$ for all $x \in[a, b]$. Then $\left|g_{n}(x)\right| \leq K$ for all $x \in[a, b]$ and $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} g_{n}(x)=F^{\prime}(x)$ for almost every $x \in[a, b]$, by the Lebesgue dominated convergence theorem, we see that for each $c \in[a, b]$,

$$
\int_{a}^{c} F^{\prime}(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{c} g_{n}(x) d x
$$

But F is continuous; hence,

$$
\lim _{n \rightarrow \infty} \int_{a}^{c} g_{n}(x) d x=\lim _{n \rightarrow \infty} n\left[\int_{c}^{c+1 / n} F(x) d x-\int_{a}^{a+1 / n} F(x) d x\right]=F(c)-F(a)
$$

Consequently,

$$
\int_{a}^{c} F^{\prime}(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{c} g_{n}(x) d x=F(c)-F(a)=\int_{a}^{c} f(x) d x
$$

It follows that

$$
\int_{a}^{c}\left[F^{\prime}(x)-f(x)\right] d x=0
$$

for every $c \in[a, b]$. By Theorem 2.1, $F^{\prime}(x)=f(x)$ for almost every x in $[a, b]$.
Now let us assume that f is integrable on $[a, b]$. Without loss of any generality, we may assume that $f \geq 0$. For $n=1,2, \ldots$, let f_{n} be the function defined by

$$
f_{n}(x):= \begin{cases}f(x) & \text { if } 0 \leq f(x) \leq n \\ 0 & \text { if } f(x)>n\end{cases}
$$

It is easily seen that $F=F_{n}+G_{n}$, where

$$
F_{n}(x):=\int_{a}^{x} f_{n}(t) d t \quad \text { and } \quad G_{n}(x):=\int_{a}^{x}\left[f(t)-f_{n}(t)\right] d t, \quad a \leq x \leq b
$$

Since $f(t)-f_{n}(t) \geq 0$ for all $t \in[a, b], G_{n}$ is an increasing function on $[a, b]$. Moreover, by what has been proved, $F_{n}^{\prime}(x)=f_{n}(x)$ for almost every $x \in[a, b]$. Thus, we have

$$
F^{\prime}(x)=F_{n}^{\prime}(x)+G_{n}^{\prime}(x) \geq F_{n}^{\prime}(x)=f_{n}(x) \quad \text { for almost every } x \in[a, b]
$$

Letting $n \rightarrow \infty$ in the above inequality, we obtain $F^{\prime}(x) \geq f(x)$ for almost every $x \in[a, b]$. It follows that

$$
\int_{a}^{b} F^{\prime}(x) d x \geq \int_{a}^{b} f(x) d x=F(b)-F(a)
$$

On the other hand,

$$
\int_{a}^{b} F^{\prime}(x) d x \leq F(b)-F(a)
$$

Consequently,

$$
\int_{a}^{b}\left[F^{\prime}(x)-f(x)\right] d x=0
$$

But $F^{\prime}(x) \geq f(x)$ for almost every $x \in[a, b]$. Therefore, $F^{\prime}(x)=f(x)$ for almost every x in $[a, b]$.

Theorem 2.3. A function F on $[a, b]$ is absolutely continuous if and only if

$$
F(x)=F(a)+\int_{a}^{x} f(t) d t
$$

for some integrable function f on $[a, b]$.
Proof. The sufficiency part has been established. To prove the necessity part, let F be an absolutely continuous function on $[a, b]$. Then F is differentiable almost everywhere and F^{\prime} is integrable on $[a, b]$. Let

$$
G(x):=F(a)+\int_{a}^{x} F^{\prime}(t) d t, \quad x \in[a, b] .
$$

By Theorem 2.2, $G^{\prime}(x)=F^{\prime}(x)$ for almost every $x \in[a, b]$. It follows that $(F-G)^{\prime}(x)=0$ for almost every $x \in[a, b]$. By Theorem 1.2, $F-G$ is constant. But $F(a)=G(a)$. Therefore, $F(x)=G(x)$ for all $x \in[a, b]$.

§3. Change of Variables for the Lebesgue Integral

Let f be an absolutely continuous function on $[c, d]$, and let u be an absolutely continuous function on $[a, b]$ such that $u([a, b]) \subseteq[c, d]$. Then the composition $f \circ u$ is not necessarily absolutely continuous. However, we have the following result.

Theorem 3.1. Let f be a Lipschitz continuous function on $[c, d]$, and let u be an absolutely continuous function on $[a, b]$ such that $u([a, b]) \subseteq[c, d]$. Then $f \circ u$ is absolutely continuous. Moreover,

$$
(f \circ u)^{\prime}(t)=f^{\prime}(u(t)) u^{\prime}(t) \quad \text { for almost every } t \in[a, b],
$$

where $f^{\prime}(u(t)) u^{\prime}(t)$ is interpreted to be zero whenever $u^{\prime}(t)=0$ (even if f is not differentiable at $u(t))$.

Proof. Since f is a Lipschitz continuous function on $[c, d]$, there exists some $M>0$ such that $|f(x)-f(y)| \leq M|x-y|$ whenever $x, y \in[c, d]$. Let $\varepsilon>0$ be given. Since u is absolutely
continuous on $[a, b]$, there exists some $\delta>0$ such that $\sum_{i=1}^{n}\left|u\left(t_{i}\right)-u\left(s_{i}\right)\right|<\varepsilon / M$, whenever $\left\{\left[s_{i}, t_{i}\right]: i=1, \ldots, n\right\}$ is a finite collection of mutually disjoint subintervals of $[a, b]$ with $\sum_{i=1}^{n}\left(t_{i}-s_{i}\right)<\delta$. Consequently,

$$
\sum_{i=1}^{n}\left|(f \circ u)\left(t_{i}\right)-(f \circ u)\left(s_{i}\right)\right|=\sum_{i=1}^{n}\left|f\left(u\left(t_{i}\right)\right)-f\left(u\left(s_{i}\right)\right)\right| \leq \sum_{i=1}^{n} M\left|u\left(t_{i}\right)-u\left(s_{i}\right)\right|<\varepsilon .
$$

This shows that $f \circ u$ is absolutely continuous on $[a, b]$.
Since both u and $f \circ u$ are absolutely continuous on $[a, b]$, there exists a measurable subset E of $[a, b]$ such that $\lambda(E)=0$ and both $u^{\prime}(t)$ and $(f \circ u)^{\prime}(t)$ exist for all $t \in[a, b] \backslash E$. Suppose $t_{0} \in[a, b] \backslash E$. If $u^{\prime}\left(t_{0}\right)=0$, then for given $\varepsilon>0$, there exists some $h>0$ such that $\left|u(t)-u\left(t_{0}\right)\right| \leq \varepsilon\left|t-t_{0}\right|$ whenever $t \in\left(t_{0}-h, t_{0}+h\right) \cap[a, b]$. It follows that

$$
\left|f \circ u(t)-f \circ u\left(t_{0}\right)\right| \leq M\left|u(t)-u\left(t_{0}\right)\right| \leq M \varepsilon\left|t-t_{0}\right|
$$

for all $t \in\left(t_{0}-h, t_{0}+h\right) \cap[a, b]$. This shows that

$$
(f \circ u)^{\prime}\left(t_{0}\right)=0=f^{\prime}\left(u\left(t_{0}\right)\right) u^{\prime}\left(t_{0}\right) .
$$

Now suppose $t_{0} \in[a, b] \backslash E$ and $u^{\prime}\left(t_{0}\right) \neq 0$. Suppose $u(t) \neq u\left(t_{0}\right)$. Then we have

$$
\frac{(f \circ u)(t)-(f \circ u)\left(t_{0}\right)}{t-t_{0}}=\frac{f(u(t))-f\left(u\left(t_{0}\right)\right)}{u(t)-u\left(t_{0}\right)} \frac{u(t)-u\left(t_{0}\right)}{t-t_{0}} .
$$

Since $u^{\prime}\left(t_{0}\right)$ and $(f \circ u)^{\prime}\left(t_{0}\right)$ exist, we obtain

$$
\lim _{t \rightarrow t_{0}} \frac{(f \circ u)(t)-(f \circ u)\left(t_{0}\right)}{t-t_{0}}=(f \circ u)^{\prime}\left(t_{0}\right) \quad \text { and } \quad \lim _{t \rightarrow t_{0}} \frac{u(t)-u\left(t_{0}\right)}{t-t_{0}}=u^{\prime}\left(t_{0}\right) \neq 0
$$

Consequently,

$$
\lim _{t \rightarrow t_{0}} \frac{f(u(t))-f\left(u\left(t_{0}\right)\right)}{u(t)-u\left(t_{0}\right)}=\frac{(f \circ u)^{\prime}\left(t_{0}\right)}{u^{\prime}\left(t_{0}\right)}
$$

Let $r:=(f \circ u)^{\prime}\left(t_{0}\right) / u^{\prime}\left(t_{0}\right)$. For given $\varepsilon>0$, there exists some $\delta>0$ such that

$$
r-\varepsilon<\frac{f(u(t))-f\left(u\left(t_{0}\right)\right)}{u(t)-u\left(t_{0}\right)}<r+\varepsilon \quad \forall t \in\left(t_{0}-\delta, t_{0}+\delta\right) \cap[a, b] .
$$

Since $u^{\prime}\left(t_{0}\right) \neq 0$, there exists some $\eta>0$ such that any $x \in\left(u\left(t_{0}\right)-\eta, u\left(t_{0}\right)+\eta\right) \cap[c, d]$ can be expressed as $x=u(t)$ for some $t \in\left(t_{0}-\delta, t_{0}+\delta\right) \cap[a, b]$. Therefore,

$$
r-\varepsilon<\frac{f(x)-f\left(u\left(t_{0}\right)\right)}{x-u\left(t_{0}\right)}<r+\varepsilon \quad \forall x \in\left(u\left(t_{0}\right)-\eta, u\left(t_{0}\right)+\eta\right) \cap[c, d] .
$$

This shows that $f^{\prime}\left(u\left(t_{0}\right)\right)$ exists and $f^{\prime}\left(u\left(t_{0}\right)\right)=r=(f \circ u)^{\prime}\left(t_{0}\right) / u^{\prime}\left(t_{0}\right)$, as desired.

Theorem 3.2. Let g be a bounded and measurable function on $[c, d]$, and let u be an absolutely continuous function on $[a, b]$ such that $u([a, b]) \subseteq[c, d]$. Then $(g \circ u) u^{\prime}$ is integrable on $[a, b]$. Moreover, for any $\alpha, \beta \in[a, b]$,

$$
\int_{u(\alpha)}^{u(\beta)} g(x) d x=\int_{\alpha}^{\beta} g(u(t)) u^{\prime}(t) d t
$$

Proof. Let

$$
F(x):=\int_{c}^{x} g(t) d t, \quad x \in[c, d] .
$$

Since g is bounded, F is Lipschitz continuous. Moreover, $F^{\prime}(x)=g(x)$ for almost every $x \in[a, b]$. By Theorem 3.1, $F \circ u$ is absolutely continuous on $[a, b]$ and, for almost every $t \in[a, b],(F \circ u)^{\prime}(t)=g(u(t)) u^{\prime}(t)$. Suppose $\alpha, \beta \in[a, b]$ and $\alpha<\beta$. By Theorem 2.3, we have

$$
(F \circ u)(\beta)-(F \circ u)(\alpha)=F(u(\beta))-F(u(\alpha))=\int_{u(\alpha)}^{u(\beta)} F^{\prime}(x) d x=\int_{u(\alpha)}^{u(\beta)} g(x) d x
$$

On the other hand,

$$
(F \circ u)(\beta)-(F \circ u)(\alpha)=\int_{\alpha}^{\beta}(F \circ u)^{\prime}(t) d t=\int_{\alpha}^{\beta} g(u(t)) u^{\prime}(t) d t .
$$

This proves the desired formula for change of variables.

Theorem 3.3. Let g be an integrable function on $[c, d]$, and let u be an absolutely continuous function on $[a, b]$ such that $u([a, b]) \subseteq[c, d]$. If $(g \circ u) u^{\prime}$ is integrable on $[a, b]$, then

$$
\int_{u(\alpha)}^{u(\beta)} g(x) d x=\int_{\alpha}^{\beta} g(u(t)) u^{\prime}(t) d t, \quad \alpha, \beta \in[a, b] .
$$

Moreover, $(g \circ u) u^{\prime}$ is integrable if, in addition, u is monotone.
Proof. Suppose that g is integrable on $[a, b]$. Without loss of any generality, we may assume $g \geq 0$. For $n=1,2, \ldots$, let g_{n} be the function defined by

$$
g_{n}(x):= \begin{cases}g(x) & \text { if } 0 \leq g(x) \leq n \\ 0 & \text { if } g(x)>n\end{cases}
$$

Then $g_{n} \leq g_{n+1}$ for all $n \in \mathbb{N}$. Suppose $\alpha, \beta \in[a, b]$ and $\alpha<\beta$. By Theorem 3.2 we have

$$
\int_{u(\alpha)}^{u(\beta)} g_{n}(x) d x=\int_{\alpha}^{\beta} g_{n}(u(t)) u^{\prime}(t) d t .
$$

If u is monotone, then $u^{\prime}(t) \geq 0$ for almost every $t \in[a, b]$. Letting $n \rightarrow \infty$ in the above equation, by the monotone convergence theorem we obtain

$$
\int_{u(\alpha)}^{u(\beta)} g(x) d x=\int_{\alpha}^{\beta} g(u(t)) u^{\prime}(t) d t .
$$

Since g is integrable on $[c, d]$, it follows from the above equation that $(g \circ u) u^{\prime}$ is integrable on $[a, b]$. More generally, we assume that $(g \circ u) u^{\prime}$ is integrable on $[a, b]$ but u is not necessarily monotone. Then $\left|g_{n}(u(t)) u^{\prime}(t)\right| \leq g(u(t))\left|u^{\prime}(t)\right|$ for all $n \in \mathbb{N}$ and almost every $t \in[a, b]$. Thus, an application of the Lebesgue dominated convergence theorem gives the desired formula for change of variables.

