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Abstract

The issue of testing for a unit root allowing for a structural break in the trend
function is considered. The focus is on the construction of more powerful tests
using the information in relevant multivariate data sets. The proposed test adopts
the GLS detrending approach and uses correlated stationary covariates to improve
power. As it is standard in the literature, the break date is treated as unknown.
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tests.
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1 Introduction

Testing for an autoregressive unit root against trend stationary alternatives has become

standard in the empirical analysis of macroeconomic time series. While a substantial

literature is devoted to the construction of unit root tests with good size and power,

the work of Perron (1989) demonstrates the need to allow for structural breaks in the

trend function of common U.S. macroeconomic time series. This paper proposes a test

of the unit root hypothesis that allows for a structural break in the trend function and

uses the information in relevant multivariate data sets to improve power. The test is

simple to construct and exhibits power that can be far beyond what is achievable by

univariate tests.

Perron (1989) shows that the power of unit root tests against trend stationary

alternatives can be severely reduced when the true data generating process (DGP)

involves structural breaks in the trend function. He proposes unit root tests that are

valid when a break in the trend function is present given that the location of the

break is known, a priori. This assumption was heavily criticized (see, e.g., Christiano,

1992) and, as a consequence, the subsequent literature has focused on methods that

endogenously determine the location of the break; see, Zivot and Andrews (1992),

Perron (1997), Perron and Rodŕıguez (2003), Rodŕıguez (2007), Papell and Prodan

(2007), Kim and Perron (2009), Harris et al. (2009), and Carrion-i-Silvestre et al.

(2009). While unit root tests with an estimated break date are robust to the presence

of a structural break in the trend function, the tests can have very low power against

local alternatives that are close to unity.

The recent literature has focused on improving the power of unit root tests that

allow for structural breaks in the trend function. Carrion-i-Silvestre et al. (2009)

develop tests that allow for multiple breaks in the level and the slope of the trend

function both under the null and the alternative hypotheses. While these tests have
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improved power when a break is in fact present, the tests suffer from large liberal size

distortions when the break does not occur.1 To solve this problem, Carrion-i-Silvestre

et al. (2009) suggest the use of a pre-test to determine the presence of a break. A

similar strategy is recommended in Harris et al. (2009). They propose a break date

estimator that also relies on a pre-test and yields efficient unit root tests. In finite

samples, the properties of these unit root tests are directly related to the performance

of the pre-test and, in particular, the tests suggested to determine the presence of a

break have low power when the break is of small or moderate size. This result implies

that the unit root tests proposed in Carrion-i-Silvestre et al. (2009) and Harris et al.

(2009) can have very low power when large structural breaks are not present.2

This paper follows the approach initiated by Hansen (1995) and uses the infor-

mation contained in correlated stationary covariates to construct unit root tests that

can have higher power than univariate tests. Hansen (1995) proposes a unit root test

with covariates which uses the Dickey-Fuller regression equation (Dickey and Fuller,

1979; Said and Dickey, 1984) augmented with leads and lags of stationary covariates

to improve power. The role of the covariates is to soak up part of the variability in the

variable of interest, generating tighter confidence intervals and more powerful tests.3

Based on the results in Elliott et al. (1996), Pesavento (2006) suggests constructing

Hansen’s test using generalized least squares (GLS) detrended data and shows that

this approach yields tests with good size and power. This paper contributes to the

literature proposing a test of the unit root hypothesis that allows for a structural break

in the trend function and uses correlated stationary covariates to improve power. As

it is standard in the literature, the break date is treated as unknown. The test uses

GLS detrended data and can be seen as an extension of the test proposed in Pesavento

(2006) to the case where the trend function exhibits a structural break. Alternatively,

it can be seen as an extension of a test proposed in Perron and Rodŕıguez (2003) that

incorporates stationary covariates to improve power.4
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In the next section, I describe the DGP and the three structural break models

considered. In section 3, I discuss the construction of covariate unit root tests for the

case where the trend function exhibits a structural break and discus the estimation of

the break date. The asymptotic distributions of the test are derived and approximated

numerically. The asymptotic local power functions are computed for the trending cases

and show large power gains. In section 4, the finite sample properties of the test are

analyzed using Monte Carlo simulation and results show that the test exhibits small

size distortions and power that can be far beyond what is achievable by univariate

tests. Section 5 concludes.

2 The Model with a Structural Break

Consider a DGP of the form

xt = ψ′xzxt + uxt, (1)

yt = ψ′yzyt(δ0) + uyt, (2)

and

A(L)

 uxt

(1− ρL)uyt

 = εt t = 1, 2, ..., T, (3)

where yt is univariate (and potentially non-stationary), xt is a stationary process of

dimension (m × 1), and A(L) is a matrix polynomial in the lag operator with first

element equal to the identity matrix. zxt and zyt(δ0) contain deterministic terms to

be defined later. As in Elliott and Jansson (2003), the error process {εt} satisfies the

following assumptions:

Assumption 1. |A(r)| = 0 has all roots outside the unit circle.

Assumption 2. Et−1(εt) = 0, Et−1(εtε
′
t) = Σ, and E ‖εt‖4+ζ < ∞ (a.s.) for some
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ζ > 0, where Σ is positive definite, Et−1(·) denotes the conditional expectation with

respect to {εt−1, εt−2, ...}, and ‖·‖ is the Euclidean norm.

Assumption 3. u0,u−1,...,u−k are Op(1) with ut = [u′xt, uyt]
′.

Define ut(ρ) = [u′xt, uyt(ρ)]′ = [u′xt, (1 − ρL)uyt]
′ = A(L)−1εt and let Γ(k) =

E[ut(ρ)ut+k(ρ)′] be the covariance function of ut(ρ). Following Pesavento (2006), As-

sumption 4 requires that Γ(k) is absolute summable.

Assumption 4. The covariance function of ut(ρ) is absolute summable such that∑+∞
j=−∞ ‖Γ(k)‖ <∞ and

∑+∞
j=−∞ j ‖Γ(k)‖ <∞.

Remark 1. Under Assumptions 1-4, T−1/2
∑bTrc

t=1 ut(ρ) ⇒ Ω1/2W (r), where “⇒”

denotes weak convergence in distribution, b·c is the integer part, W (r) is a multivariate

Wiener process defined on the space of continuous functions on the interval [0,1], and

Ω = A(1)−1ΣA(1)−1′ is 2π times the spectral density at frequency zero of ut(ρ).

Consider the partition of Ω

Ω =

 Ωxx ωxy

ωyx ωyy


and define R2 = ω−1

yy ωyxΩ−1
xxωxy, the frequency zero correlation between the shocks to

xt and the quasi-differences of yt. Although 0 ≤ R2 ≤ 1, following Elliott and Jansson

(2003) it is assumed that 0 ≤ R2 < 1, ruling out the case where, under the null, the

partial sum of xt cointegrates with yt.

Three structural break models are considered for the deterministic components. Let

T0 be the time of the structural break in (2), and assume T0 = bTδ0c with δ0 ≡ T0/T ∈

(0, 1) the break fraction parameter. Then zyt(δ0) = (1, 1(t > T0), t, 1(t > T0)(t− T0))′,

where 1(·) is the indicator function, and ψy = (µy1, µy2, βy1, βy2)′. In the case of

covariates, the trend components are zxt = (1, t)′ and ψx = (µx, βx)′, with µx and βx
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of dimension (m × 1). Elliott and Jansson (2003) and Pesavento (2006) consider five

cases for the deterministic part of the model: (1) µy1 = µy2 = βy1 = βy2 = 0 and

µx = βx = 0; (2) µy2 = βy1 = βy2 = 0 and µx = βx = 0; (3) µy2 = βy1 = βy2 = 0

and βx = 0; (4) µy2 = βy2 = 0 and βx = 0; (5) µy2 = βy2 = 0. The first case then

corresponds to a model with no deterministic terms. The second has no constant or

trend in xt but a constant in yt. The third case includes a constant in xt and a constant

in yt. Case 4 includes a constant in xt and a constant and trend in yt. Case 5 allows

for constants and trends in both xt and yt. The models analyzed here extend these

cases to incorporate a structural break in the deterministic component of yt.

Model A. Structural break in the intercept: The “crash” model in Perron (1989)

allows for a one-time structural break in the intercept of yt, a level shift. There are

four relevant cases for the deterministic part of this model:

Case 2-A: βy1 = βy2 = 0 and µx = βx = 0.

Case 3-A: βy1 = βy2 = 0 and βx = 0.

Case 4-A: βy2 = 0 and βx = 0.

Case 5-A: βy2 = 0.

For this model, the set of deterministic components of yt, zyt(δ0), is given by

zyt(δ0) = (1, 1(t > T0))′ (4)

for cases 2-A and 3-A, and

zyt(δ0) = (1, 1(t > T0), t)′ (5)

for cases 4-A and 5-A.

Model B. Structural break in the slope: The “changing growth” model in Perron

(1989) allows for a one-time structural break in the slope of yt. There are two relevant
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cases for the deterministic part of this model:

Case 4-B: µy2 = 0 and βx = 0.

Case 5-B: µy2 = 0.

For this model, zyt(δ0) is given by

zyt(δ0) = (1, t, 1(t > T0)(t− T0))′ (6)

for both cases.

Model C. Structural break in the slope and the intercept: This model allows for a

one-time structural break in the slope and the intercept of yt. There are two relevant

cases for the deterministic part of this model:

Case 4-C: βx = 0.

Case 5-C: No restrictions.

For this model, zyt(δ0) is given by

zyt(δ0) = (1, 1(t > T0), t, 1(t > T0)(t− T0))′ (7)

for both cases. Note that in the most general case (Model C), a structural break in the

intercept (µy2 6= 0) and the slope (βy2 6= 0) of yt is allowed while no structural break

is allowed in the deterministic component of xt.
5

3 The Test and Asymptotic Distributions

In this section, I discuss the construction and asymptotic properties of covariate unit

root tests that allow for a structural break in the trend function. Section 3.1 considers

the construction of the statistic under the assumption that the break date is known. In

section 3.2, the asymptotic distributions of the tests are derived for the case outlined

6



in section 3.1. Section 3.3 considers the case where the break date is not known. I

discuss the estimation of the break fraction and the asymptotic distributions of the

tests in this case. Section 3.4 considers the selection of the non-centrality parameter

for GLS detrending. In section 3.5, I approximate the asymptotic distributions and

compute the asymptotic local power functions of the tests.

3.1 The test statistic

The objective is to test whether the univariate time series yt is an integrated process of

order one (ρ = 1) against the alternative of stationarity (|ρ| < 1). Let xdt = xt − ψ̂′xzxt

be the detrended xt with ψ̂x the least squares (OLS) estimate of ψx. Because the

covariates are stationary (by assumption), OLS detrending is sufficient. The variable

of interest (yt), however, is GLS detrended, i.e. detrended under the local alternative

as in Elliott et al. (1996). Let ydt = yt − ψ̃′yzyt(δ0) be the detrended yt with ψ̃y the

GLS estimate of ψy such that

ψ̃y = arg min
ψy

T∑
t=1

[
yρ̄t − ψ

′
yz
ρ̄
yt(δ0)

]2
, (8)

where yρ̄t = (y1, (1− ρ̄L)yt) and zρ̄yt(δ0) = (zy1(δ0), (1− ρ̄L)zyt(δ0)) for t = 1, ..., T , with

ρ̄ = 1 + c̄/T , and c̄ ≤ 0 is the non-centrality parameter. The selection of c̄ is discussed

below. The choice of zxt and zyt(δ0) depends on the selected deterministic case and

structural break model as defined in the previous section. The test statistic is based

on the covariate augmented Dickey-Fuller regression

∆ydt = φydt−1 +
k∑

j=−k
π′xjx

d
t−j +

k∑
j=1

πyj∆y
d
t−j + etk t = k + 2, ..., T − k. (9)

Note that deterministic terms are not included in (9) as the data has already been

detrended and the lead and lag orders k are restricted to be equal. As it is standard
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in the literature, the truncation lag k in (9) satisfies the following condition:

Assumption 5. k →∞ and k3/T → 0 as T →∞.

Ng and Perron (1995) show that traditional model selection criteria such as the

Bayesian or Akaike information criterion satisfy the upper bound condition in As-

sumption 5 and, hence, can be used to select k. While Pesavento (2006) recommends

using the value of k selected by minimizing a modified Akaike information criterion

(MAIC) of the type suggested in Ng and Perron (2001) from an univariate regression

on the GLS detrended yt, Fossati (2012) shows that forcing the lead and lag orders in

(9) to be equal results in a small power reduction in the tests that can be avoided by

removing this constraint.

The CADF-GLS(δ0) test statistic is the t-statistic for testing φ = 0 (ρ = 1) in

(9) and rejects for large negative values. The critical values depend on the correlation

between ydt and xdt , so a consistent estimate of R2 is needed. Hansen (1995) suggests

using a nonparametric estimator of the form

R̂2 = 1−

(
θ̂2

21

θ̂11θ̂22

)
, (10)

where

Θ̂ =

 θ̂11 θ̂12

θ̂21 θ̂22

 =

M∑
i=−M

w(i/M)
1

T

∑
t

ν̂t−iν̂
′
t, (11)

with ν̂t =
(
êtk+

∑k2
j=−k1 π̂

′
xjx

d
t−j , êtk

)′
, w(·) is a kernel weight function, e.g. the Bartlett

or Parzen kernels, and M is a bandwidth.6 In this paper, all estimations are performed

using the Parzen kernel and a bandwidth determined following Andrews (1991).

3.2 Asymptotic distributions with a known break date

I start considering the limiting distribution of the tests in the case where the break date

is known. The asymptotic distributions are derived using a local-to-unity framework
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(Phillips, 1987a) where ρ = 1+c/T with c ≤ 0 fixed as T →∞. Theorem 1 summarizes

the asymptotic distributions for the case where a one-time break in the intercept is

allowed (Model A).

Theorem 1 (Model A). Let yt be generated by equations (1) to (3) with ρ = 1 + c/T

and under Assumptions 1 to 5, and the CADF-GLS(δ0) be the t-statistic for testing

φ = 0 in regression (9) with data obtained from local GLS detrending at ρ̄ = 1 + c̄/T .

Then, as T →∞, for Model A we have

tφ̂(δ0)⇒
(∫ 1

0
Jd 2
xyc

)1/2
[(∫ 1

0
Jd 2
xyc

)−1(∫ 1

0
JdxycdWy + Λcc̄

)
+ c

]
≡ H iA

(
c, c̄, R2

)
where i refers to the deterministic case (i = 2, 3, 4, 5), and

1. Λcc̄ = 0 and Jdxyc(r) = Jxyc(r) for case 2.

2. Λcc̄ = Q1/2Wx(1)
∫ 1

0 J
d
xyc and Jdxyc(r) = Jxyc(r) for case 3.

3. Λcc̄ = Q1/2Wx(1)
∫ 1

0 J
d
xyc−Vcc̄

[∫ 1
0 J

d
xyc − c

∫ 1
0 rJ

d
xyc

]
and Jdxyc(r) = Jxyc(r)−rVcc̄

for case 4.

4. Λcc̄ = Q1/2
[
−2Wx(1) + 6

∫ 1
0 Wx

] ∫ 1
0 J

d
xyc +Q1/2

[
6Wx(1)− 12

∫ 1
0 Wx

] ∫ 1
0 rJ

d
xyc

−Vcc̄
[∫ 1

0 J
d
xyc − c

∫ 1
0 rJ

d
xyc

]
and Jdxyc(r) = Jxyc(r)− rVcc̄ for case 5.

Jxyc(r) is an Ornstein-Uhlenbeck process such that Jxyc(r) = Wxy(r) + c
∫ r

0 e
(r−s)c

Wxy(s)ds with Wxy(r) = Q1/2Wx(r) + Wy(r) where Wx(r) and Wy(r) are univariate

independent standard Brownian motions, and Q = R2/(1 − R2). Vcc̄ = b1/a1, b1 =

(1− c̄)Jxyc(1)+ c̄2
∫ 1

0 rJxyc, and a1 = 1− c̄+ c̄2/3. Unless otherwise stated, all integrals

are over r with r suppressed, e.g.
∫ 1

0 J
d
xyc =

∫ 1
0 J

d
xyc(r)dr.

Remark 2. In the case of Model A, the tests have the same asymptotic distributions

established in Pesavento (2006, Theorem 2) as a break in the intercept is a special case

of the “slowly evolving trend” considered in Elliott et al. (1996).
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Note that the limiting distributions in Theorem 1 are independent of the break

fraction parameter (δ0). This results does not hold when a break in the slope is

present. The limiting distributions of the tests in the case where a break in the slope

is allowed (Models B and C) are summarized in Theorem 2.

Theorem 2 (Models B and C). Let yt be generated by equations (1) to (3) with

ρ = 1 + c/T and under Assumptions 1 to 5, and the CADF-GLS(δ0) be the t-statistic

for testing φ = 0 in regression (9) with data obtained from local GLS detrending at

ρ̄ = 1 + c̄/T . Then, as T →∞, for Models B and C we have

tφ̂(δ0)⇒
(∫ 1

0
Jd 2
xyc

)1/2
[(∫ 1

0
Jd 2
xyc

)−1(∫ 1

0
JdxycdWy + Λcc̄

)
+ c

]
≡ H iB

(
c, c̄, R2, δ0

)
where i refers to the deterministic case (i = 4, 5), and

Λcc̄ = Λx − V (1)
cc̄

[∫ 1

0
Jdxyc − c

∫ 1

0
rJdxyc

]
− V (2)

cc̄

[∫ 1

δ0

Jdxyc − c
∫ 1

δ0

(r − δ0)Jdxyc

]
,

with

1. Λx = Q1/2Wx(1)
∫ 1

0 J
d
xyc for case 4.

2. Λx = Q1/2
[
−2Wx(1) + 6

∫ 1
0 Wx

] ∫ 1
0 J

d
xyc+Q

1/2
[
6Wx(1)− 12

∫ 1
0 Wx

] ∫ 1
0 rJ

d
xyc for

case 5.

Jdxyc(r, δ0) = Jxyc(r)−rV (1)
cc̄ −(r−δ0)V

(2)
cc̄ 1(r > δ0) with Jxyc(r) an Ornstein-Uhlenbeck

process such that Jxyc(r) = Wxy(r) + c
∫ r

0 e
(r−s)cWxy(s)ds with Wxy(r) = Q1/2Wx(r) +

Wy(r) where Wx(r) and Wy(r) are univariate independent standard Brownian motions,

and Q = R2/(1 − R2). V
(1)
cc̄ = (λ1b1 + λ2b2) and V

(2)
cc̄ = (λ2b1 + λ3b2) where b1 =

(1 − c̄)Jxyc(1) + c̄2
∫ 1

0 rJxyc, b2 = (1 − c̄ + c̄δ0)Jxyc(1) − Jxyc(δ0) + c̄2
∫ 1
δ0

(r − δ0)Jxyc,

λ1 = a3/a4, λ2 = −a2/a4, λ3 = a1/a4, a1 = 1 − c̄ + c̄2/3, a2 = 1 − δ0 − c̄(1 − δ0) −

c̄2δ0(1− δ2
0)/2 + c̄2(1− δ3

0)/3, a3 = 1− δ0− c̄(1− 2δ0 + δ2
0)− c̄2δ0(1− δ0) + c̄2(1− δ3

0)/3,
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and a4 = a1a3− a2
2. Unless otherwise stated, all integrals are over r with r suppressed,

e.g.
∫ 1

0 J
d
xyc =

∫ 1
0 J

d
xyc(r, δ0)dr.

Remark 3. As in Perron and Rodŕıguez (2003), since a break in the intercept is

a special case of the “slowly evolving trend” considered in Elliott et al. (1996), the

limiting distributions for Models B and C are the same.

Similar to other tests in the literature, the distributions depend on the value of the

parameter R2. Furthermore, the limiting distributions of the tests are nonstandard and

depend on the alternative chosen (c̄). This dependence implies that no uniformly most

powerful test exists for this problem and power depends on the selected alternative.

The case when the break date is unknown is discussed next.

3.3 The case when the break date is unknown

While in some applications the break date may be known, a priori, oftentimes the

researcher will want to treat the break date as unknown. An estimator of the break

fraction considered in the literature consists in selecting the break date that maximizes

the absolute value of the t-statistic on one of the break parameters (µy2,βy2) in (8);

see, Perron (1997), Vogelsang and Perron (1998), Perron and Rodŕıguez (2003), and

Rodŕıguez (2007).7 If Model A is specified, δ̂ is estimated as the break date that

maximizes the absolute value of the t-statistic on the coefficient of the change in the

intercept. For Models B or C, δ̂ is chosen to maximize the absolute value of the

t-statistic on the coefficient of the change in the slope. Denote the resulting estimator

δ̂ = arg max
δ∈[ε,1−ε]

 |tµ̂y2(δ)| for Model A

|tβ̂y2(δ)| for Models B and C
(12)

where ε refers to the required trimming with ε = 0.15 being used throughout.

In the case of Model A, the distributions do not depend on the break fraction

11



and, asymptotically, any estimate of δ0 can be used. In finite samples however, a

good estimate of the break date is important. In the case of Models B and C, the

distributions depend on whether the break is present or not. Vogelsang and Perron

(1998) show that, under the null hypothesis, if βy2 6= 0 then δ̂ is a consistent estimator

of the break fraction and the asymptotic distributions of the tests are the same as

in the case where the break date is known (Theorem 2). In this case, critical values

can be tabulated for different values of the break fraction. While the use of critical

values computed under this approach (i.e., assuming βy2 6= 0) yields more powerful

tests when the break is in fact present, the tests are severely over-sized when a break

is not present (βy2 = 0). Asymptotically, this problem can be avoided with a pre-test

to determine the presence of a break, a strategy adopted in Carrion-i-Silvestre et al.

(2009) and Harris et al. (2009). In finite samples, however, the performance of these

unit root tests is directly related to the performance of the pre-test. In particular,

the tests suggested to determine the presence of a break have low power when the

break is of small or moderate size directly affecting the size of the unit root tests (see

Carrion-i-Silvestre et al., 2009; Harris et al., 2009).

A conservative approach suggested in Vogelsang and Perron (1998) uses critical

values obtained under the assumption that no break is present. Remark 4 summarizes

the asymptotic results for the case when, under the null hypothesis, there is no change

in the slope of the trend function (βy2 = 0).

Remark 4. Under the null hypothesis, when no break in the slope of the trend function

is present (βy2 = 0) we have that tβ̂y2(δ) ⇒ V
(2)
cc̄ λ

−1/2
3 with V

(2)
cc̄ and λ3 defined in

Theorem 2. Then,

δ̂ = arg max
δ∈[ε,1−ε]

|tβ̂y2(δ)| ⇒ arg max
δ∈[ε,1−ε]

|V (2)
cc̄ λ

−1/2
3 | ≡ δ∗. (13)

For Models B and C, tφ̂(δ̂)⇒ H iB
(
c, c̄, R2, δ∗

)
for i = 4, 5.

12



The asymptotic distributions of the tests are then given by

CADF-GLS(δ̂)⇒

 H iA
(
c, c̄, R2

)
for Model A and i = 2, 3, 4, 5

H iB
(
c, c̄, R2, δ∗

)
for Models B and C and i = 4, 5

(14)

with terms defined in Theorems 1 and 2 and Remark 4. When critical values computed

under the conservative approach are used, the tests have an asymptotic size which is

equal to the asymptotic level when the break is not present and an asymptotic size

which is less than the asymptotic level when the break is present. Under the alternative

hypothesis, however, the conservative approach yields less powerful tests. Because low

power is less problematic when good covariates are available, I adopt the conservative

approach suggested in Vogelsang and Perron (1998) and given by (12) and (14).8

3.4 Selection of the non-centrality parameter c̄

Elliott et al. (1996) recommend using the value of the non-centrality parameter c̄ such

that the asymptotic power of the point-optimal unit root test is 50%. For covariate

tests, however, the “optimal” c̄ will depend on R2. Nevertheless, Elliott and Jansson

(2003) recommend using the values of c̄ that correspond to the case where the covariates

have no useful information (R2 = 0), noting that low power is less of an issue as R2

rises above zero.9 Following this recommendation and the results of Elliott et al. (1996)

we have c̄ = −7 for models 2-A and 3-A, and c̄ = −13.5 for models 4-A and 5-A. In

the case of Models B and C, when R2 = 0 the tests are asymptotically equivalent to

the ADF-GLS test of Perron and Rodŕıguez (2003). Therefore, for models 4-B, 5-B,

4-C, and 5-C we have c̄ = −22.5. While the limiting distributions for Models B and C

are also a function of δ∗, which is now random, results in Perron and Rodŕıguez (2003)

show that this approach yields tests with power functions that lie very close to the

power envelope.
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3.5 Asymptotic local power functions and critical values

The asymptotic local power functions for Model A are analyzed in Pesavento (2006)

and, hence, not discussed here. For Models B and C, the asymptotic local power

functions are given by π∗(c, c̄, R2) = Pr[H iB(c, c̄, R2, δ∗) < b(c̄, R2)] where b(c̄, R2)

is such that Pr[H iB(0, c̄, R2, δ∗) < b(c̄, R2)] = 0.05 and H iB(c, c̄, R2, δ∗) is defined in

Theorem 2 and Remark 4. The asymptotic distributions are simulated approximating

the Wiener processes on [0,1] as the partial sums of i.i.d. N(0, 1) random variables

using 1,000 steps and 10,000 replications. Figure 1 displays the asymptotic local power

functions for case 5. In each panel, the lowest curve corresponds to R2 = 0 and the

curves are strictly increasing in R2 with R2 = 0, 0.3, 0.5, 0.7, and 0.9. The increase in

power due to an increase in R2 is substantial. Consider the asymptotic power in case

5 at the local alternative c̄ = −5.10 Similar to the univariate versions of the test, the

asymptotic power when R2 = 0 is about 7%, barely above the asymptotic level. Power

increases to 11% when R2 = 0.3, to 19% when R2 = 0.5, and to 72% when R2 = 0.9.

[ FIGURE 1 ABOUT HERE ]

Critical values are tabulated for the limiting distributions under the null hypothesis

(c = 0). The asymptotic distributions given by (14) are simulated approximating

the Wiener processes on [0,1] as the partial sums of i.i.d. N(0, 1) random variables

using 1,000 steps and 100,000 replications. Finite sample critical values are tabulated

using data generated by a random walk with i.i.d. N(0, 1) errors, with the initial

observation set to zero, T ∈ {100, 250}, and 50,000 replications. Figure 2 displays the

asymptotic distributions for case 5. In each panel, the curve with the most negative

mode corresponds to R2 = 0, and the modes are strictly increasing in R2 with R2 =

0, 0.3, 0.5, 0.7, and 0.9. The distributions show that, for a given level, critical values

increase (become less negative) as R2 increases. 1, 5, and 10% critical values for the

CADF-GLS(δ̂) test statistic for selected values of R2 are given in Tables 1-3. When
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R2 = 0 the asymptotic critical values are very close to the corresponding values in

Rodŕıguez (2007) for Model A and Perron and Rodŕıguez (2003) for Models B and C.

Critical values are determined for the estimated R̂2, and linear interpolation can be

used for intermediate values of R̂2.

[ FIGURE 2 ABOUT HERE ]

[ TABLES 1-3 ABOUT HERE ]

4 Finite Sample Properties

In this section, the finite sample size and power properties of the CADF-GLS(δ̂) test

are evaluated using Monte Carlo simulation. In section 4.1, I consider the case where

the covariates behave in accordance with the assumptions of the model, i.e. the co-

variates are stationary and do not exhibit structural breaks in the trend function. The

case where the covariates are non-stationary or highly persistent is analyzed in Hansen

(1995). He notes that including non-stationary covariates invalidates the asymptotic

results derived in this paper and, based on this result, recommends taking first dif-

ferences before including highly persistent variables in the regression. Section 4.2

considers the consequences of ignoring a structural break in the trend function of the

covariates.

4.1 Well behaved covariates

To analyze the finite sample size and power properties of the test in the case where the

covariates behave in accordance with the assumptions of the model, consider a process

generated by a model of the form

xt = uxt, (15)

yt = µy1(t > T0) + βy1(t > T0)(t− T0) + uyt, (16)
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and  uxt

(1− ρL)uyt

 = et, (17)

where et ∼ i.i.d. N(0,Σ) for t > 0, and et = 0 for t ≤ 0. Σ is a symmetric

matrix of dimension (2 × 2) with diagonal elements equal to 1 and off-diagonal el-

ements equal to the degree of correlation R. Structural breaks of several magni-

tudes are considered, with the level shift µy ∈ {0, 0.5, 1, 5} and, for each value of µy,

βy ∈ {−2.0,−1.8,−1.6, ..., 2.0}. The model is specified for R ∈ {0, 0.3, 0.5, 0.7, 0.9},

and three values of the break fraction δ0 ∈ {0.3, 0.5, 0.7}. The sample size T = 100 in

all cases and, as a consequence, T0 ∈ {30, 50, 70}. To avoid issues related to the deter-

mination of the lead and lag orders, all tests are constructed for ki = 0 for i = 1, 2, 3.

Empirical power is evaluated at ρ = 0.9. The results are based on 1,000 replications,

with the same set of random errors used across values of µy and βy, and reported

only for case 5-C. Case 4-C shows almost the same results as case 5-C, and results for

Model B are very similar to the results for Model C when µy = 0. To determine the

relative performance of the CADF-GLS(δ̂) test, I also construct the ADF-GLS(δ̂) test

of Perron and Rodŕıguez (2003) with the break date selected using (12).

Figure 3 presents the empirical size of the tests for T0 = 50. The tests exhibit

small size distortions when |βy| is small (near zero) for all values of µy. The tests are

conservative, with an empirical size that decreases as |βy| increases and, as shown in

Harris et al. (2009), the empirical size remains relatively unchanged for values of |βy|

greater than 1. This result is due to the fact that critical values are obtained assuming

µy = βy = 0. When a break in the slope of the trend function is in fact present and

under the null hypothesis, the tests do not reject as often as the level of the tests suggest

(hence, the conservative approach). The tests also show an asymmetric response to

the true position of the break. When T0 = 30 and µy is large, size distortions are

larger (the tests are more conservative) for positive values of βy. The opposite is true
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for T0 = 70 and µy large. The results are similar for different values of R2 and the

ADF-GLS(δ̂).

[ FIGURE 3 ABOUT HERE ]

Figure 4 presents the empirical power of the tests for T0 = 50. When R2 = 0, the

power of the CADF-GLS(δ̂) test is almost identical to the power of the ADF-GLS(δ̂)

test. This result holds even for a sample as small as 100 observations indicating that

the efficiency loss resulting from the inclusion of redundant regressors when R2 = 0

is not important. However, as R2 increases, the power of the test rises considerably.

For small values of µy, the ADF-GLS(δ̂) has power around 10% while if R2 = 0.25 the

covariate test has power around 20%, about a 100% gain. For R2 = 0.49 the covariate

test has power close to 40%, and for R2 = 0.81 the test has power that can be as large

as 90%. When a large break in the intercept is present (µy = 5), the power of the

tests dips down for βy = 0 or near zero. Although in this case power gains are not

as important, power improves fast as βy moves away from zero. Overall, large power

gains are available and the CADF-GLS(δ̂) test exhibits power that can be far beyond

what is achievable when covariates are not included in the regression equation.

[ FIGURE 4 ABOUT HERE ]

4.2 Covariates with a structural break in the trend

The results in this paper are based on the important assumption that xt does not

exhibit structural breaks in the trend function. This section evaluates the finite sample

properties of the CADF-GLS(δ̂) test in the case where the trend function of xt exhibits

a level shift. Consider a process generated by a model of the form

xt = µx1(t > T x0 ) + uxt, (18)

yt = µy1(t > T0) + βy1(t > T0)(t− T0) + uyt, (19)
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and  uxt

(1− ρL)uyt

 = et, (20)

where et ∼ i.i.d. N(0,Σ) for t > 0, and et = 0 for t ≤ 0. Σ is a symmetric matrix of

dimension (2×2) with diagonal elements equal to 1 and off-diagonal elements equal to

the degree of correlation R. The level shift in xt is µx ∈ {0, 0.5, 1, 5} and, for each value

of µx, βy ∈ {−2.0,−1.8,−1.6, ..., 2.0}. µy = 0 in all cases. The sample size T = 100,

three positions of the break in xt are considered with T x0 ∈ {30, 50, 70}, T0 = 50, and

R ∈ {0, 0.3, 0.5, 0.7, 0.9}. Again, to avoid issues related to the determination of the

lead and lag orders, all tests are constructed for ki = 0 for i = 1, 2, 3. Empirical power

is evaluated at ρ = 0.9. The results are based on 1,000 replications, with the same

set of random errors used across values of µx and βy, and reported only for case 5-C

and T x0 = 50. Results for other values of T x0 are qualitatively similar and, hence, not

presented.

Figure 5 presents the empirical size of the tests for the case when a break in

the trend function of xt is present. For small values of µx the tests exhibit modest

size distortions for all values of βy. This result is important because, in empirical

applications, small level shifts may be hard to identify. When µx is large (µx = 5) the

tests show liberal size distortions, particularly large for small values of |βy|. For large

values of R2, when a break in the trend function of xt is present and under the null

hypothesis, the tests reject too often.

[ FIGURE 5 ABOUT HERE ]

Figure 6 presents the empirical power of the tests. Results show that for small

values of µx the tests still exhibit important power gains as R2 increases, with a small

power loss for very large values of R2. When µx is large, however, the covariates behave

like a non-stationary variable and the tests show a very important power loss.
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[ FIGURE 6 ABOUT HERE ]

In sum, when level shifts in the trend function of the covariates are not accounted

for, the CADF-GLS(δ̂) test can exhibit liberal size distortions and low power. These

distortions can be even more important when the covariates exhibit a break in the

slope. Nevertheless, power improvements are still available as long as the break in the

trend function of the covariates is of small magnitude.

5 Conclusion

This paper proposed a test of the unit root hypothesis that allows for a structural break

in the trend function and uses correlated stationary covariates to improve power. Three

structural break models were considered and, as it is standard in the literature, the

test endogenously determines the break date. Similar to other unit root tests in the

recent literature, the proposed test is based on GLS detrended data. The statistic is

simple to construct and the test can be seen as an extension of the tests proposed

in Pesavento (2006) and Perron and Rodŕıguez (2003). The asymptotic local power

functions of the test were approximated numerically and show that large power gains

are available. The finite sample properties were analyzed using Monte Carlo simulation

and results show that the test exhibits small size distortions and power that can be

far beyond what is achievable by univariate tests. With good covariates, the proposed

test should dominate other tests available.
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A Appendix

A.1 Proof of Theorem 2

The proof of Theorem 1 is omitted as it is basically the same as that of Theorem 2.

The following lemmas, provided without proof, present some auxiliary results that will

be used later.

Lemma A.1. Consider the model generated by equations (1) to (3) and under the

assumptions of the model, with ρ = 1 + c/T , then as T →∞ we have

ω−1/2
y.x T−1/2uybTrc ⇒ Jxyc(r),

where Jxyc(r) is an Ornstein-Uhlenbeck process such that

Jxyc(r) = Wxy(r) + c

∫ r

0
e(r−s)cWxy(s)ds,

with Wxy(r) = Q1/2Wx(r) + Wy(r), where Wx(r) and Wy(r) are univariate indepen-

dent standard Brownian motions, Q = R2/(1 − R2), and ωy.x = ωyy − ωyxΩ−1
xxωxy.

Q1/2Wx(r) = γ̄′W̃x(r), γ̄′ = ω
−1/2
y.x ωyxΩ

−1/2
xx so that γ̄′γ̄ = R2/(1 − R2), and W (r) =[

W̃x(r)′,Wy(r)
]′

.

The proof of Lemma A.1 follows from results in Elliott and Jansson (2003) and

Pesavento (2006). Lemma A.2 presents limiting results for the GLS estimates of the

coefficients in the trend function obtained from (8). The proof of Lemma A.2 follows

from results in Perron and Rodŕıguez (2003).

Lemma A.2. Assume yt is generated by (2) with ρ = 1 + c/T . Let ψ̃y be the GLS

estimates of the coefficients in the trend function given by (8) using ρ̄ = 1 + c̄/T .

(i) When zyt(δ0) is given by (4), then as T →∞ we have

µ̃y1 − µy1 ⇒ u1,
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µ̃y2 − µy2 ⇒ limT→∞uy(T0+1)(ρ̄) ≡ u∗.

(ii) When zyt(δ0) is given by (5), then as T →∞ we have

µ̃y1 − µy1 ⇒ u1,

µ̃y2 − µy2 ⇒ limT→∞uy(T0+1)(ρ̄) ≡ u∗,

T 1/2(β̃y1 − βy1)⇒ ω
1/2
y.x b1/a1 ≡ ω1/2

y.x Vcc̄.

(iii) When zyt(δ0) is given by (6), then as T →∞ we have

µ̃y1 − µy1 ⇒ u1,

T 1/2(β̃y1 − βy1)⇒ ω
1/2
y.x (λ1b1 + λ2b2) ≡ ω1/2

y.x V
(1)
cc̄ ,

T 1/2(β̃y2 − βy2)⇒ ω
1/2
y.x (λ2b1 + λ3b2) ≡ ω1/2

y.x V
(2)
cc̄ .

(iv) When zyt(δ0) is given by (7), then as T →∞ we have

µ̃y1 − µy1 ⇒ u1,

µ̃y2 − µy2 ⇒ limT→∞uy(T0+1)(ρ̄) ≡ u∗,

T 1/2(β̃y1 − βy1)⇒ ω
1/2
y.x (λ1b1 + λ2b2) ≡ ω1/2

y.x V
(1)
cc̄ ,

T 1/2(β̃y2 − βy2)⇒ ω
1/2
y.x (λ2b1 + λ3b2) ≡ ω1/2

y.x V
(2)
cc̄ .

Lemma A.3 presents standard results for OLS estimated trend functions. See, e.g.,

Lütkepohl (2005, Proposition C.18 on page 705).

Lemma A.3. Assume xt is generated by (1). Let ψ̂x be the OLS estimates of the

coefficients in the trend function.

(i) When zxt = {1}, then as T →∞ we have

T 1/2(µ̂x − µx)⇒ Ω
1/2
xx W̃x(1).

(ii) When zxt = {1, t}, then as T →∞ we have

T 1/2(µ̂x − µx)⇒ Ω
1/2
xx

{
4W̃x(1)− 6

[
W̃x(1)−

∫ 1
0 W̃x(r)dr

]}
,

T 3/2(β̂x − βx)⇒ Ω
1/2
xx

{
−6W̃x(1) + 12

[
W̃x(1)−

∫ 1
0 W̃x(r)dr

]}
.
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The derivation of the regression equation follows the results in Said and Dickey

(1984), Saikkonen (1991), and in particular Pesavento (2006). As a consequence, only

a sketch of the proof is presented. From Brillinger (1975, page 296) we know that

under Assumptions 1-4 we can write

uy,t(ρ) =
+∞∑
j=−∞

π̃′xjux,t−j + ηt, (21)

with
∑+∞

j=−∞

∥∥∥π̃′xj∥∥∥ < ∞, E(ux,tη
′
t+k) = 0 for any k = 0,±1,±2, ..., and 2πfηη(0) =

ωyy − ωyxΩ−1
xxωxy = ωy.x where fηη(0) is the spectral density of ηt at frequency zero.

For case 5-C we have ydt = yt − µ̃y1 − µ̃y21(t > T0)− β̃y1t− β̃y21(t > T0)(t− T0) or

ydt = uyt − (µ̃y1 − µy1)− (µ̃y2 − µy2)1(t > T0)

− (β̃y1 − βy1)t− (β̃y2 − βy2)1(t > T0)(t− T0), (22)

and after some algebra we get

∆ydt = (ρ− 1)ydt−1 − (1− ρ)(µ̃y1 − µy1)− (1− ρ)(µ̃y2 − µy2)1(t > T0)

− (1− ρL)(β̃y1 − βy1)t− (1− ρL)(β̃y2 − βy2)1(t > T0)(t− T0)

+ uyt. (23)

Plugging (21) into (23) and noting that udxt = xdt + (µ̂x − µx) + (β̂x − βx)t we get

∆ydt = αydt−1 +

+∞∑
j=−∞

π̃′xjx
d
t−j + η̄t, (24)
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where α = ρ− 1, and

η̄t = π̃x(1)′(µ̂x − µx) +

+∞∑
j=−∞

π̃′xj(β̂x − βx)(t− j)

− (1− ρ)(µ̃y1 − µy1)− (1− ρ)(µ̃y2 − µy2)1(t > T0)

− (1− ρL)(β̃y1 − βy1)t− (1− ρL)(β̃y2 − βy2)1(t > T0)(t− T0)

+ ηt,

with π̃x(1)′ =
∑+∞

j=−∞ π̃
′
xj = ωyxΩ−1

xx . Note that ηt is uncorrelated at all leads and lags

with xdt but it may still be serially correlated. Assume Φ(L)ηt = ẽt, where ẽt is white

noise. Then

∆ydt = φydt−1 +

+∞∑
j=−∞

π′xjx
d
t−j +

+∞∑
j=1

πyj∆y
d
t−j + et, (25)

where φ = Φ(1)(ρ− 1), and et = Φ(L)η̄t or

et = Φ(1)π̃x(1)′(µ̂x − µx) + Φ(L)

+∞∑
j=−∞

π̃′xj(β̂x − βx)(t− j)

− Φ(1)(1− ρ)(µ̃y1 − µy1)− Φ(1)(1− ρ)(µ̃y2 − µy2)1(t > T0)

− Φ(L)(1− ρL)(β̃y1 − βy1)t− Φ(L)(1− ρL)(β̃y2 − βy2)1(t > T0)(t− T0)

+ ẽt. (26)

Since the sequence {π̃xj} is absolute summable, we can approximate (25) with

∆ydt = φydt−1 +

k2∑
j=−k1

π′xjx
d
t−j +

k3∑
j=1

πyj∆y
d
t−j + etk1k2k3 . (27)

For simplicity, and without loss of generality, assume k1 = k2 = k3 = k. Then

∆ydt = φydt−1 +

k∑
j=−k

π′xjx
d
t−j +

k∑
j=1

πyj∆y
d
t−j + etk, (28)
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where

etk = et +
∑
|j|>k

π′xjx
d
t−j +

∑
j>k

πyj∆y
d
t−j .

Under Assumption 5 and following the results in Pesavento (2006) we obtain

(T − 2k)(φ̂− φ) =

[
(T − 2k)−2

T−k∑
t=k+1

yd 2
t−1

]−1 [
(T − 2k)−1

T−k∑
t=k+1

ydt−1et

]
+ op(1).

The derivation of this result follows exactly from Pesavento (2006) and, hence, is

omitted. Alternatively, we can assume π′xj = 0 for |j| > k and πyj = 0 for j > k which

implies assuming that the regression is correctly specified (etk = et). This approach is

used in Stock (1991) and Elliott et al. (1996) and yields the same results.

From (22) and using the results in Lemmas A.1 and A.2 we have that

T−1/2ydbTrc ⇒ ω1/2
y.x

[
Jxyc(r)− rV (1)

cc̄ − (r − δ0)V
(2)
cc̄ 1(r > δ0)

]
.

Let Jdxyc(r, δ0) = Jxyc(r)− rV (1)
cc̄ − (r − δ0)V

(2)
cc̄ 1(r > δ0) so that

T−1/2ydbTrc ⇒ ω1/2
y.x J

d
xyc(r, δ0).

Then, by the continuous mapping theorem and arguments as in Phillips (1987a,b) we

have

T−3/2
T∑
t=1

ydt ⇒ ω1/2
y.x

∫ 1

0
Jdxyc(r, δ0)dr,

and

T−2
T∑
t=1

yd 2
t ⇒ ωy.x

∫ 1

0
Jdxyc(r, δ0)2dr.

Finally,

(T − 2k)−2
T−k∑
t=k+1

yd 2
t−1 ⇒ ωy.x

∫ 1

0
Jdxyc(r, δ0)2dr (29)
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if k/T → 0 as T →∞.

Consider now the term (T − 2k)−1
∑T−k

t=k+1 y
d
t−1et. et is given by (26) and using

Lemma A.3, the continuous mapping theorem, and noting that γ̄′ = ω
−1/2
y.x ωyxΩ

−1/2
xx

and γ̄′W̃x(r) =
√

R2

1−R2Wx(r) = Q1/2Wx(r) we have

T−1
∑T

t=1 y
d
t−1Φ(1)π̃x(1)′(µ̂x − µx)⇒

Φ(1)ωy.xQ
1/2
[
−2Wx(1) + 6

∫ 1
0 Wx(r)

] ∫ 1
0 J

d
xyc

T−1
∑T

t=1 y
d
t−1Φ(L)

∑∞
j=−∞ π̃

′
xj(β̂x − βx)(t− j)⇒

Φ(1)ωy.xQ
1/2
[
6Wx(1)− 12

∫ 1
0 Wx(r)

] ∫ 1
0 rJ

d
xyc

T−1
∑T

t=1 y
d
t−1Φ(1)(1− ρ)(µ̃y1 − µy1)⇒ 0

T−1
∑T

t=1 y
d
t−1Φ(1)(1− ρ)(µ̃y2 − µy2)1(t > T0)⇒ 0

T−1
∑T

t=1 y
d
t−1Φ(L)(1− ρL)(β̃y1 − βy1)t⇒

Φ(1)ωy.xV
(1)
cc̄

[∫ 1
0 J

d
xyc − c

∫ 1
0 rJ

d
xyc

]

T−1
∑T

t=1 y
d
t−1Φ(L)(1− ρL)(β̃y2 − βy2)1(t > T0)(t− T0)⇒

Φ(1)ωy.xV
(2)
cc̄

[∫ 1
δ0
Jdxyc − c

∫ 1
δ0

(r − δ0)Jdxyc

]

T−1
∑T

t=1 y
d
t−1ẽt ⇒ Φ(1)ωy.x

∫ 1
0 J

d
xycdWy.

Collecting terms we have

T−1
T∑
t=1

ydt−1et ⇒ Φ(1)ωy.x

[∫ 1

0
JdxycdWy + Λcc̄

]
,
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where

Λcc̄ = Λx − V (1)
cc̄

[∫ 1

0
Jdxyc − c

∫ 1

0
rJdxyc

]
− V (2)

cc̄

[∫ 1

δ0

Jdxyc − c
∫ 1

δ0

(r − δ0)Jdxyc

]
,

with

Λx = Q1/2

[
−2Wx(1) + 6

∫ 1

0
Wx

] ∫ 1

0
Jdxyc +Q1/2

[
6Wx(1)− 12

∫ 1

0
Wx

] ∫ 1

0
rJdxyc

for case 5-C, and

Λx = Q1/2Wx(1)

∫ 1

0
Jdxyc

for case 4-C. Finally,

(T − 2k)−1
T−k∑
t=k+1

ydt−1et ⇒ Φ(1)ωy.x

[∫ 1

0
JdxycdWy + Λcc̄

]
(30)

if k/T → 0 as T →∞. Then

(T − 2k)(φ̂− φ)⇒ Φ(1)

[∫ 1

0
Jd 2
xyc

]−1 [∫ 1

0
JdxycdWy + Λcc̄

]
. (31)

Let s2 = (T − 2k)−1
∑T−k

t=k+1 ê
2
tk where s

p→ ω
1/2
y.xΦ(1). Then

(T − 2k)SE(φ̂) = (T − 2k) s

[
T−k∑
t=k+1

yd 2
t−1

]−1/2

⇒ Φ(1)

[∫ 1

0
Jd 2
xyc

]−1/2

. (32)

The CADF-GLS(δ0) test statistic is

tφ̂(δ0) =
φ̂

SE(φ̂)
=

(T − 2k)φ

(T − 2k)SE(φ̂)
+

(T − 2k)(φ̂− φ)

(T − 2k)SE(φ̂)
.

From (31) and (32), and noting that (T − 2k)φ = (T − 2k)(ρ − 1)Φ(1)
p→ c Φ(1) as
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T →∞, we have

tφ̂(δ0)⇒
(∫ 1

0
Jd 2
xyc

)1/2
[(∫ 1

0
Jd 2
xyc

)−1(∫ 1

0
JdxycdWy + Λcc̄

)
+ c

]
.

A.2 Proof of Remark 4

From Lemma A.2 it is straightforward to obtain the limiting distribution of tβ̂y2(δ)

when βy2 = 0. Rewriting (8) in matrix notation, we obtain ∆̄y = ψ′y∆̄zy + ∆̄uy

where ∆̄ = 1 − ρ̄L. Then, from standard OLS results we know that the V AR(ψ̃y) =

s2
[
∆̄z′y∆̄zy

]−1
. Define the scaling matrix DT = diag{1, 1, T 1/2, T 1/2}, then from

Lemma A.2 we have

DT

[
∆̄z′y∆̄zy

]−1
DT ⇒



1 0 0 0

0 1 0 0

0 0 a1 a2

0 0 a2 a3



−1

(33)

with terms defined in Theorem 2. From Lemma A.2, (33), and noting that s
p→ ω

1/2
y.x ,

we have

tβ̂y2(δ)⇒ V
(2)
cc̄ λ

−1/2
3 (34)

with terms again defined in Theorem 2.

Once weak convergence for a fixed δ is established (Theorem 2), the proof of Re-

mark 4 follows directly from (34), the results of Zivot and Andrews (1992), and the

continuous mapping theorem. See Banerjee et al. (1992) and Vogelsang and Perron

(1998) for a more detailed discussion.
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Notes

1 The tests also show liberal size distortions when the break is of small size, with size distortions

increasing with the sample size. Similar unit root tests proposed in Kim and Perron (2009) also show

large size distortions when the break is small.

2 See figures 11 to 13 in Carrion-i-Silvestre et al. (2009) and 6 to 8 in Harris et al. (2009).

3 See Caporale and Pittis (1999) for a complete discussion of the effects introduced by adding

stationary covariates to the Dickey-Fuller regression equation, Elliott and Jansson (2003) who derive

the power envelope for the case where constants and/or time trends are included in the regression and

propose a point-optimal unit root test with stationary covariates that has maximal power against a

local alternative, and Galvao (2009) who proposes a quantile unit root test using covariates.

4 Independent work by Liu and Rodŕıguez (2007) considers a similar problem. Their analysis

extends the point-optimal unit root tests with stationary covariates proposed by Elliott and Jansson

(2003) to the breaking trend case. Since the tests developed here are of the Dickey-Fuller type, our

papers are therefore complementary.

5The test considered here allows only for one break in the trend function. The results in this paper

can be extended to the case where two breaks are allowed in the trend function, as Lumsdaine and

Papell (1997) extend Zivot and Andrews (1992), or to the case where multiple structural breaks are

allowed adopting the approach developed in Carrion-i-Silvestre et al. (2009).

6 Note that R2 in this paper corresponds to (1− ρ2) in Hansen (1995).

7Another estimator, suggested by Zivot and Andrews (1992), uses the break date that gives the

least favorable result for the null hypothesis, i.e. δ̂ is chosen to minimize the t-statistic for testing φ = 0

in (9). The resulting estimator is then δ̂ = arg minδ∈[0,1] tφ̂(δ). Preliminary results show that the use

of the this estimator yields less powerful tests and, as a consequence, the results are not presented.

8Good covariates satisfy two conditions: (1) Need to be stationary variables. (2) Need to be

correlated with the quasi-differenced yt at the zero frequency. So any covariates that exhibit contem-

poraneous, leading, or lagging correlation would work. In economics, for example, any theory that

involves yt could be used to identify reasonable covariates.

9Juhl and Xiao (2003) show that the point-optimal unit root tests with stationary covariates of

Elliott and Jansson (2003) have power functions that are tangent to the asymptotic Gaussian power

envelope at approximately 0.75 instead of 0.50, the value at which the power functions are tangent in

the case of the univariate tests of Elliott et al. (1996). This result suggests that other values of c̄ could

potentially yield small power improvements.

10When T = 100, the local alternative c̄ = −5 corresponds to an autoregressive root of 0.95.
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Perron, P., and Rodŕıguez, G. (2003): “GLS detrending, efficient unit root tests and

structural change”, Journal of Econometrics, 115, 1-27.

31



Pesavento, E. (2006): “Near-optimal unit root tests with stationary covariates with

better finite sample size”, Working Paper, Emory University.

Phillips, P.C.B. (1987a): “Toward and unified asymptotic theory for autoregression”.

Biometrika, 74, 535-547.

Phillips, P.C.B. (1987b): “Time series regression with a unit root”, Econometrica, 55,

277-302.
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Table 1: Critical values for Model A.

Case Size T R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2-A 0.01 100 -3.03 -3.01 -3.03 -3.02 -3.01 -2.95 -2.99 -2.95 -2.89 -2.84
250 -2.83 -2.83 -2.83 -2.82 -2.82 -2.81 -2.81 -2.78 -2.74 -2.69
∞ -2.55 -2.55 -2.57 -2.54 -2.54 -2.55 -2.54 -2.50 -2.47 -2.45

0.05 100 -2.45 -2.44 -2.44 -2.41 -2.40 -2.35 -2.34 -2.31 -2.25 -2.20
250 -2.26 -2.25 -2.24 -2.21 -2.20 -2.20 -2.17 -2.13 -2.10 -2.04
∞ -1.94 -1.94 -1.93 -1.93 -1.91 -1.89 -1.89 -1.84 -1.82 -1.76

0.10 100 -2.16 -2.15 -2.14 -2.10 -2.08 -2.04 -2.01 -1.97 -1.91 -1.86
250 -1.96 -1.95 -1.92 -1.90 -1.88 -1.86 -1.83 -1.80 -1.76 -1.70
∞ -1.62 -1.61 -1.60 -1.59 -1.57 -1.54 -1.53 -1.49 -1.46 -1.41

3-A 0.01 100 -3.03 -2.99 -2.99 -2.95 -2.92 -2.83 -2.83 -2.73 -2.66 -2.57
250 -2.82 -2.82 -2.78 -2.75 -2.71 -2.66 -2.64 -2.56 -2.48 -2.42
∞ -2.55 -2.53 -2.53 -2.47 -2.43 -2.41 -2.35 -2.26 -2.23 -2.16

0.05 100 -2.45 -2.42 -2.38 -2.33 -2.29 -2.23 -2.16 -2.07 -1.99 -1.92
250 -2.26 -2.22 -2.18 -2.12 -2.08 -2.05 -1.97 -1.89 -1.80 -1.69
∞ -1.94 -1.91 -1.87 -1.82 -1.77 -1.71 -1.66 -1.57 -1.49 -1.40

0.10 100 -2.16 -2.12 -2.08 -2.02 -1.97 -1.90 -1.83 -1.73 -1.64 -1.54
250 -1.96 -1.92 -1.87 -1.81 -1.75 -1.69 -1.61 -1.54 -1.43 -1.30
∞ -1.62 -1.58 -1.53 -1.48 -1.42 -1.35 -1.28 -1.19 -1.08 -0.95

4-A 0.01 100 -3.86 -3.79 -3.76 -3.71 -3.66 -3.57 -3.50 -3.43 -3.26 -3.13
250 -3.59 -3.57 -3.54 -3.47 -3.45 -3.37 -3.31 -3.23 -3.08 -2.97
∞ -3.42 -3.38 -3.34 -3.28 -3.24 -3.19 -3.10 -3.03 -2.94 -2.92

0.05 100 -3.26 -3.22 -3.17 -3.10 -3.05 -2.96 -2.87 -2.77 -2.64 -2.50
250 -3.06 -3.01 -2.96 -2.90 -2.85 -2.77 -2.70 -2.60 -2.48 -2.36
∞ -2.85 -2.80 -2.76 -2.69 -2.64 -2.58 -2.51 -2.41 -2.35 -2.29

0.10 100 -2.98 -2.93 -2.87 -2.80 -2.73 -2.64 -2.55 -2.43 -2.29 -2.16
250 -2.79 -2.72 -2.66 -2.60 -2.54 -2.46 -2.37 -2.28 -2.16 -2.03
∞ -2.56 -2.51 -2.46 -2.40 -2.33 -2.27 -2.20 -2.09 -2.03 -1.97

5-A 0.01 100 -3.86 -3.78 -3.74 -3.68 -3.63 -3.52 -3.43 -3.35 -3.17 -3.04
250 -3.59 -3.56 -3.52 -3.43 -3.39 -3.30 -3.24 -3.14 -2.99 -2.85
∞ -3.42 -3.37 -3.31 -3.24 -3.19 -3.11 -3.02 -2.92 -2.82 -2.74

0.05 100 -3.26 -3.21 -3.15 -3.06 -2.99 -2.91 -2.80 -2.67 -2.52 -2.36
250 -3.06 -3.00 -2.93 -2.87 -2.79 -2.69 -2.61 -2.48 -2.33 -2.16
∞ -2.85 -2.78 -2.73 -2.65 -2.58 -2.50 -2.40 -2.27 -2.15 -2.01

0.10 100 -2.98 -2.91 -2.84 -2.76 -2.68 -2.58 -2.46 -2.32 -2.17 -2.00
250 -2.78 -2.71 -2.63 -2.55 -2.48 -2.37 -2.26 -2.14 -1.99 -1.80
∞ -2.56 -2.49 -2.42 -2.34 -2.26 -2.17 -2.06 -1.92 -1.78 -1.62
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Table 2: Critical values for Model B.

Case Size T R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4-B 0.01 100 -4.66 -4.57 -4.47 -4.39 -4.26 -4.13 -4.03 -3.88 -3.66 -3.52
250 -4.45 -4.39 -4.33 -4.22 -4.14 -4.04 -3.89 -3.77 -3.67 -3.67
∞ -4.32 -4.26 -4.19 -4.09 -4.01 -3.93 -3.82 -3.74 -3.69 -3.76

0.05 100 -4.07 -3.96 -3.86 -3.76 -3.64 -3.49 -3.35 -3.17 -2.95 -2.73
250 -3.92 -3.83 -3.74 -3.63 -3.53 -3.41 -3.26 -3.11 -2.95 -2.80
∞ -3.80 -3.72 -3.63 -3.53 -3.43 -3.32 -3.19 -3.06 -2.93 -2.84

0.10 100 -3.77 -3.66 -3.56 -3.44 -3.31 -3.17 -3.01 -2.82 -2.60 -2.33
250 -3.64 -3.54 -3.44 -3.33 -3.22 -3.07 -2.92 -2.75 -2.57 -2.37
∞ -3.53 -3.44 -3.34 -3.23 -3.13 -3.00 -2.86 -2.69 -2.54 -2.39

5-B 0.01 100 -4.65 -4.56 -4.46 -4.38 -4.25 -4.11 -4.00 -3.86 -3.62 -3.46
250 -4.45 -4.39 -4.33 -4.20 -4.12 -4.00 -3.86 -3.71 -3.57 -3.46
∞ -4.32 -4.26 -4.18 -4.08 -3.98 -3.90 -3.77 -3.65 -3.52 -3.47

0.05 100 -4.07 -3.96 -3.86 -3.75 -3.63 -3.48 -3.34 -3.15 -2.93 -2.68
250 -3.92 -3.83 -3.73 -3.62 -3.52 -3.39 -3.24 -3.08 -2.88 -2.69
∞ -3.80 -3.72 -3.63 -3.52 -3.41 -3.29 -3.16 -3.00 -2.84 -2.70

0.10 100 -3.77 -3.66 -3.55 -3.43 -3.31 -3.16 -3.00 -2.80 -2.57 -2.30
250 -3.64 -3.54 -3.44 -3.32 -3.21 -3.06 -2.91 -2.73 -2.53 -2.29
∞ -3.53 -3.44 -3.33 -3.23 -3.11 -2.98 -2.83 -2.66 -2.49 -2.30
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Table 3: Critical values for Model C.

Case Size T R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4-C 0.01 100 -4.63 -4.52 -4.45 -4.36 -4.26 -4.14 -4.04 -3.91 -3.75 -3.54
250 -4.38 -4.32 -4.28 -4.20 -4.11 -4.01 -3.90 -3.81 -3.71 -3.70
∞ -4.32 -4.26 -4.19 -4.09 -4.01 -3.93 -3.82 -3.74 -3.69 -3.76

0.05 100 -4.04 -3.94 -3.86 -3.75 -3.65 -3.51 -3.37 -3.21 -3.02 -2.79
250 -3.85 -3.78 -3.70 -3.61 -3.51 -3.39 -3.28 -3.13 -2.99 -2.86
∞ -3.80 -3.72 -3.63 -3.53 -3.43 -3.32 -3.19 -3.06 -2.93 -2.84

0.10 100 -3.75 -3.66 -3.55 -3.45 -3.34 -3.20 -3.04 -2.86 -2.66 -2.41
250 -3.59 -3.50 -3.41 -3.31 -3.21 -3.08 -2.94 -2.78 -2.61 -2.44
∞ -3.53 -3.44 -3.34 -3.23 -3.13 -3.00 -2.86 -2.69 -2.54 -2.39

5-C 0.01 100 -4.63 -4.51 -4.44 -4.35 -4.24 -4.13 -4.00 -3.87 -3.66 -3.42
250 -4.38 -4.33 -4.26 -4.17 -4.08 -3.99 -3.86 -3.73 -3.57 -3.45
∞ -4.32 -4.26 -4.18 -4.08 -3.98 -3.90 -3.77 -3.65 -3.52 -3.47

0.05 100 -4.04 -3.94 -3.85 -3.74 -3.64 -3.50 -3.36 -3.18 -2.98 -2.72
250 -3.85 -3.78 -3.69 -3.60 -3.50 -3.37 -3.23 -3.09 -2.91 -2.72
∞ -3.80 -3.72 -3.63 -3.52 -3.41 -3.29 -3.16 -3.00 -2.84 -2.70

0.10 100 -3.75 -3.66 -3.55 -3.44 -3.32 -3.18 -3.02 -2.83 -2.63 -2.36
250 -3.59 -3.50 -3.41 -3.30 -3.19 -3.05 -2.91 -2.74 -2.56 -2.34
∞ -3.53 -3.44 -3.33 -3.23 -3.11 -2.98 -2.83 -2.66 -2.49 -2.30
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Figure 1: Asymptotic power curves of Models B and C for case 5 (Theorem 2). Curves
for R2 = 0, 0.3, 0.5, 0.7, and 0.9, where power is increasing in R2.
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Figure 2: Asymptotic density functions of Models B and C for case 5 (Theorem 2).
Densities for R2 = 0, 0.3, 0.5, 0.7, and 0.9, where the distribution’s mode shifts right
as R2 increases.
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Figure 3: Empirical size for case 5-C, T = 100, T0 = 50, and 5% nominal size. ADF-
GLS(δ̂): −�−; and CADF-GLS(δ̂) with R2 = 0: −◦−, R2 = 0.09: —– , R2 = 0.25:
−−, R2 = 0.49: − · −, R2 = 0.81: · · · .
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Figure 4: Empirical power for case 5-C, T = 100, T0 = 50, and ρ = 0.90. ADF-
GLS(δ̂): −�−; and CADF-GLS(δ̂) with R2 = 0: −◦−, R2 = 0.09: —– , R2 = 0.25:
−−, R2 = 0.49: − · −, R2 = 0.81: · · · .
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Figure 5: Empirical size for case 5-C, T = 100, T x0 = T0 = 50, and 5% nominal
size. ADF-GLS(δ̂): −�−; and CADF-GLS(δ̂) with R2 = 0: −◦−, R2 = 0.09: —– ,
R2 = 0.25: −−, R2 = 0.49: − · −, R2 = 0.81: · · · .
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Figure 6: Empirical power for case 5-C, T = 100, T x0 = T0 = 50, and ρ = 0.90. ADF-
GLS(δ̂): −�−; and CADF-GLS(δ̂) with R2 = 0: −◦−, R2 = 0.09: —– , R2 = 0.25:
−−, R2 = 0.49: − · −, R2 = 0.81: · · · .
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