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1 Introduction

Hansen (1995) initiated a new direction in the search for unit root tests with better

power considering a multivariate framework and showing that correlated stationary

covariates can be used to obtain tests with higher power than univariate tests. He

proposes a unit root test that uses the Dickey-Fuller regression equation and incorpo-

rates covariates to increase power (henceforth CADF test). Recent contributions to

this literature, however, build on the findings in Elliott et al. (1996). In particular,

Elliott and Jansson (2003) derive the power envelope for unit root tests with stationary

covariates and propose a point-optimal test (henceforth EJ test) with maximal power

against a point alternative. In addition, Pesavento (2006) introduces generalized least

squares (GLS) detrending to the CADF test (henceforth CADF-GLS test) and shows

that this yields near-optimal tests with small size distortions. The implementation of

these tests requires the selection of a truncation lag (k). In this paper, I consider the

selection of k using information criteria for the covariate unit root tests proposed in

Elliott and Jansson (2003) and Pesavento (2006). These tests have greater power than

the CADF test and, hence, the test proposed in Hansen (1995) is not considered here.

Using Monte Carlo simulations, I compare the performance of several information cri-

teria for a variety of data generating processes (DGPs). The objective is to provide

recommendations on how to construct covariate unit root tests with good size and

power.

The truncation lag for the EJ test is selected in a first step where a vector autore-

gression (VAR) is estimated under the null of non-stationarity (Elliott and Jansson,

2003). Previous research on the selection of the truncation lag for VARs has focused

on the accuracy of information criteria to detect the true value of k (Lütkepohl, 1985)
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or fitting impulse-response functions (Ivanov and Kilian, 2005). In the case of the

EJ test, simulation results show that using the Bayesian information criterion (BIC)

or the Akaike information criterion (AIC) can result in covariate unit root tests with

large size distortions. In contrast, a modified Akaike information criterion (MIC) for

cointegration tests introduced in Qu and Perron (2007) yields big size improvements

and powerful tests.

In the case of the CADF-GLS test, simulation results show that using the truncation

lag selected by the BIC, AIC, or the MIC of Ng and Perron (2001) on the CADF-GLS

regression equation can yield unit root tests with large size distortions. On the other

hand, selecting the truncation lag on an univariate regression using the MIC of Ng and

Perron (2001), as suggested in Pesavento (2006), yields tests with small size distortions.

A consequence of this strategy, however, is that the lead and lag orders are constrained

to be equal causing a small reduction in power when unnecessary leads and/or lags

are added to the regression equation. A simple strategy that removes this constraint

yields tests with improved power.

This paper contributes to the literature in several ways. First, it shows that prac-

titioners should pay special attention to the selection of the truncation lag when con-

structing covariate unit root tests. The results for the EJ and CADF-GLS tests are

similar to those found in the univariate literature by Schwert (1989), Ng and Perron

(1995), Oke and Lyhagen (1999), and Ng and Perron (2001). Specifically, using the

BIC or AIC to select the truncation lag can lead to tests with large size distortions. In

two recent empirical applications of covariate unit root tests by Elliott and Pesavento

(2006) and Amara and Papell (2006) the authors report selecting the truncation lag

using the BIC rule. The large number of rejections in those papers (taken as evidence

in favor of the purchasing power parity theory) is potentially biased as a consequence
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of the use of this rule to select the lag order. Another contribution of this paper is to

show that covariate unit root tests with good size and power are available when using

the MIC of Qu and Perron (2007) to construct the EJ test and the MIC of Ng and

Perron (2001) to construct the CADF-GLS test. In particular, in the case of models

with a moving average root close to one, the standard BIC and AIC select lag lengths

that are too small resulting in tests with important size distortions. On the other hand,

the modified information criteria of Ng and Perron (2001) and Qu and Perron (2007)

select higher lag orders, which is necessary for unit root tests to have good size (see Ng

and Perron, 1995). In addition, this paper proposes a strategy to select the lead and

lag orders for the CADF-GLS test that yields tests with better power. Finally, these

results should also prove useful for the covariate unit root tests proposed in Fossati

(2009) and Galvao (2009).

The paper proceeds as follows. In the next section, the test statistics and selection

rules considered are reviewed. In section 3, the finite sample properties of the tests

for different selection rules are analyzed using Monte Carlo simulation. In section 4,

an empirical application to standard macroeconomic data shows the relevance of these

results. Finally, section 5 concludes.
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2 Test Statistics and Selection of the Truncation

Lag

2.1 The EJ Test

Following Elliott et al. (2005), consider a data generating process for the (m + 1)-

dimensional vector time series zt = (yt, x
′
t)
′ of the form

yt = βy,0 + βy,1t+ uy,t, (1)

xt = βx,0 + βx,1t+ ux,t, (2)

and

A(L)

 (1− ρL)uy,t

∆ux,t

 = et, (3)

where yt is univariate (and potentially non-stationary) and xt is an integrated process

of dimension (m × 1) with elements not mutually cointegrated. A(L) is a matrix

polynomial in the lag operator of order k with first element equal to the identity

matrix and |A(r)| = 0 has roots outside the unit circle. The vector et is assumed to

be i.i.d.(0,Σ).

The frequency zero correlation between the shocks to ∆xt and the quasi-differences

of yt can be captured through the parameter R2. Consider the matrix Ω given by

Ω =

 ωyy ωyx

ωxy Ωxx

 = A(1)−1ΣA(1)−1
′
.

Then, R2 = ω−1yy ωyxΩ−1xxωxy with 0 ≤ R2 < 1 .
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Elliott et al. (2005) show that this model has several VAR-type representations.

Ignoring the deterministic terms, the model in equations (1)-(3) can be written as

A(L)

 (1− ρL)yt,

Xt

 = et, (4)

where Xt = ∆xt. This representation corresponds to the one examined in Elliott and

Jansson (2003). I consider four relevant cases for the deterministic part of the model:

(1) βy,0 = 0, βy,1 = 0, and βx,1 = 0; (2) βy,1 = 0, and βx,1 = 0; (3) βy,1 = 0; (4) no

restrictions. Note that βx,0 drops from the model when xt is differenced. The first case

then corresponds to a model with no deterministic terms. The second has no constant

or trend in ∆xt but a constant in yt. The third case includes a constant in ∆xt and

a constant in yt. Case 4 imposes no restrictions. These cases correspond to cases 1-4

considered by Elliott and Jansson (2003). Elliott and Jansson (2003) also consider the

case where ∆xt has a constant and time trend (case 5) but this case seems unlikely

when xt is an integrated process.

The test for a unit root is a test of the hypothesis that ρ = 1 versus the alternative

that ρ < 1. Elliott and Jansson (2003) propose a feasible point-optimal test with a

test statistic of the form

Λ̃(1, ρ̄) = T
[
tr
(

Σ̃(1)−1Σ̃(ρ̄)
)
− (m+ ρ̄)

]
, (5)

where Σ̃(r) are the covariance matrices of the residuals constructed by detrending the

data under the null and the alternative and running Ã(L)ũt(r) = ẽt(r) for r ∈ {1, ρ̄}

(see Elliott and Jansson, 2003; Elliott et al., 2005). ρ̄ is the value of ρ under the

alternative and is given by ρ̄ = 1 + c̄/T . They recommend using the same values of
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c̄ as in Elliott et al. (1996) as this corresponds to the worst case scenario, i.e. the

covariates have no useful information. As a consequence, c̄ = −7 for cases 1-3 and

c̄ = −13.5 for case 4. The test rejects for small values of Λ̃(1, ρ̄) and critical values

reported in Elliott and Jansson (2003) depend on the value of R2.

A critical step in the construction of unit root tests is the selection of the truncation

lag when this is not known. Elliott and Jansson (2003) recommend choosing the

number of lags using the BIC on a VAR estimated under the null of ρ = 1. The first

step then implies running

A(L)∆zt = dt + et, t = k + 2, ..., T, (6)

where ∆zt = [(1 − L)yt, (1 − L)x′t]
′ for t > 1 and ∆z1 = [y1, 0]′, and dt includes the

deterministic terms. Given that xt is in first difference, the first observation is treated

as in Elliott et al. (2005) and set equal to zero. This VAR is also used to estimate R2.

Let Σ̂ = T−1
∑T

t=k+2 êtê
′
t and Ω̂ = Â(1)−1Σ̂Â(1)−1

′
, then, R̂2 = ω̂−1yy ω̂yxΩ̂−1xx ω̂xy.

Following Ng and Perron (2005), I estimate each candidate model with the same

number of effective observationsN and determine the value of k as k = arg mink∈[0,kmax]

IC(k). Selection criteria for VARs have the form

IC(k) = ln|Σ̂k|+
CT

N

(
τTk(r) + kn2

)
, (7)

where Σ̂k = N−1
∑T

t=kmax+2 êtê
′
t, N = T − kmax − 1, and n = m + 1 is the dimension

of the VAR in equation (6). As in Elliott et al. (2005) the first observation is dropped

in this step only. If CT = lnN and τTk(r) = 0 we have the BIC, and if CT = 2 and

τTk(r) = 0 we have the AIC.

Information criteria such as the BIC and AIC, however, tend to select overly par-
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simonious models possibly leading to tests with large size distortions in finite samples.

A recent information criterion introduced in Qu and Perron (2007) extends the MIC

of Ng and Perron (2001) for cointegration tests and yields tests with improved size

properties. Following Elliott et al. (2005), the model in equations (1)-(3) can also be

written as

∆zt = Πzt−1 +
k∑

j=1

Γj∆zt−j + et, t = k + 2, ..., T, (8)

where deterministic components may be included depending on the underlying process.

This is precisely the VAR that needs to be estimated to compute the MIC proposed

in Qu and Perron (2007). Consider the problem of testing for r against more than r

cointegrating vectors, we can construct the likelihood ratio (LR) test statistic τTk(r) =

−N
∑n

j=r+1 log(1− λ̂j) where λ̂j are the estimated eigenvalues of matrix Π in equation

(8). To obtain an Akaike-type MIC for the EJ test I construct the cointegration LR

test for zero cointegrating relations, i.e. r = 0. Then, if CT = 2 and τTk(r) = τTk(0) we

have the MIC proposed in Qu and Perron (2007). A modified BIC can be constructed

in a similar way. Note that, under the null, the rank of Π is zero and equation (8)

reduces to equation (6). The term τTk(r) provides only a finite sample adjustment.

2.2 The CADF-GLS Test

Pesavento (2006) proposes the CADF-GLS test as an extension of the test proposed

in Hansen (1995). The regression equation takes the form

∆ydt = φydt−1 +
k∑

j=−k

π′xj∆x
d
t−j +

k∑
j=1

πyj∆y
d
t−j + εt, t = k + 2, ..., T − k, (9)

where ydt = yt− d′tβ̂GLS with dt = 0 for case 1, dt = 1 for cases 2 and 3, and dt = (1, t)
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for case 4. β̂GLS is the GLS estimate of β obtained from the least squares (OLS)

regression of yt(ρ̄) on dt(ρ̄), where the quasi-differenced series are yt(ρ̄) = (1 − ρ̄L)yt

for t > 1 and y1(ρ̄) = y1. dt(ρ̄) is obtained similarly. ∆xdt is the OLS demeaned ∆xt

where ∆xt = (1−L)xt for t > 2 and ∆x1 = 0. Note that xt is in first difference so the

first observation is set equal to zero as in Elliott et al. (2005). The CADF-GLS test

statistic is the t-statistic on φ. Critical values for the unit root hypothesis are reported

in Pesavento (2006) and depend on the value of R2. Hansen (1995) suggests using a

nonparametric estimator of the form

R̂2 = 1−

(
θ̂221

θ̂11θ̂22

)
, (10)

where

Θ̂ =

 θ̂11 θ̂12

θ̂21 θ̂22

 =
M∑

i=−M

w(i/M)
1

T

∑
t

ν̂t−iν̂
′
t, (11)

with ν̂t =
(
ε̂t +

∑k
j=−k π̂

′
xjx

d
t−j, ε̂t

)′
, w(·) is a kernel weight function, e.g. the Bartlett

or Parzen kernels, and M is a bandwidth. In this paper, all estimations are performed

using the Parzen kernel and a bandwidth determined following Andrews (1991).

For the CADF-GLS test, Pesavento (2006) recommends using the truncation lag

selected by the MIC of Ng and Perron (2001) on an univariate regression on the GLS

detrended yt. Another option is to apply the selection rules directly to the output

of the CADF-GLS regression equation. The information criteria considered are BIC,

AIC, and the MIC of Ng and Perron (2001) on equation (9). Selection criteria for the

CADF-GLS regression equation have the form

IC(k) = lnσ̂2
k +

CT

N
(τT (k) + k(2m+ 1)) , (12)
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where σ̂2
k = N−1

∑T−kmax

t=kmax+2 ε̂
2
t , and N = T − 2kmax − 1. Again, the first observation is

treated as in Elliott et al. (2005) and dropped in this step. If CT = lnN and τT (k) = 0

we have the BIC, and if CT = 2 and τT (k) = 0 we have the AIC. For the MIC we need

CT = 2 and the quantity τT (k) = (σ̂2
k)−1φ̂2

∑T−kmax

t=kmax+2 y
d2
t−1.

To avoid confusion, from now on I adopt the following notation. Criteria con-

structed using the EJ VAR and given by equation (7) are labeled with the subscript e

(BICe, AICe, MICe). Criteria constructed using the CADF-GLS regression equation

and given by equation (12) are labeled with the subscript c (BICc, AICc, MICc).

Finally, criteria constructed using the univariate regression on the GLS detrended yt

as in Ng and Perron (2001) are labeled with the subscript u (BICu, AICu, MICu).

3 Finite Sample Simulations

3.1 Monte Carlo Design

In order to accommodate a wide variety of simulation exercises I assume a very general

specification. The setup, which is used throughout, is to consider an error process

generated by a VARMA(1,1) model of the form

(I2 − AL)

 (1− ρL)uyt

(1− L)uxt

 = (I2 +BL)et, (13)

where

A =

 a11 a12

a21 a22

 , B =

 b11 b12

b21 b22

 ,
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et ∼ iid N(0,Σ) for t > 0, et = 0 for t ≤ 0, and

Σ = (I2 +B)−1(I2 − A)

 1 R

R 1

 (I2 − A)′(I2 +B)−1
′
. (14)

I consider different degrees of correlation with R ∈ {0, 0.3, 0.5, 0.7, 0.9}, and two sample

sizes T ∈ {100, 250}. In all cases, the lower bound kmin is zero and the upper bound is

selected using kmax = int[12(T/100)1/4]. The results are based on 5,000 replications.

For each sample an array of unit root test statistics are constructed. These include the

ADF-GLS test and the point-optimal (PT ) test of Elliott et al. (1996), the CADF-GLS

test, and the EJ test.

Results presented in this paper include five reference models. The first model is

a vector white noise process (henceforth VWN) where aij = bij = 0 for all i and j.

The second model is a strongly autocorrelated VAR process (henceforth VAR1) where

a11 = a22 = 0.8 and aij = 0 otherwise while bij = 0 for all i and j. The third model is

an infinite order VAR process (henceforth VMA1) where aij = 0 for all i and j while

b11 = b22 = −0.8 and bij = 0 otherwise. The last two models consider the case where

yt Granger-causes xt. The fourth model is a VAR process (henceforth VAR2) where

a21 = 0.5, a22 = 0.2, and aij = 0 otherwise while bij = 0 for all i and j. The fifth

model is an infinite order VAR process (henceforth VMA2) where aij = 0 for all i and

j while b21 = 0.5, b22 = 0.2, and bij = 0 otherwise. Five other models (in terms of the

values of aij and bij) were considered. Results are qualitatively similar and, hence, not

reported.
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3.2 Size and Power

I first examine the average number of lags selected by each procedure over the 5,000

simulations. The covariates are non-stationary, and I assume this is known, which

implies that the tests are constructed with the covariates in first differences. The

results for case 3 and T = 100 are presented in Table 1. As we can observe, the

BIC-type rules always choose the most parsimonious models and results are consistent

for different values of R2. In the case of the VAR models, the AIC- and MIC-type

rules choose values of k in the same range and the selected lag orders are in general

appropriate given the DGPs considered here. For the VMA models, however, the BIC-

and AIC-type rules select models that appear to be too parsimonious given that the

true order of the VAR is infinity. The MIC-type rules, on the other hand, choose more

lags. Note, however, that the MIC-type rules choose notably different values of k even

for the same model. These selection rules are evaluated in terms of the size and power

of the tests next.

[ TABLE 1 ABOUT HERE ]

Table 2 shows the results for the size of the tests for case 3 and T = 100. In general,

the tests have inflated sizes and the magnitude of the size distortions depends on the

model and the selection rule considered. When the truncation lag is chosen using the

BIC-type rules the tests can have very large size distortions. Note that, for a nominal

size of 5%, the actual size can be as large as 81.8%. The AIC-type rules yield tests

with actual size closer to the nominal size but still large distortions appear in the case

of the VMA1 model. As shown in Ng and Perron (2001) and Qu and Perron (2007),

in the case of models with a moving average root close to one, standard information

criteria select lag lengths that are too small and can result in tests with important size
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distortions.

[ TABLE 2 ABOUT HERE ]

In the case of the EJ test, the MICe yields substantial size improvements over the

BICe and AICe recommended in Elliott and Jansson (2003). And while the MICu

yields tests with larger size distortions in the case of the VAR2 and the VMA2 models

when R2 is large, in the case of the VMA1 model, the MICu exhibits notable improve-

ments. Finally, in the case of the VAR1 model, all selection criteria produce tests with

large size distortions, particularly large as R2 increases. In the case of the CADF-GLS

test, when the MICc is used to select k the test shows some improvements over the

BICc and AICc but still remains largely over-sized in the case of the VMA1 model.

When the MICu is used, the CADF-GLS test exhibits very small size distortions even

in the case of the VMA1 model. The CADF-GLS test constructed using the MICu

only yields tests with large size distortions when the models exhibit Granger causality

and R2 is large.

I evaluate the size-adjusted power of the tests at ρ̄ = 1 + c̄/T . For case 3 and

T = 100, c̄ = −7.0 and ρ̄ = 0.93. Results reported in Table 3 show that when the

covariates carry no useful information, R2 = 0, the power of the tests is similar to that

of their univariate counterparts and below the asymptotic 50%. Important power gains

are available, however, as R2 increases. In the case of the EJ test, the MICe yields

more powerful tests than the MICu. And, except for the case of the VAR1 model,

the EJ test is more powerful than the CADF-GLS test. This difference in power is

notably large in the case of the models that exhibit Granger causality. In the case of

the VMA1 model, although power gains are only modest, the improvement compared

to the univariate tests is still substantial.
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[ TABLE 3 ABOUT HERE ]

The results presented above correspond only to one deterministic case (3), one

sample size (T = 100), and five of the ten models considered. The other five models

show results that are, in general, better than the ones presented above. With respect

to the other deterministic cases, the tests exhibit similar results for all cases. Finally,

size distortions and power improve significantly for T = 250 but the main results still

hold: the BIC-type rules can still yield tests with actual size above 50% while the

MIC-type rules yield powerful tests with smaller size distortions. In sum, the CADF-

GLS test constructed with the truncation lag selected using the MICu shows smaller

size distortions than the EJ test for most models considered here. Only in the case of

the models where yt Granger-causes xt I find important size distortions. Although the

EJ test has better power, size distortions can be large when the DGP exhibits strong

autocorrelation.

3.3 Leads, Lags, and Power Loss in the CADF-GLS Test

The CADF test of Hansen (1995) requires the selection of a lag order for yt and lead

and lag orders for xt. An extensive search considering all possible combinations of

leads and lags, however, is only feasible when the maximum value of k is low. On the

other hand, results in the previous section show that restricting the number of lags

can imply tests with large size distortions. To avoid this problem, Pesavento (2006)

restricts the lead and lag orders to be the same and looks for the optimal k considering

a wide range of values and the MICu. A consequence of Pesavento’s strategy is that

unnecessary leads and/or lags will cause a power reduction in the tests. Aiming to

construct tests with good size and better power properties, in this section I remove
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this restriction and allow the lead and lag orders to be different. The unrestricted

regression equation for the CADF-GLS test takes the form

∆ydt = φydt−1 +

k2∑
j=−k1

π′xj∆x
d
t−j +

k3∑
j=1

πyj∆y
d
t−j + εt, t = k̃ + 2, ..., T − k1, (15)

where k̃ = max(k2, k3) and the rest is defined as in the previous section. Selection

criteria in this case have the form

IC(k1, k2, k3) = lnσ̂2
k1,k2,k3

+
CT

N
(τT (k1, k2, k3) + (k1 + k2)m+ k3) , (16)

where σ̂2
k1,k2,k3

= N−1
∑T−k1

t=k̃+2
ε̂2t , and N = T − k1 − k̃ − 1. If CT = lnN and

τT (k1, k2, k3) = 0 we have the BIC, and if CT = 2 and τT (k1, k2, k3) = 0 we have the

AIC. For the MIC we need CT = 2 and the quantity τT (k1, k2, k3) = (σ̂2
k1,k2,k3

)−1φ̂2
∑T−k1

t=k̃+2
yd2t−1.

Considering all possible combinations of lead and lag orders can result in a large

number of candidate models. As a consequence, I consider two variations of this pro-

cedure that limit the total number of models to be evaluated. In the first case, the

unrestricted case, I generate all possible combinations of lead and lag orders such that

0 ≤ ki ≤ kmax for i = 1, 2, 3 where kmax = int[12(T/100)1/4] and use an information

criterion to select the optimal orders. I will refer to these selection rules as the unre-

stricted BICc, AICc, and MICc. In the second case, the restricted case, I generate all

possible combinations of lead and lag orders such that 0 ≤ ki ≤ k∗ for i = 1, 2, 3 with k∗

selected using the MICu on an univariate regression and use an information criterion

to select the optimal orders. I will refer to these selection rules as the restricted BICc,

AICc, and MICc. While methods for selecting the best subset regression models as

in Gatu et al. (2007), Hofmann et al. (2007), and Gatu et al. (2008) can be a useful
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alternative, these methods are not considered here.

Table 4 shows the results for the size of the CADF-GLS test for case 3 and T = 100.

Using the results of the MICu in Table 2 as reference we can see that the BICc and

AICc yield tests with larger size distortions for the two variations considered here.

Using the restricted MICc results in tests with similar size properties and no clear

gains result from this modification. On the other hand, using the unrestricted MICc

yields tests with excellent size properties. In this last case, the actual size is almost

equal to the nominal 5% in most cases.

[ TABLE 4 ABOUT HERE ]

In terms of the size-adjusted power, the unrestricted MICc generates tests with

very low power when compared to the other selection rules. Results presented in Table

5 also show that the restricted MICc yields more powerful tests when compared to

the MICu and the unrestricted MICc. These results show that size-adjusted power

increases by (about) two percent for most models. As a consequence, restricting the

lead and lag orders to be equal, as in Pesavento (2006), results in unnecessary leads

and/or lags being estimated and causes a power reduction in the tests. This power

reduction, however, does not appear to be large.

[ TABLE 5 ABOUT HERE ]

In sum, while it is possible to construct tests with almost exact size by using

the unrestricted MICc, this improvement comes at the expense of very large power

reductions. On the other hand, the restricted MICc only exhibits small improvements

over the MICu and, as a consequence, forcing the lead and lag orders to be the same

does not result in an important power reduction in the tests.
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4 Empirical Illustration

To illustrate the relevance of the results presented above, I apply the covariate unit

root tests considered here to the United States inflation rate. Some possible covariates

suggested by standard macroeconomic theory are: the unemployment rate, output, and

the nominal interest rate. Inflation (π) is the annualized quarterly inflation rate as 400

times the logged difference of successive quarters of the GDP deflator. Similarly, output

(y) is 400 times the logged real GDP such that ∆y is the annualized quarterly growth

rate. The unemployment rate (u) is given by the average civilian unemployment rate

of the quarter. The interest rate (i) is the average secondary market 3-Month Treasury

Bill rate of the quarter. All series are taken from FRED −FED St. Louis− for the

period 1959.I − 2010.III. Figure 1 plots the aforementioned series together with their

first differences. Table 6 presents univariate unit root tests constructed using the

truncation lag determined by the MICu as in Ng and Perron (2001). Note that the

selected number of lags differs widely for the series considered. The tests fail to reject

the unit root hypothesis for inflation, output, and the interest rate. The evidence for

the unemployment rate is mixed. All variables appear to be non-stationary or at least

highly persistent so, following Hansen (1995), the covariates should be included in first

differences.

[ FIGURE 1 ABOUT HERE ]

[ TABLE 6 ABOUT HERE ]

Table 7 presents the covariate unit root tests for the inflation rate. Because the tests

require that the covariates, in levels, are not cointegrated, the covariates are included

one at a time. The tests are constructed for deterministic case 3 as the inflation rate

16



does not exhibit a clear trend and the covariates are included in first differences. First

I construct the tests using the truncation lag selected using the BICe for the EJ test

and the BICc for the CADF-GLS test (top panel in Table 7). In the case of the

CADF-GLS test, the lead and lag orders are restricted to be the equal as in equation

(9). We can see that the BIC-type rules choose very parsimonious models with lead

and lag orders in the 1-3 range. The results are consistent for both tests and the unit

root hypothesis is not rejected when the change in the unemployment rate and output

growth are used as covariates. When the change in the interest rate is used as covariate

both tests reject the unit root hypothesis at the 5% level. The change in the interest

rate yields the tests with higher value of R2 and, therefore, is expected to generate

the most powerful test. Practitioners unaware of the findings presented in this paper

could be inclined to interpret the results in Table 7 as evidence of a stationary inflation

rate. Failure to reject the null hypothesis of a unit root in the inflation rate when using

other covariates or the univariate tests could be due to low power of the available tests,

while the more powerful tests (those with higher R2) reject the unit root hypothesis.

Now, the unit root hypothesis can also be rejected due to large size distortions and this

distortions can be specially large when the tests are constructed using BIC-type rules

to select the truncation lag. When the rules suggested here (MICe for the EJ test

and restricted MICc for the CADF-GLS test) are used to determine the lead and lag

orders, the unit root hypothesis is not rejected for all covariates and we can conclude

that the inflation rate appears to be I(1) (bottom panel in Table 7). As expected,

these rules select models with higher lead and/or lag orders than those selected by the

BIC-type rules.

[ TABLE 7 ABOUT HERE ]
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5 Conclusion

This paper considered the selection of the truncation lag using information criteria

for the covariate unit root tests proposed in Elliott and Jansson (2003) and Pesavento

(2006). The focus was on the construction of tests with good size and power and

the results are similar to those found in the univariate literature. In particular, an

overly parsimonious model may lead to tests with large size distortions, while an over

parameterized model may lead to tests with low power. Information criteria such as the

BIC or the AIC tend to select truncation lags that are too small for some of the models

considered, leading to tests with large size distortions. The MIC for cointegration tests

proposed in Qu and Perron (2007) and the MIC for unit root tests proposed in Ng and

Perron (2001), however, yield covariate unit root tests with good size and power. In

the case of the CADF-GLS test, the results also showed that forcing the lead and lag

orders to be equal, as in Pesavento (2006), can result in a small power reduction.
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Table 1: Average values of the selected truncation lag for case 3 and T = 100.

Model k R2 BICu MICu BICe AICe MICe BICc AICc MICc

VWN 0 0.00 0.05 0.84 0.00 0.27 0.53 0.01 0.97 0.74
0.09 0.06 0.82 0.00 0.26 0.52 0.01 1.01 0.74
0.25 0.05 0.81 0.00 0.26 0.53 0.01 0.91 0.69
0.49 0.05 0.79 0.00 0.26 0.54 0.01 0.95 0.70
0.81 0.06 0.83 0.00 0.25 0.52 0.01 1.04 0.98

VAR1 1 0.00 1.05 1.82 1.00 1.31 1.63 1.01 2.24 1.85
0.09 1.05 1.81 1.00 1.32 1.63 1.01 2.26 1.85
0.25 1.05 1.81 1.00 1.29 1.62 1.01 2.15 1.78
0.49 1.06 1.79 1.00 1.32 1.63 1.01 2.24 1.83
0.81 1.05 1.87 1.00 1.31 1.62 1.01 2.28 1.94

VMA1 ∞ 0.00 1.83 6.36 1.93 4.62 6.43 0.50 3.24 5.36
0.09 1.87 6.33 1.92 4.60 6.36 0.57 3.51 5.22
0.25 1.84 6.30 1.91 4.58 6.45 0.66 3.73 5.12
0.49 1.83 6.35 1.92 4.63 6.43 0.86 4.06 4.76
0.81 1.81 6.38 1.92 4.58 6.45 1.18 4.38 3.94

VAR2 1 0.00 0.05 0.84 0.81 1.29 1.56 0.88 2.23 1.92
0.09 0.06 0.82 0.94 1.29 1.55 0.97 2.24 1.92
0.25 0.05 0.81 0.99 1.30 1.58 1.00 2.15 1.84
0.49 0.05 0.79 1.00 1.30 1.59 1.01 2.11 1.82
0.81 0.06 0.83 1.00 1.29 1.58 1.30 3.16 2.97

VMA2 ∞ 0.00 0.05 0.84 0.78 1.37 1.60 0.87 2.13 1.86
0.09 0.06 0.82 0.92 1.39 1.62 0.96 2.16 1.87
0.25 0.05 0.81 0.99 1.40 1.66 1.01 2.22 1.93
0.49 0.05 0.79 1.01 1.47 1.70 1.09 2.62 2.24
0.81 0.06 0.83 1.01 1.51 1.70 1.69 3.90 3.64

Note: k is the order of the VAR representation for each VARMA model. For example, the
VMA1 model is an invertible VARMA(0,1) and can be represented as an infinite VAR.

22



T
ab

le
2:

S
iz

e
of

th
e

te
st

s
fo

r
ca

se
3

an
d
T

=
10

0.

P
T

E
J

A
D

F
-G

L
S

C
A

D
F

-G
L

S

M
o
d

el
R

2
M
I
C
u

B
I
C
e

A
I
C
e

M
I
C
e

B
I
C
u

M
I
C
u

M
I
C
u

B
I
C
c

A
I
C
c

M
I
C
c

B
I
C
u

M
I
C
u

V
W

N
0
.0

0
0.

03
8

0.
06

2
0.

06
3

0.
05

9
0.

06
4

0.
05

3
0.

05
7

0.
07

8
0
.0

8
9

0
.0

6
7

0
.0

7
9

0
.0

5
8

0
.0

9
-

0.
05

4
0
.0

59
0.

05
4

0.
05

9
0.

05
1

-
0.

06
9

0
.0

8
0

0
.0

6
0

0.
0
73

0
.0

5
5

0
.2

5
-

0.
05

9
0
.0

60
0.

05
9

0.
06

1
0.

05
7

-
0.

07
9

0
.0

8
6

0
.0

6
8

0.
0
80

0
.0

6
7

0
.4

9
-

0.
05

5
0
.0

57
0.

05
0

0.
05

6
0.

05
2

-
0.

07
5

0
.0

8
3

0
.0

6
4

0.
0
75

0
.0

6
7

0
.8

1
-

0.
04

9
0
.0

55
0.

04
9

0.
05

5
0.

05
4

-
0.

06
2

0
.0

6
9

0
.0

5
5

0.
0
62

0
.0

6
1

V
A

R
1

0.
00

0.
06

5
0
.0

70
0
.0

75
0.

08
2

0.
07

2
0.

08
3

0.
05

3
0.

08
4

0.
0
97

0.
0
66

0
.0

8
6

0.
0
65

0.
09

-
0
.0

6
9

0.
07

9
0.

08
1

0.
07

0
0.

08
4

-
0.

08
2

0.
1
02

0.
0
66

0
.0

8
1

0.
0
65

0.
25

-
0
.0

9
6

0.
10

3
0.

10
4

0.
09

9
0.

10
7

-
0.

09
4

0.
1
08

0.
0
80

0
.0

9
5

0.
0
76

0.
49

-
0
.1

4
6

0.
15

5
0.

15
3

0.
15

2
0.

15
7

-
0.

08
7

0.
1
04

0.
0
75

0
.0

8
7

0.
0
76

0.
81

-
0
.3

1
6

0.
31

6
0.

30
3

0.
31

8
0.

31
6

-
0.

06
6

0.
0
81

0.
0
58

0
.0

6
6

0.
0
62

V
M

A
1

0.
00

0.
03

8
0
.6

43
0
.2

94
0.

16
9

0.
57

5
0.

12
3

0.
10

7
0.

81
8

0.
4
81

0.
1
61

0
.5

4
7

0.
0
87

0.
09

-
0
.6

2
0

0.
27

8
0.

16
8

0.
55

3
0.

12
1

-
0.

79
4

0.
4
44

0.
1
61

0
.5

2
5

0.
0
91

0.
25

-
0
.5

7
5

0.
25

9
0.

15
8

0.
52

7
0.

11
3

-
0.

75
2

0.
3
91

0.
1
46

0
.4

9
4

0.
0
85

0.
49

-
0
.5

3
0

0.
24

2
0.

14
6

0.
50

3
0.

11
4

-
0.

66
3

0.
3
13

0.
1
34

0
.4

5
0

0.
0
83

0.
81

-
0
.5

8
8

0.
29

6
0.

19
4

0.
53

3
0.

14
6

-
0.

36
8

0.
1
65

0.
0
83

0
.3

0
7

0.
0
74

V
A

R
2

0.
00

0.
03

8
0
.0

74
0
.0

81
0.

06
9

0.
01

9
0.

02
5

0.
05

7
0.

08
3

0.
1
02

0.
0
70

0
.0

2
4

0.
0
27

0.
09

-
0
.0

7
4

0.
07

7
0.

06
9

0.
02

6
0.

03
1

-
0.

07
8

0.
0
93

0.
0
63

0
.0

3
3

0.
0
32

0.
25

-
0
.0

8
2

0.
08

3
0.

07
5

0.
04

2
0.

04
2

-
0.

08
4

0.
0
94

0.
0
72

0
.0

5
4

0.
0
49

0.
49

-
0
.0

7
2

0.
07

4
0.

06
7

0.
07

2
0.

06
6

-
0.

07
0

0.
0
82

0.
0
60

0
.0

9
3

0.
0
77

0.
81

-
0
.0

6
3

0.
06

8
0.

05
7

0.
16

5
0.

13
7

-
0.

05
9

0.
0
79

0.
0
49

0
.2

1
4

0.
1
70

V
M

A
2

0.
00

0.
03

8
0
.0

70
0
.0

80
0.

06
8

0.
02

7
0.

03
0

0.
05

7
0.

09
7

0.
0
97

0.
0
78

0
.0

3
4

0.
0
32

0.
09

-
0
.0

6
5

0.
06

9
0.

06
0

0.
03

7
0.

03
9

-
0.

08
4

0.
0
84

0.
0
64

0
.0

5
0

0.
0
44

0.
25

-
0
.0

6
8

0.
07

5
0.

06
8

0.
06

6
0.

05
8

-
0.

08
3

0.
0
83

0.
0
67

0
.0

8
3

0.
0
70

0.
49

-
0
.0

5
7

0.
06

4
0.

05
7

0.
09

7
0.

08
2

-
0.

07
0

0.
0
70

0.
0
59

0
.1

2
3

0.
0
99

0.
81

-
0
.0

5
5

0.
06

7
0.

05
6

0.
17

2
0.

14
2

-
0.

06
9

0.
0
69

0.
0
51

0
.2

2
9

0.
1
80

23



T
ab

le
3:

S
iz

e-
ad

ju
st

ed
p

ow
er

of
th

e
te

st
s

fo
r

ca
se

3
an

d
T

=
10

0.

P
T

E
J

A
D

F
-G

L
S

C
A

D
F

-G
L

S

M
o
d

el
R

2
M
I
C
u

B
I
C
e

A
I
C
e

M
I
C
e

B
I
C
u

M
I
C
u

M
I
C
u

B
I
C
c

A
I
C
c

M
I
C
c

B
I
C
u

M
I
C
u

V
W

N
0
.0

0
0.

32
7

0.
47

8
0.

46
3

0.
42

3
0.

47
9

0.
38

0
0.

39
4

0.
53

0
0
.4

9
8

0
.4

4
8

0
.5

3
0

0
.4

0
1

0
.0

9
-

0.
53

3
0
.5

09
0.

47
2

0.
52

8
0.

44
3

-
0.

57
8

0
.5

4
3

0
.4

9
8

0.
5
72

0
.4

5
6

0
.2

5
-

0.
64

5
0
.6

26
0.

58
2

0.
64

3
0.

55
9

-
0.

68
9

0
.6

5
9

0
.6

0
5

0.
6
85

0
.5

7
4

0
.4

9
-

0.
79

2
0
.7

68
0.

71
5

0.
78

9
0.

70
8

-
0.

80
7

0
.7

6
9

0
.7

1
6

0.
8
04

0
.7

2
2

0
.8

1
-

0.
98

8
0
.9

66
0.

90
2

0.
98

2
0.

93
6

-
0.

96
0

0
.9

1
5

0
.8

2
8

0.
9
58

0
.9

0
2

V
A

R
1

0.
00

0.
31

5
0
.2

95
0
.2

89
0.

27
7

0.
29

8
0.

25
8

0.
31

0
0.

38
9

0.
3
79

0.
3
18

0
.3

8
7

0.
3
09

0.
09

-
0
.3

1
5

0.
30

4
0.

29
3

0.
31

8
0.

28
0

-
0.

42
8

0.
4
03

0.
3
49

0
.4

2
9

0.
3
51

0.
25

-
0
.3

5
6

0.
35

6
0.

34
5

0.
36

0
0.

33
5

-
0.

50
3

0.
4
80

0.
4
18

0
.5

0
3

0.
4
32

0.
49

-
0
.4

1
2

0.
41

1
0.

39
4

0.
41

0
0.

39
5

-
0.

61
7

0.
5
82

0.
5
14

0
.6

1
6

0.
5
45

0.
81

-
0
.4

0
5

0.
41

3
0.

39
7

0.
41

0
0.

42
3

-
0.

81
5

0.
7
59

0.
6
52

0
.8

1
2

0.
7
58

V
M

A
1

0.
00

0.
11

8
0
.3

25
0
.3

47
0.

26
6

0.
34

3
0.

21
6

0.
19

9
0.

20
0

0.
2
96

0.
1
74

0
.3

4
1

0.
1
53

0.
09

-
0
.3

4
2

0.
37

5
0.

28
5

0.
35

6
0.

23
6

-
0.

21
9

0.
3
20

0.
1
84

0
.3

4
9

0.
1
65

0.
25

-
0
.3

8
4

0.
43

0
0.

33
6

0.
38

6
0.

29
6

-
0.

25
0

0.
3
54

0.
2
28

0
.3

8
4

0.
2
10

0.
49

-
0
.4

3
1

0.
48

6
0.

41
5

0.
41

2
0.

38
4

-
0.

31
4

0.
4
04

0.
3
00

0
.4

0
6

0.
2
75

0.
81

-
0
.4

3
8

0.
60

5
0.

57
2

0.
45

6
0.

58
6

-
0.

54
0

0.
5
43

0.
4
51

0
.5

3
9

0.
4
09

V
A

R
2

0.
00

0.
32

7
0
.4

23
0
.4

76
0.

43
2

0.
16

9
0.

19
8

0.
39

4
0.

45
9

0.
4
59

0.
3
77

0
.1

9
0

0.
2
04

0.
09

-
0
.5

1
3

0.
51

7
0.

47
5

0.
17

4
0.

22
1

-
0.

53
0

0.
5
00

0.
4
24

0
.2

3
7

0.
2
45

0.
25

-
0
.6

2
6

0.
60

2
0.

55
3

0.
26

6
0.

30
9

-
0.

63
0

0.
5
94

0.
5
22

0
.3

5
7

0.
3
60

0.
49

-
0
.7

6
6

0.
73

6
0.

67
9

0.
53

7
0.

54
0

-
0.

74
3

0.
6
96

0.
6
17

0
.6

3
2

0.
5
95

0.
81

-
0
.9

6
1

0.
93

2
0.

87
1

0.
82

6
0.

82
7

-
0.

90
0

0.
8
22

0.
7
15

0
.8

1
7

0.
7
96

V
M

A
2

0.
00

0.
32

7
0
.4

18
0
.4

69
0.

42
8

0.
21

9
0.

22
6

0.
39

4
0.

51
9

0.
4
90

0.
4
02

0
.2

6
3

0.
2
52

0.
09

-
0
.4

8
5

0.
48

9
0.

46
3

0.
28

9
0.

28
6

-
0.

55
9

0.
5
16

0.
4
50

0
.3

5
5

0.
3
23

0.
25

-
0
.5

9
1

0.
57

4
0.

53
7

0.
43

7
0.

42
0

-
0.

63
4

0.
5
85

0.
5
15

0
.5

1
0

0.
4
60

0.
49

-
0
.7

4
0

0.
72

0
0.

67
3

0.
70

5
0.

65
3

-
0.

71
9

0.
6
78

0.
5
86

0
.7

5
9

0.
6
83

0.
81

-
0
.9

6
9

0.
93

1
0.

87
5

0.
85

4
0.

84
1

-
0.

89
3

0.
8
01

0.
6
86

0
.8

1
2

0.
7
93

N
ot

e:
P

ow
er

ev
al

u
at

ed
at
ρ̄

=
0.

93
(ρ̄

=
1

+
c̄/
T

a
n

d
c̄

=
−

7.
0
).

24



Table 4: Size of the CADF-GLS test for case 3 and T = 100.

Restricted Unrestricted

Model R2 MICu BICc AICc MICc BICc AICc MICc

VWN 0.00 0.058 0.077 0.075 0.061 0.080 0.101 0.049
0.09 0.055 0.070 0.066 0.056 0.073 0.096 0.042
0.25 0.067 0.079 0.075 0.065 0.081 0.105 0.051
0.49 0.067 0.076 0.076 0.066 0.079 0.101 0.047
0.81 0.061 0.062 0.064 0.058 0.063 0.087 0.044

VAR1 0.00 0.065 0.081 0.080 0.061 0.080 0.111 0.042
0.09 0.065 0.094 0.084 0.065 0.099 0.124 0.049
0.25 0.076 0.092 0.090 0.074 0.097 0.125 0.052
0.49 0.076 0.090 0.087 0.076 0.093 0.121 0.051
0.81 0.062 0.065 0.065 0.057 0.070 0.103 0.049

VMA1 0.00 0.087 0.578 0.323 0.094 0.612 0.336 0.078
0.09 0.091 0.560 0.317 0.089 0.597 0.317 0.072
0.25 0.085 0.536 0.291 0.081 0.563 0.297 0.063
0.49 0.083 0.473 0.240 0.072 0.500 0.242 0.052
0.81 0.074 0.255 0.130 0.045 0.273 0.142 0.036

VAR2 0.00 0.027 0.033 0.034 0.023 0.068 0.112 0.036
0.09 0.032 0.035 0.038 0.026 0.056 0.105 0.033
0.25 0.049 0.056 0.057 0.047 0.073 0.100 0.045
0.49 0.077 0.085 0.084 0.077 0.082 0.103 0.046
0.81 0.170 0.181 0.176 0.170 0.095 0.099 0.046

VMA2 0.00 0.032 0.042 0.043 0.030 0.075 0.113 0.035
0.09 0.044 0.050 0.052 0.040 0.061 0.105 0.036
0.25 0.070 0.077 0.077 0.067 0.074 0.100 0.048
0.49 0.099 0.109 0.107 0.100 0.081 0.103 0.043
0.81 0.180 0.186 0.183 0.179 0.078 0.098 0.046
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Table 5: Size-adjusted power of the CADF-GLS test for case 3 and T = 100.

Restricted Unrestricted

Model R2 MICu BICc AICc MICc BICc AICc MICc

VWN 0.00 0.401 0.527 0.481 0.414 0.531 0.476 0.315
0.09 0.456 0.574 0.537 0.474 0.576 0.510 0.372
0.25 0.574 0.681 0.649 0.599 0.686 0.596 0.442
0.49 0.722 0.801 0.771 0.738 0.800 0.699 0.535
0.81 0.902 0.957 0.938 0.921 0.954 0.849 0.669

VAR1 0.00 0.309 0.402 0.380 0.312 0.407 0.389 0.254
0.09 0.351 0.450 0.408 0.358 0.456 0.413 0.262
0.25 0.432 0.518 0.491 0.444 0.527 0.462 0.310
0.49 0.545 0.619 0.594 0.556 0.621 0.545 0.375
0.81 0.758 0.823 0.806 0.777 0.816 0.702 0.488

VMA1 0.00 0.153 0.328 0.325 0.174 0.304 0.302 0.125
0.09 0.165 0.340 0.322 0.173 0.316 0.315 0.135
0.25 0.210 0.369 0.346 0.209 0.355 0.331 0.163
0.49 0.275 0.409 0.391 0.244 0.389 0.369 0.196
0.81 0.409 0.592 0.539 0.380 0.508 0.490 0.285

VAR2 0.00 0.204 0.241 0.243 0.190 0.385 0.422 0.231
0.09 0.245 0.301 0.293 0.252 0.458 0.460 0.293
0.25 0.360 0.427 0.409 0.371 0.608 0.559 0.387
0.49 0.595 0.676 0.650 0.612 0.792 0.690 0.512
0.81 0.796 0.835 0.823 0.803 0.910 0.798 0.585

VMA2 0.00 0.252 0.300 0.296 0.238 0.429 0.442 0.255
0.09 0.323 0.384 0.372 0.328 0.477 0.464 0.305
0.25 0.460 0.532 0.513 0.473 0.616 0.561 0.390
0.49 0.683 0.760 0.731 0.695 0.784 0.686 0.504
0.81 0.793 0.838 0.821 0.805 0.925 0.795 0.584

Note: Power evaluated at ρ̄ = 0.93 (ρ̄ = 1 + c̄/T and c̄ = −7.0).

26



Table 6: Univariate unit root tests.

ADF ADF-GLS PT MPT ρ̂ Lags Trend

π -1.950 -1.571 5.362 5.012 0.957 3 c
u -1.981 -2.081* 3.021* 2.992* 0.970 12 c
y -2.253 -1.363 16.239 14.876 0.985 2 c, t
i -1.429 -1.210 7.295 7.022 0.983 13 c

Note: The number of lags for each specification is chosen using theMICu

by Ng and Perron (2001). c denotes constant and t denotes time trend.
* denotes rejection at 5% level.

Table 7: Covariate unit root tests for Inflation.

EJ CADF-GLS

∆u ∆y ∆i ∆u ∆y ∆i

BICe / BICc Statistic 3.712 3.623 2.875* -1.446 -1.589 -2.041*
R2 0.200 0.049 0.426 0.115 0.042 0.163
Lags 1 1 3 [2,2,2] [2,2,2] [2,2,2]

MICe / MICc Statistic 6.144 4.844 4.082 -1.070 -1.144 -1.522
R2 0.009 0.119 0.388 0.149 0.053 0.180
Lags 9 4 9 [1,1,3] [0,3,3] [2,0,3]

Note: The top panel tests are constructed using the BICe and BICc. The bottom
panel tests are constructed using the MICe and the restricted MICc. * denotes
rejection at 5% level.
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Figure 1: Macroeconomic variables and their first differences. The inflation rate
(π), the unemployment rate (u), output (y), and the interest rate (i). FRED IDs:
GDPCTPI, UNRATE, GDPC96, and TB3MS. Shaded areas denote NBER recession
dates.
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