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Abstract

Higher-order statistical (HOS) techniques were 6rst proposed over four decades ago. This paper is concerned with higher-order statistical
analysis of closed-loop data for diagnosing the causes of poor control-loop performance. The main contributions of this work are to
utilize HOS tools such as cumulants, bispectrum and bicoherence to develop two new indices: the non-Gaussianity index (NGI) and the
nonlinearity index (NLI) for detecting and quantifying non-Gaussianity and nonlinearity that may be present in regulated systems, and to
use routine operating data to diagnose the source of nonlinearity. The new indices together with some graphical plots have been found to
be useful in diagnosing the causes of poor performance of control loops. Successful applications of the proposed method are demonstrated
on simulated as well as industrial data. This study clearly shows that HOS-based methods are promising for closed-loop performance
monitoring.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The 6eld of controller performance monitoring has re-
ceived much attention in the engineering research literature.
However, the diagnosis of poor performance remains an
open area. Performance diagnosis requires identi6cation of
the causes of poor performance, as for example due to poor
controller tuning, presence of disturbances, process and/or
actuator nonlinearities. If there are some nonlinearities in
the control loop, the controller may not perform at the de-
sired level. Nonlinearities degrade the performance of the
controller in several ways. For example, they may produce
oscillations in process variables, shorten the life of the con-
trol valve, may upset process stability, and in most cases
lead to inferior quality end-products thus causing larger re-
jection rates and reduced pro6tability. The nonlinearities
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may be present in the process itself or in the actuators or
control valves. This study is concerned with actuator nonlin-
earities. Actuator or valve nonlinearities are typically due to
faults such as stiction, backlash, saturation, deadzone, rup-
tured diaphragm, and/or corroded or eroded valve seats.
Classical signal processing tools such as power spectrum

utilize only the 6rst- and second-order moments, i.e., the
mean and covariance. Such tools are mainly useful for an-
alyzing signals from linear processes. In case of nonlinear
signals, one needs to look at other methods of characterizing
their statistical properties (Rao & Gabr, 1980; Hinich, 1982;
Nikias & Petropulu, 1993; Choudhury, Shah, & Thornhill,
2002). This necessitates the use of higher-order statistical
tools. The third- and fourth-order moments or cumulants and
their frequency domain counterparts are found to be useful
in analyzing nonlinearities in communication signals, radar
signals, nonlinear ocean wave analysis, seismic signal anal-
ysis, speech signal analysis and mechanical machine condi-
tion monitoring (Kim & Powers, 1979; Nikias & Petropulu,
1993; Fackrell, 1996; Collis, White, & Hammond, 1998).
Although HOS techniques have been widely used in the
above mentioned areas, they have not been used in solv-
ing problems in process control. This paper introduces HOS
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methods and shows the potential of using these tools in con-
troller performance analysis and diagnosis.
In this work, the diagnosis of the causes of poor per-

formance of control loops is performed by analyzing
closed-loop data using HOS-based methods. If the process
is oscillating and the cause is due to poor or tightly tuned
controllers or due to a linear external oscillatory distur-
bance, the proposed method does not detect any nonlinear-
ity. If the method detects nonlinearity in the control error
signal, the cause is most likely due to nonlinearities in the
control valve or in the process itself. Once the nonlinearity
is detected, the process output (pv) vs. the controller output
(op) plot and the manipulated variable (mv) vs. the con-
troller output (op) plot can be used to locate its source, e.g.,
due to valve stiction and/or backlash. Since most of the
time, processes run under regulatory mode the method has
been developed based on routine operating data obtained
under regulatory control. Therefore, it does not require any
additional process excitation or set point change.

2. Higher-order statistics: brief preliminaries

The 6rst and second-order statistics (e.g., mean, variance,
autocorrelation, power spectrum) are popular signal process-
ing tools and have been used extensively for the analysis
of process data. However, second-order statistics are only
suGcient for describing linear processes. In practice, there
are many situations when the process deviates from linearity
and exhibits nonlinear behavior. Such type of processes can
be conveniently studied using HOS. There are three main
reasons for using HOS: to extract information due to devi-
ations from Gaussianity, to recover the true phase character
of the signals, and to detect and quantify nonlinearities in
the time series (Nikias & Petropulu, 1993).
Time domain data itself is a good source of informa-

tion. Many statistical measures, e.g., moments, cumulants,
auto-correlation, cross-correlation have been developed to
measure the time domain information in such data. Almost
all type of data are usually collected as samples at regular
intervals of time. In statistical analysis, it is often assumed
that the time series or the signal is stationary and ergodic.
This paper makes the use of these assumptions. Since this
study mainly deals with the frequency domain HOS anal-
ysis, the time domain HOS measures, e.g., cumulants, will
not be discussed here. However, for a tutorial description
of time domain HOS, readers are referred to (Stuart & Ord,
1987; Fackrell, 1996; Choudhury & Shah, 2001).
Not all the information content of a signal can be neces-

sarily and easily obtained from time domain statistical anal-
ysis of the data. Transforming the signal from time to fre-
quency domain can expose the periodicities of the signal,
can detect the nonlinearities present in the signal and can
also aid in understanding the signal generating process. Just
as the power spectrum is the frequency domain counterpart
of the second-order moment of a signal and represents the

decomposition or spread of the signal energy over the fre-
quency channels obtained from the fast fourier transform,
the bispectrum is the frequency domain representation of the
third-order cumulants. It is de6ned as

B(f1; f2), E[X (f1)X (f2)X ∗(f1 + f2)]; (1)

where B(f1; f2) is the bispectrum in the bifrequency
(f1; f2), X (f) is the discrete Fourier transform of any time
series x(k), and ‘*’ denotes complex conjugate.
Eq. (1) shows that the bispectrum is a complex quan-

tity having both magnitude and phase. It can be plotted
against two independent frequency variables, f1 and f2 in a
three-dimensional (3d) plot. Just as the discrete power spec-
trum has a point of symmetry at the folding frequency, the
discrete bispectrum also has 12 regions of symmetries in
the (f1, f2) plane (Rosenblatt & Van Ness, 1965; Nikias &
Petropulu, 1993). The bispectrum in one region, the prin-
cipal domain, gives suGcient information. The other re-
gions of the (f1; f2) plane are redundant. Each point in
such a plot represents the bispectral content of the sig-
nal at the bifrequency, (f1; f2). In fact, the bispectrum at
point (B(f1; f2); f1; f2) measures the interaction between
frequencies f1 and f2. This interaction between frequencies
can be related to the nonlinearities present in the signal gen-
erating systems (Fackrell, 1996) and therein lies the core of
its usefulness in the detection and diagnosis of nonlinearities.
In order to remove the undesired property of the variance

of the estimated bispectrum (Hinich, 1982), the bispectrum
can be normalized in a such way that it gives a new measure
called bicoherence whose variance is independent of the
signal energy (Fackrell, 1996). Bicoherence is de6ned as

bic2(f1; f2),
|B(f1; f2)|2

E[|X (f1)X (f2)|2]E[|X (f1 + f2)|2] ; (2)

where ‘bic’ is known as the bicoherence function. A useful
feature of bicoherence function is that it is bounded between
0 and 1.
The underlying methods for bispectrum/bicoherence es-

timation are extensions of the power spectrum estimation
methods. There are two broad non-parametric approaches:
the indirect method, based on estimating the cumulant func-
tions and then taking the fourier transform; and the direct
method, based on Welch’s segment averaging approach. For
details about these methods, see (Nikias & Petropulu, 1993;
Choudhury & Shah, 2001). Unless otherwise stated, the di-
rect method of bispectrum estimation with a data length of
4096, a segment length of 64, a 50% overlap, Hanning win-
dow with a length of 64, and a DFT length of 128 has been
used throughout this work.

3. Test of Gaussianity and linearity based on the
bicoherence

The presence of nonlinearities in the control loop is
one of the main reasons for poor performance of a linear
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controller designed based on linear control theory. The non-
linearity may be due to the presence of nonlinearities such as
stiction, deadzone, hysteresis in the control valve or the non-
linear nature of the process itself. Such a nonlinear system
often produces a non-Gaussian and nonlinear time series.
The test of Gaussianity of a signal or the test of presence of
nonlinearity in a system is a useful diagnostic aid towards
determining the poor performance of a control loop. This
section describes the development and derivation of the test
to check a signal’s Gaussianity and nonlinearity.
A discrete ergodic stationary time series, x(k), is called

linear, if it can be represented by

x(k) =
M−1∑
n=0

h(n)e(k − n); (3)

where e(k) is a sequence of independent identically dis-
tributed random variables with E[e(k)] = 0, �2e = E[e2(k)],
and �3 = E[e3(k)]. For this case, the following frequency
domain relationships can be obtained.

Power spectrum : P(f) = �2e |H (f)|2 ≡ |X (f)X ∗(f)| (4)

and bispectrum : B(f1; f2) = �3H (f1)H (f2)

×H∗(f1 + f2); (5)

where

H (f) =
M−1∑
n=0

h(n)e−inf:

Eq. (2) can be rewritten as

bic2(f1; f2),
|B(f1; f2)|2

{E[|X (f1)X ∗(f1)| |X (f2)X ∗(f2)|]
×E[|X (f1 + f2)X ∗(f1 + f2)|]}

≡ |B(f1; f2)|2
E[|P(f1)| |P(f2)|]E[|P(f1 + f2)|] : (6)

For the linear time series, substituting the expressions from
Eqs. (4) and (5), it can be shown that

bic2(f1; f2) =
�23
�6e
: (7)

Eq. (7) shows that for any linear signal, x, the squared bi-
coherence will be independent of the bifrequencies, i.e., a
constant in the bifrequency plane. If the squared bicoher-
ence is zero, the signal x is Gaussian because the skew-
ness or �3 is also zero in such a case. Strictly speaking,
such a signal should be called non-skewed with a sym-
metric distribution instead of Gaussian. However, in this
paper and also in most of the HOS literature (Kim &
Powers, 1979; Rao & Gabr, 1980; Hinich, 1982; Nikias
& Petropulu, 1993; Fackrell, 1996; Collis et al., 1998) the
two terms—non-skewed and Gaussian—have been used in-
terchangeably. To check whether the squared bicoherence

is constant or not, two tests are required. One is for testing
the zero squared bicoherence which shows that the signal
is Gaussian and thereby the signal generating process is
linear. The other is to test for a non-zero constant squared
bicoherence which shows that the signal is non-Gaussian
but the signal generating process is linear.
The bicoherence is a complex quantity with real and imag-

inary parts. The magnitude of the squared bicoherence can
be obtained as

bic2 = R(bic)2 + I(bic)2; (8)

where R and I are real and imaginary parts, respectively.
It is well known in the HOS literature that the bicoher-
ence is a complex normal variable, i.e., both the estimates
of real and imaginary parts of the bicoherence are normally
distributed (Hinich, 1982) and asymptotically independent,
i.e., the estimate at a particular bifrequency is independent
of the estimates of its neighboring bifrequencies (Fackrell,
1996). Therefore, the squared bicoherence at each frequency
is a chi-squared (�2) distributed variable with 2 degrees of
freedom. Hinich (1982) showed that the signal of interest is
Gaussian if the scaled skewness function, a function simi-
lar to bicoherence, is asymptotically centrally �2 distributed
with 2 degrees of freedom. This information was used by
(Fackrell, 1996) to test bicoherence at each frequency in
the principal domain. The disadvantage of this test is that
while applying to each of the bifrequencies in the princi-
pal domain of squared bicoherence plot, the probability of
false detection accumulates because of a large number of
bifrequencies in the principal domain and thus it overesti-
mates the number of bifrequencies where the bicoherence
magnitude is signi6cant. A modi6ed test with better statisti-
cal properties but no frequency resolution is formulated by
averaging the squared bicoherence over the triangle of the
principal domain. The test can be summarized as follows:

• Null hypothesis, H0: The signal is Gaussian.
• Alternate hypothesis, H1: The signal is not Gaussian.

Under the null hypothesis, the test for the average squared
bicoherence can be based on the following equation:

P(2KL ˆbic2¿c�
2

� ) = �; (9)

where, c�
2

� is the critical value calculated from the central �2

distribution table for a signi6cance level of � at 2L degrees

of freedom since ˆbic2 =
∑L

i=1
ˆbic2i and L is the number of

bifrequencies inside the principal domain of the bispectrum,
K is the number of segments used in data segmentation
during bicoherence estimation.
If the number of bifrequencies in the principal domain is

very large (more than 100) the normal approximation of the
�2 distribution can be used. The approximation is given by
(Abramowitz & Stegun, 1972)

c�
2

� =
1
2
[cz� +

√
2dof − 1]2; (10)
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where c�
2

� and cz� are the critical values of �2 and stan-
dard normal distribution at a signi6cance level of �, respec-
tively and dof is the degrees of freedom. Now substituting
Eq. (10) into (9) with 2L degrees of freedom, it can be
shown that

P
(

ˆbic2¿
1

4KL
[cz� +

√
4L− 1]2

)
= �: (11)

This equation can be rewritten as

P( ˆbic2 − bic2crit¿ 0) = �; (12)

or P(NGI ¿ 0) = �; (13)

where, bic2crit=
1

4KL [c
z
�+

√
4L− 1]2 andNGI , ˆbic2−bic2crit

• if NGI6 0, the signal is GAUSSIAN,
• if NGI ¿ 0, the signal is NON-GAUSSIAN.

Therefore, a signal is Gaussian (non-skewed) at a con6dence
level of � if the NGI is less than or equal to zero. This index
has been de6ned to automate the decision.
If the signal is found to be Gaussian, the signal generating

process is assumed to be linear. In the case of non-Gaussian
signal the signal generating process should be tested for its
linearity. As shown in Eq. (7), if the signal is non-Gaussian
and linear the magnitude of the squared bicoherence should
be a non-zero constant at all bifrequencies in the principal
domain. The constancy of the squared bicoherence (skew-
ness) was tested by Rao and Gabr (1980) using an F test.
Hinich reported that this test is very vulnerable to outliers.
He suggested a method based on the Sample Interquartile
Range (SIQR) of the �2 distribution of the squared skewness
function (Hinich, 1982). But this test depends on the sam-
ple size of the time series and also the SIQR is not an ideal
measure for constant bicoherence because it is easy to see
that SIQR of the squared bicoherence can be zero though all
squared bicoherence are not equal (Yuan, 1999). A simple
way to check the Uatness of squared bicoherence is to have
a look at the 3d squared bicoherence plot and observe the
Uatness of the plot. But this can be tedious and cumbersome
for a large number of plots. Alternatively, if the squared bi-
coherence is of a constant magnitude at all bifrequencies in
the principal domain, the variance of the estimated bicoher-
ence should be zero. To check the Uatness of the plot or the
constancy of the squared bicoherence, the maximum squared
bicoherence can be compared with the average squared bi-
coherence plus two or three times the standard deviation
of the estimated squared bicoherence. At a 95% con6dence
level if the maximum squared bicoherence, ˆbic2max is less

than ( ˆbic2 + 2� ˆbic2 ), the magnitudes of squared bicoherence
are assumed to be a constant or the surface is Uat. The auto-
matic detection of this can be performed using the following
nonlinearity index (NLI), which is de6ned as

NLI , | ˆbic2max − ( ˆbic2 + 2� ˆbic2 )|; (14)

where � ˆbic2 is the standard deviation of the estimated squared

bicoherence and ˆbic2 is the average of the estimated squared
bicoherence. Ideally, the NLI should be 0 for a linear pro-
cess. This is because if the squared bicoherence is a con-
stant at all frequencies, the variance will be zero and both
the maximum and the mean will be same. Therefore, it can
be concluded that

• if NLI = 0, the signal generating process is LINEAR,
• if NLI ¿ 0, the signal generating process is
NONLINEAR.

Since the squared bicoherence is bounded between 0 and 1,
the NLI is also bounded between 0 and 1.
Practical implementation: In practice it is diGcult to

obtain an exact zero value for NGI for Gaussian signals.
Therefore, we select a threshold value, !, of NGI such that
NGI ¡! implies a Gaussian signal. To the best knowledge
and experience of the authors, for �=0:05, an NGI value of
less than 0:001 can be assumed to be zero. Consequently, if
NGI6 0:001 the signal can be assumed to be Gaussian at
a 95% con6dence level. For NLI, a value less than 0.01 is
assumed to be zero and consequently, the process is consid-
ered to be linear at a 95% con6dence level. The larger the
NLI the higher is the extent of nonlinearity. The detailed
diagnosis procedure can be summarized in a rule based de-
cision Uow diagram shown in Fig. 1.

4. Simulation examples to diagnose the causes of poor
performance

As mentioned earlier in this paper the poor performance
of a control loop may be due to a variety of reasons, for ex-
ample poorly tuned controllers, presence of oscillatory dis-
turbances, and nonlinearities. The purpose of this simula-
tion example is to demonstrate the application of HOS-based
techniques in diagnosing the causes of poor performance. If
the method does not detect any nonlinearity then the focus
of the diagnosis should be on controller tuning or on the
possible presence of an external oscillatory disturbance. If
the method detects nonlinearity then the nonlinearity should
be isolated or localized. Is it in the valve or in the process?
This study assumes that the process is linear.
A simple single-input, single-output (SISO) system in

a feedback control con6guration was used for generating
simulated data. The 6rst-order process with time delay is
given by the following transfer function:

G(z−1) =
z−3(1:45 − z−1)

1 − 0:8z−1 : (15)

The process is under regulatory control and is controlled
by a PI controller. An integrated white noise generated by
integrating random noise with a standard deviation of 0.224
was added to the process. The simulation was performed
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NLI > 0.01

Gaussian, Linear
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1. linear external oscillation
2. tightly tuned controller
3. and so on

Non-Gaussian, Linear

Calculate NL

no yes

yesno

Diagnose the type of nonlinearity:
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of actuator or process nonlinearities

Nonlinear
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NGI > 0.001

Non-Gaussian

NLI > 0.01

Gaussian, Linear
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2. tightly tuned controller
3. and so on

Non-Gaussian, Linear

Calculate NLI

no yes

yesno

Diagnose the type of nonlinearity:
e.g., look at pv-op plots or typical signatures
of actuator or process nonlinearities

Fig. 1. Rule based decision Uow diagram for the diagnosis of poor control performance.

for 6000 sampling intervals. To remove the eWect of tran-
sients the 6rst few hundred data points were discarded and
the last 4096 points of the error signal to the controller (sp
–pv) were analyzed to detect the nonlinearity present in the
system for the following cases.

4.1. Well tuned controller

The PI controller parameters for this case were Kc = 0:15
and I=Kc=$i=0:15 s−1. The nonlinear ‘stiction model’ block
was removed from the simulation block diagram. The top
row of Fig. 2 shows the results for this case. The proposed
test yields a value of NGI = −0:0008. This indicates that
the error signal is Gaussian and linear. The corresponding
bicoherence plot is Uat.

4.2. Controller with excessive integral action

For this case the controller parameters were set to Kc =
0:15 and I = Kc=$i = (0:15=2:5) s−1. Compared to the pre-
vious case, this controller has excessive integral action. The
second row of the Fig. 2 shows the results for this case.
The presence of relatively large integral action produces
large oscillations in the process variables. An NGI value
of −0:0007 indicates the Gaussianity and linearity of the
system. It indicates that the poor performance is not due
to nonlinearities. Also, since there are no external oscil-
latory disturbances, a suitable diagnosis is a poorly tuned
controller.

4.3. Presence of an external oscillatory disturbance

A sinusoid with amplitude 2 and frequency 0.01 was
added to the process output in order to feed an external os-
cillatory disturbances to the process. The results for this case
are shown in the third row of Fig. 2. Horch’s correlation
method (Horch, 1999) of diagnosing the oscillation or more
speci6cally valve stiction gives an odd correlation function
between op and pv for this case, thereby falsely detecting
the presence of stiction in the control loop. The proposed
test gives an NGI = −0:0003. It clearly shows that the rea-
son for the oscillation is not due to any nonlinearity in the
system. The bicoherence plot is also Uat.

4.4. Presence of stiction

A stiction model developed by Choudhury, Thornhill, and
Shah (2003a, b) was used to perform this simulation. The
model consists of two parameters—namely, deadband plus
stickband, s and slip jump, j. Fig. 3 summarizes the model
algorithm. It can be brieUy described as:

• First, the controller output (mA) is provided to the look-up
table where it is converted to valve travel in %.

• If this is less then 0 or more than 100, the valve is satu-
rated.

• If the signal is within 0–100% range, it calculates the
slope of the controller output signal.

• Then, the change of the direction of the slope of the input
signal is taken into consideration. If the sign of the slope
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Fig. 2. Higher-order statistical analysis of simulated process under feedback control.

changes or remains zero for two consecutive instants, the
valve is assumed to be stuck and does not move.

• When the cumulative change of the input signal is more
than the amount of the deadband plus stickband (‘s’), the
valve slips and starts moving.

• The parameter, “j” signi6es the slip jump start of the con-
trol valve immediately after it overcomes the deadband
plus stickband. It accounts for the oWset between the valve
input and output signals.

• Finally, the output is again converted back to a mA signal
using a look-up table based on the valve characteristics.

To perform the simulation for this particular case, s = 3
and j = 1 were used. Note that in order to initiate limit cy-
cling or oscillations in a simple 6rst-order time delay pro-

cess in presence of valve stiction, a set point change at the
beginning of the simulation is required. Then the process
is left to operate under regulatory control. The last row of
Fig. 2 shows the time trend of the control error signal, the
bicoherence plot and the pv–op plot. The presence of stic-
tion produces oscillations in the process. The values of NGI
and NLI are 0.05 and 0.048, clearly detecting the pres-
ence of nonlinearity in the process signal. After detecting
the nonlinearity, the process variable versus controller out-
put plot, i.e., pv–op plot can be used to diagnose the type
of nonlinearity. Usually, the presence of distinct elliptical
cycles with sharp turn around points is an indication of the
presence of stiction in the valve. Note that for other cases
there are no such distinct cycles in pv–op plot (see the right
panel of the Fig. 2). If the valve position (mv) is available,
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Fig. 3. Flow chart for data-driven stiction model.

the mv–op plot can be conveniently and more accurately
used to identify the type of nonlinearity in the valve.

5. Industrial case studies

The proposed method has been successfully applied in
the detection and isolation of process/actuator faults for
some industrial control loops. Two of these case studies are
reported here.

5.1. Case 1: dryer temperature control loop

This is a temperature control loop on a furnace-feed
dryer system at the Tech-Cominco mine in Trail, British
Columbia, Canada. The temperature of the dryer combus-
tion chamber is controlled by manipulating the Uow rate
of natural gas to the combustion chamber. The minimum
variance performance index of this loop was very poor.
Fig. 4(a) shows time trends of the controlled variable, the
controller output and the set point. It shows clear oscil-
lations both in the controlled variable and the controller
output. Fig. 4(b) shows the bicoherence plot. The NGI and
NLI values obtained for this loop were 0.006 and 0.197,
respectively, clearly indicating the presence of nonlinearity

in the loop. The presence of distinct cycles in the char-
acteristic pv–op plot (Fig. 4(c)) together with the pattern
obtained in Fig. 4(d) characterize the presence of backlash
and stiction in the control valve. Therefore, this analysis
was able to con6rm the cause of poor loop performance
due to the presence of valve stiction.

5.2. Case 2: ;ow control loops

This analysis is for two Uow control loops at Celanese
Canada Ltd., a chemical complex located in Edmonton,
Canada. Data was collected with a sampling interval of 1
min over two time periods: from April 10 to 17, 2001 and
following the annual maintenance shutdown of the plant,
from July 1 to 15, 2001. Results of both these loops are
discussed below.

5.2.1. Flow loop 1
This is a recycle Uow control loop. The detailed diagnostic

plots are shown in Fig. 5. Time series of the data collected
in April and July are shown in Figs. 5(a) and (b). The op
trend in Fig. 5(a) shows that the valve movement was very
slow and insigni6cant compared to the change in the error
signal (pv–sp). The values of NGI and NLI are 0.01 and
0.10, respectively. An NGI value of 0.01 shows that the
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Fig. 4. Analysis of time series data from an industrial temperature control loop. (a) Time trend; (b) 3d bicohrence plot; (c) pv–op characteristic plot;
(d) mv (Uow rate)–op plot.

Fig. 5. Analysis of Uow loop 1 data before (April 2001—left) and after the (July 2001—right) plant maintenance shutdown period. (a) Time trend of
April; (b) time trend of July; (c) 3d squared bicohrence plot for April; (d) 3d squared bicohrence plot for July.

signal is non-Gaussian. The NLI value of 0.10 indicates the
presence of nonlinearity in the error signal. The op time trend
in Fig. 5(a) shows that a small change in op caused a big
change in the pv value (note the range of y-axis for op, 49.4
to 50). Therefore, it was suggested that the nonlinearity in
this loop was most likely due to an oversized valve. This 6
inch valve was replaced by a 3 inch valve during the annual
maintenance shutdown of the plant (in May, 2001). In order
to con6rm the result of the analysis, additional data was

collected in July and the results of the ‘post-maintenance’
data analysis are shown in the right side of Fig. 5. For the
new data set: NGI=0:0005 (less than 0.001) and NLI=0:05.
These values indicate Gaussian linear system characteristics.

5.2.2. Flow loop 2
This is also a Uow control loop at the outlet of a pump

located at the bottom of a distillation column. Analysis of
the April, 2001 data of this loop revealed that this loop had
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Fig. 6. Analysis of Uow loop 2 data before (April 2001—top) and after (July 2001—bottom) the plant maintenance shutdown period.

nonlinearity problems with NGI = 0:032 and NLI = 0:13.
The diagnostic plots are shown in the top panel of Fig. 6.
The test results correctly detected the presence of signi6cant
nonlinearity. The pv–op characteristic plot indicated a type
of nonlinear characteristic in the process or the valve that had
not been observed before. During the annual maintenance,
the plant instrument personnel noticed that the valve seat and
the plug were severely corroded. The valve was replaced.
The results of the ‘post-maintenance’ analysis are shown in
the lower panel of the Fig. 6. NowNGI=0:04 andNLI=0:06
indicating yet again the presence of a nonlinearity but in
a substantially reduced form. The pv–op plot still shows
unfamiliar patterns for unknown sources of nonlinearities.
However, the overall controller performance of this loop has
improved signi6cantly to the point where additional analysis
was deemed unnecessary.

6. Conclusions

This paper has provided a brief introduction to higher or-
der statistics based data analysis tools. Two new indices,
the non-Gaussianity index (NGI) and the non-linearity in-
dex (NLI), based on HOS theory have been developed to
detect and quantify signal non-Gaussianity and nonlinearity.
These indices together with speci6c patterns in the process
output (pv) vs. the controller output (op) plot can be con-
veniently used to diagnose the causes of poor control-loop
performance. The method has been successfully applied to
many industrial data sets and three such studies have been
presented here. In both cases the results of the analysis were

con6rmed by the plant engineers. Current work in progress is
concerned with focussed on detection and quanti6cation of
stiction.
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