Chapter 3. Absolutely Continuous Functions

§1. Absolutely Continuous Functions

A function f : [a,b] — IR is said to be absolutely continuous on [a,b] if, given
e > 0, there exists some 6 > 0 such that

Z |f(yi) — flz)| <e,
i=1

whenever {[z;,y;] : ¢ = 1,...,n} is a finite collection of mutually disjoint subintervals of
la,b] with >0 | |y; — x| < 4.

Clearly, an absolutely continuous function on [a, b] is uniformly continuous. Moreover,
a Lipschitz continuous function on [a,b] is absolutely continuous. Let f and g be two
absolutely continuous functions on [a, b]. Then f+g¢g, f—g, and fg are absolutely continuous
on [a, b]. If, in addition, there exists a constant C' > 0 such that |g(x)| > C for all = € [a, b],
then f/g is absolutely continuous on [a, b].

If f is integrable on [a, b], then the function F' defined by

F(x) ::/xf(t)dt, a<x<b,

is absolutely continuous on [a, b].

Theorem 1.1. Let f be an absolutely continuous function on [a,b]. Then f is of bounded

variation on [a,b]. Consequently, f'(x) exists for almost every x € [a,b].

Proof. Since f is absolutely continuous on [a,b], there exists some é > 0 such that
S 1f (i) — f(z)] < 1 whenever {[z;,y;] : ¢ = 1,...,n} is a finite collection of mu-
tually disjoint subintervals of [a,b] with 7 | |y; — @;| < 8. Let N be the least inte-
ger such that N > (b —a)/d, and let a; := a+ j(b—a)/N for j = 0,1,...,N. Then
aj —aj_1 = (b—a)/N <. Hence, Vg'_, f <1for j =0,1,...,N. It follows that

N aj

\i/f:Z\/f<N.

j=laj—1

This shows that f is of bounded variation on [a,b]. Consequently, f'(z) exists for almost

every x € [a, b). []



Theorem 1.2. If f is absolutely continuous on [a,b] and f'(z) = 0 for almost every

x € [a,b], then f is constant.

Proof. We wish to show f(a) = f(c) for every c € [a,b]. Let E := {x € [a, ] : f'(z) = 0}.
For given ¢ > 0, there exists some § > 0 such that Y., [f(y;) — f(xi)| < € whenever
{[zi,y;] : i =1,...,n} is a finite collection of mutually disjoint subintervals of [a, b] with
Sy lyi — x| < 0. For each z € E, we have f’(x) = 0; hence there exists an arbitrary

small interval [a,, ¢,] such that z € [a,,c,] C [a, ] and

|f<cx) - f(a:c)| < S(C:c - aa:)'

By the Vitali covering theorem we can find a finite collection {[z,yx] : £ = 1,...,n} of

mutually disjoint intervals of this sort such that
AEN\ Upzy [zr, yr]) < 6.
Since A([a, ] \ E) = 0, we have
Ala; ] \ Uz [ze, ye]) = AE N\ Uy [ze, me]) < 6.

Suppose a <1 <y; <xy < --- <y, < c. Let yo:=a and z,4+1 := c. Then

n

> (@i —yk) = M[a, ]\ Up_y [ox, uil) <6,
k=0

Consequently,
n

S 1 f(@rer) = flur)| < e

k=0

Furthermore,
n

S ) — )| < 3 ey — ax) < e — a).

It follows from the above inequalities that

(@) = F@) < D 1f(@r) = Flu)l + D 1 (o) = flan)] < ele—a+1).
k=0 k=1
This shows that |f(c) — f(a)| < e(c—a+1) for all € > 0. Therefore, f(c) = f(a). [



§2. The Fundamental Theorem of Calculus

In this section we show that absolutely continuous functions are precisely those func-

tions for which the fundamental theorem of calculus is valid.

Theorem 2.1. If f is integrable on [a,b] and

/w f(t)dt=0 Vze€a,b,

then f(t) = 0 for almost every t € [a, b].

/Cdf(t)dt:()

for all ¢,d with a < ¢ < d <b. If O is an open subset of [a, b], then O is a countable union

Proof. By our assumption,

of mutually disjoint open intervals (c,,d,) (n =1,2,...); hence,

/ F(t)dt = i " rtydi=o.
o n=1"¢n

It follows that for any closed subset K of [a,b],

[swa=[ gwa-[  soa=o
K [a,b] [a,b]\ K

Let By :={x € [a,b] : f(z) > 0} and E_ := {z € [a,b] : f(x) < 0}. We wish to show
that A(E4) =0 and A(E_) = 0. If A(EL) > 0, then there exists some closed set K C E
such that A(K) > 0. But [, f(t)dt = 0. It follows that f = 0 almost everywhere on K.
This contradiction shows that A(E;) = 0. Similarly, A(E_) = 0. Therefore, f(t) = 0 for
almost every t € [a, b]. []

Theorem 2.2. If f is integrable on [a,b], and if F is defined by

F(x) ::/xf(t)dt, a<z<b,

then F'(x) = f(z) for almost every x in [a,b].
Proof. First, we assume that f is bounded and measurable on [a,b]. For n = 1,2,..., let

F(x+1/n) — F(x)
1/n ’

gn(T) := T € [a,b].
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It follows that
z+1/n
gn(x) = n/ f(t)dt, x € la,b).

Suppose |f(x)| < K for all x € [a,b]. Then |g,(z)| < K for all z € [a,b] and n € IN. Since
lim,, 00 gn(z) = F'(z) for almost every x € [a, b], by the Lebesgue dominated convergence

theorem, we see that for each ¢ € [a, b],

F'(z)dx = lim n(x) dz.
(x) gn(2)

—
n o0 a

But F' is continuous; hence,

n—oo n—oo

lim : gu(x)dz = Tim n{ / Ty de / T ) dx] — Fle) - F(a).

Consequently,

It follows that

for every ¢ € [a,b]. By Theorem 2.1, F'(z) = f(z) for almost every z in [a, b].
Now let us assume that f is integrable on [a,b]. Without loss of any generality, we
may assume that f > 0. For n =1,2,..., let f,, be the function defined by

_ Jf@) o< f(z)<nm,
fn(@) = {O if f(z) > n.

It is easily seen that F' = F,, + GG,,, where

x

Fo(z) = /Ifn(t)dt and G () ;:/ F(E) = fu(®)]dt, a<z<b

Since f(t) — fn(t) > 0 for all ¢ € [a, b], G,, is an increasing function on [a, b]. Moreover, by

what has been proved, F) (x) = f,(z) for almost every x € [a,b]. Thus, we have
F'(z) = F(z)+ Gl (x) > F.(x) = fo(z) for almost every x € [a,b].

Letting n — oo in the above inequality, we obtain F’(x) > f(z) for almost every x € [a, b].
It follows that

/ab F'(x)dz > /abf(a:) dz = F(b) — F(a).
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On the other hand,
Consequently,

But F'(z) > f(z) for almost every = € [a,b]. Therefore, F'(z) = f(z) for almost every z
in [a, b]. []

Theorem 2.3. A function F on [a,b] is absolutely continuous if and only if

F(z) = F(a) +/ f(t)dt
for some integrable function f on |a,b].

Proof. The sufficiency part has been established. To prove the necessity part, let ' be an
absolutely continuous function on [a,b]. Then F is differentiable almost everywhere and

F' is integrable on [a, b]. Let
G(z) := F(a) +/ F'(t)dt, =z € [a,b].

By Theorem 2.2, G'(z) = F'(x) for almost every x € [a, b]. It follows that (F —G)'(x) =0
for almost every x € [a,b]. By Theorem 1.2, F — G is constant. But F(a) = G(a).
Therefore, F(z) = G(z) for all x € [a, b]. []

§3. Change of Variables for the Lebesgue Integral

Let f be an absolutely continuous function on [c, d], and let u be an absolutely con-
tinuous function on [a, b] such that u([a,b]) C [c,d]. Then the composition f o u is not

necessarily absolutely continuous. However, we have the following result.

Theorem 3.1. Let f be a Lipschitz continuous function on [c, d], and let u be an absolutely
continuous function on [a, b] such that u([a,b]) C [c,d]|. Then fou is absolutely continuous.
Moreover,

(fouw)(t) = f'(u(t))u(t) for almost every t € [a,b],

where f'(u(t))u'(t) is interpreted to be zero whenever u'(t) = 0 (even if f is not differen-
tiable at u(t)).

Proof. Since f is a Lipschitz continuous function on [c, d], there exists some M > 0 such
that | f(z)—f(y)| < M|z—y| whenever z,y € [¢,d]. Let ¢ > 0 be given. Since u is absolutely
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continuous on [a, b], there exists some § > 0 such that > | |u(t;)—u(s;)| < /M, whenever
{[si,t;] -4 =1,...,n} is a finite collection of mutually disjoint subintervals of [a, b] with
o (t; — s;) < 4. Consequently,

Z [(fou)(ti) = (fou)(si)| = Z [f (u(ts)) = f(u(si)] < ZMW(E) —u(si)] <e.

This shows that f ow is absolutely continuous on [a, b].

Since both u and f o u are absolutely continuous on [a, b], there exists a measurable
subset E of [a, b] such that A(F) = 0 and both /() and (fou)’(t) exist for all t € [a,b]\ E.
Suppose ty € [a,b] \ E. If u/(tg) = 0, then for given £ > 0, there exists some h > 0 such
that |u(t) — u(to)| < €|t — to| whenever t € (tg — h,to + h) N [a,b]. It follows that

|[f ou(t) = foulto)] < Mlu(t) — ulto)| < Melt —to
for all t € (to — h,to + h) N [a,b]. This shows that
(f ou)(to) =0 = f'(u(to))w (to).
Now suppose ty € [a,b] \ E and u/(ty) # 0. Suppose u(t) # u(ty). Then we have

(fou)(t) = (fou)(to) _ f(u(t)) — flulto)) u(t) — ulto)
t) —

t —to u(t) —ulty) t—to

Since u/(to) and (f o u)’(to) exist, we obtain

tlim (f o u)(ti : if °w){to) = (fou)(tp) and lim w =u'(to) # 0.
—to 0 t—to 0
Consequently,

i F0(0) = (ulto)) _ (£ o u) (o)

i—to  u(t) — u(to) w(to)

Let 7 := (f ou)'(to)/u (to). For given € > 0, there exists some ¢ > 0 such that

S (CLO) Rt CICY) RSP PR WA )

u(t) —u(to)

Since u/(ty) # 0, there exists some 1 > 0 such that any = € (u(to) — n,u(to) +n) N |c, d]

can be expressed as x = u(t) for some t € (tyg — 6,t9 + 0) N [a, b]. Therefore,

r—e< f<:2 : igz)()t())) <r+4+e Vze (ulty) —n,ulte) +n)Nlc,d.

This shows that f'(u(tg)) exists and f/(u(tg)) =7 = (f ou)'(to)/u (to), as desired. []



Theorem 3.2. Let g be a bounded and measurable function on [c,d], and let u be an
absolutely continuous function on [a,b] such that u([a,b]) C [c,d]. Then (g o w)u' is

integrable on [a,b]. Moreover, for any «, 3 € [a,b],

u(B) E
x)dr = U ' (t) dt.
LL®9<> Lg<w>a>t

Proof. Let N
F(a) ;:/ gt dt, x e d).

Since ¢ is bounded, F is Lipschitz continuous. Moreover, F'(x) = g(x) for almost every
x € [a,b]. By Theorem 3.1, F o u is absolutely continuous on [a, b] and, for almost every
t € la,b], (Fou)(t) =g(u(t))u'(t). Suppose o, € [a,b] and a < B. By Theorem 2.3, we

have
u(B) u(B)
(Fou)(s) - (Fou(a) = Pu(®) - Flu(a) = [ " Flayde= [ " g(o)do

On the other hand,

B

(Fou)(B)— (Fou)(a) :/ (Fou)(t)dt

e

Il
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=
Q
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~
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~
SN—
oY
Ry

This proves the desired formula for change of variables. ]

Theorem 3.3. Let g be an integrable function on [c,d], and let u be an absolutely con-
tinuous function on [a,b] such that u([a,b]) C [c,d]. If (g o u)u' is integrable on [a,b],
then

u(B) B
/ o(z) dz = / g (1) dt, B < [a,b].
u(a) «@

Moreover, (g o w)u' is integrable if, in addition, u is monotone.

Proof. Suppose that ¢ is integrable on [a,b]. Without loss of any generality, we may
assume g > 0. Forn =1,2,..., let g, be the function defined by

 Jg(x) if0<g(x)<n,
gn(x) = {g if g(x)g> n.

Then g,, < gn41 for all n € IN. Suppose a, 8 € [a,b] and o < 3. By Theorem 3.2 we have

/u?j) gnlw) do = /a ﬁ gn(u(t))u'(t) dt.
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If u is monotone, then '(t) > 0 for almost every ¢ € [a,b]. Letting n — oo in the above

equation, by the monotone convergence theorem we obtain

u(B) B
| ewyde= [ gutinutear
w(e) o

Since ¢ is integrable on [, d], it follows from the above equation that (gow)u’ is integrable
on [a,b]. More generally, we assume that (g o u)u’ is integrable on [a,b] but w is not
necessarily monotone. Then |g, (u(t))u'(t)] < g(u(t))|u'(t)] for all n € IN and almost every
t € [a,b]. Thus, an application of the Lebesgue dominated convergence theorem gives the

desired formula for change of variables. ]



