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A2.  Magnetotelluric response of a 2-D Earth

· Maxwell’s equations separate into two modes above a 2D Earth since ∂x = 0   
· See Geophysics 424 notes for details of equations for individual field components
· In the TM mode,   Ez = 0 at z = 0 because the conductivity of the air is zero. 
Can show that 
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is constant for all values of y in the TM mode.
· Some continuous MT profiling surveys attempted to use this fact in the survey layout to save field effort (and money). Only the TM mode was investigated. Electric field dipoles were placed end-to-end to fully sample the resistivity structure and overcome spatial aliasing. 
In electromagnetic array profiling (EMAP) the continuous MT data were also spatially filtered to remove any lingering effects of near-surface heterogeneity (Torres-Verdin and Bostick, 1992).
· Since it was assumed that the TM mode magnetic field did not vary along the profile, it was assumed that only once measurement was necessary. Thus magnetic sensors (induction coils) were placed a just one location on the profile.
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· Different situation in marine MT with electric and magnetic fields measured at the seafloor. Bx(y) is not constant in the TM mode.
A2.1 Numerical modelling of the magnetotelluric response of a 2D Earth

A2.1.1 Early efforts

· Analytic formulae do not exist for apparent resistivity and phase over a 2-D Earth.

· Early solutions used power series expansions for some simple geometries e.g. d’Erceville and Kunetz (1962) present the TM mode response of a vertical fault between two quarter spaces. Rankin (1963) extended this approach to compute the TM model response of a dike. These gave solutions for apparent resistivity and phase for a specific subsurface geometry, but were not flexible.

· The TM-mode solution of d’Erceville and Kunetz (1962) is investigated in Assignment 2 and validated by comparison with the finite-difference technique used in Winglink.
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· To model a general resistivity structure need to solve using finite elements, finite difference or integral equations

· One of first solutions in 2-D was the algorithm of Jones and Price (1970) that used finite differences to solve for Ex(y,z) in the TE mode or Hx(y,z) in the TM mode.
A2.1.2 Finite difference solutions for the transverse electric (TE) mode

· The three equations for the transverse electric (TE) mode can be reduced to a single second-order partial differential equation for Ex(y,z)
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· This can be solved by dividing the Earth into a rectangular grid of ny x nz points
· Total number of grid points is ny x nz = N

· The electric field is approximated as a set of discrete values defined at each grid point as E 
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· Finite difference problem is set up by deriving a set of N equations for these electric field values.

· First and second spatial derivatives are approximated by differences between adjacent grid points.
· In the simplest form, Ex(y,z) is assumed to vary linearly between the grid points. More sophisticated numerical techniques use higher order approximations.

· The finite difference algorithm results in a set of N equations. This is written as 
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A is an N x N matrix (of complex numbers) that depends on the properties of the solution domain i.e. 
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 and the grid spacing. The vector B includes information derived from the boundary conditions.

· A is a sparse matrix and it is not necessary to store the entire square matrix.

· Solution of this equation for E requires that the inverse of matrix A is computed. If the matrix is singular, or close to singular with a small condition number, then this can be a problem.

· Finite difference grid includes an air layer with high resistivity (10,000 ohm-m)
· Grid typically has a core area with fine parameterization beneath the MT stations and in region containing structure to be modelled. This is surrounded by a region where the grid size grows rapidly outwards (padding).

· To model the incident MT signals, impose the boundary condition that Ex (y,z) = 1 along upper edge of the grid (i.e. at a significant distance above the Earth-Air interface. This means that the number of grid points in the vertical direction is greater in the TE mode solution than the TM mode solution where the air is not discretized.
· Note that  Ex(y,z = 0) varies with y in contrast to Hx(y, z=0) in the TM mode
· Once Ex (y,z) has been computed, can compute auxiliary components as


[image: image9.wmf]z

E

i

H

x

y

¶

¶

=

)

(

1

)

(

w

wm

w

 and 
[image: image10.wmf]y

E

i

H

x

z

¶

¶

=

)

(

1

)

(

w

wm

w


· A finite difference calculation is performed for each frequency (AE = B). Note that the matrix A depends on ω
· The accuracy of the finite difference calculation depends on the properties of the grid as follows 

(a) At the highest frequency (ωH), the vertical grid spacing Δz at z = 0 must be small enough so that the linear approximation of the electric field is reasonably close to the exponential decay of the electromagnetic fields.
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 EMBED Equation.3  [image: image12.wmf]
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Here 
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is the skin depth at frequency ωH
(b) At the lowest frequency ωL, the dimensions of the whole grid (X) must be large enough to the fields from the centre of the grid to have attenuated before they reach the edge of the grid and vice versa.
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A2.1.3 Finite difference solutions for 2-D MT - Transverse magnetic (TM) mode

· Again, Maxwell’s equations over a 2-D Earth can be simplified to a single second-order partial differential equation for Hx(y,z)
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· Previously showed that Hx (y, z =0)  is constant in the TM-mode so can impose Hx = 1 as a boundary condition at z = 0

· Identical numerical approach to the TE mode is used to compute Hx (y,z) with a finite difference approach. 
· To derive the MT response we need to compute Ey 
· A simplistic approach is to use
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This gives a solution that is qualitatively correct for the quarter space model, but wrong for a 1-D resistivity model. e.g. a conductive layer increases the value of 
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this raises the impedance. This method fails because it ignores gradients in the conductivity.
· A correct approach uses
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Computing auxiliary field components for a 1-D Earth

For a layered Earth (1-D) this will simplify to:
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· At the surface where z =0, integration gives:
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· Note that over a conductive layer, Bx(z) will decay more rapidly with depth (z). Thus the area under the curve (the integral) will be smaller. A smaller value of Ey results in lower ρyx as expected.

Computing auxiliary field components for a 2-D Earth
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· Integrate with respect to z gives :
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· From Maxwell’s equations, 
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· The problem with this expression is that the first and second horizontal derivatives become small and are very unstable on a grid as the magnetic field becomes constant with respect to y. 
· This problem is especially serious in MATLAB when single machine precision is used to represent numbers. 
· A better approach is to note that:
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· So the integral becomes
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· This formulation is much more stable numerically. Note that the second term is non-zero, except for on vertical boundaries.

A2.1.4 Finite difference algorithm MT2D_TEM_FD_v5.m
· A simple finite difference algorithm is implemented in the MATLAB script distributed in class.

· See examples in following sections for some simple 2-D structures.

· This finite difference program is not the most accurate one ever written! Numerical instabilities occur, especially in the TM mode, so beware.
· In the TM mode, Hx(y,z) is continuous across boundaries. Jy(y,z) and  Jz(y,z) are also continuous, but discontinuities exist in Ey(y,z) and  Ez(y,z). More advanced numerical techniques explicitly impose continuity on normal electric current. 

· This may be essential to obtaining an accurate numerical solution. 
A2.2  MT response of quarter space model
A2.2.1 Quarter space model -TM mode
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Observation 1 – far from fault
· Consider an MT station far from the fault (left side) where the Earth has a uniform conductivity σ1

· Propagation of electromagnetic (EM) signals in the  air and Earth controlled by wavenumbers k0 and k1 respectively, where:
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 EMBED Equation.3  [image: image34.wmf]0
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The electric field diffuses in the Earth on the left (L) side of the fault as:
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Similarly, far from the fault on the right (R) side


[image: image37.wmf]t

i

z

k

R

y

e

e

i

t

z

E

w

s

we

-

-

+

=

2

2

0

2

)

1

(

)

,

(

 where 
[image: image38.wmf]2

)

1

(

2

0

2

s

wm

i

k

-

=


On the surface (z=0) can show that
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Observation 2 – close to the fault
· Next consider the electric field crossing the fault at the surface. Conservation of current requires that
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which gives  
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· These two observations are clearly inconsistent.  Consider the case that σ1=0.1 S/m and σ2=0.001 S/m.
· Far from the fault  
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Explanation

· These observations can be reconciled by recognizing that the discontinuous electric field at the fault is cause by an electric charge developing on the surface between the quarter spaces.
· Consider the sign of the change in electric field across the fault.

· The electric field oscillates harmonically with time, so consider a time when the electric fields are oriented from left to right (i.e. they are positive). 
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· The change in electric field can be computed as:
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If σ2 < σ1 then this difference will be positive, as sketched above.
· The electric field generated by the surface charge density s, is 
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where ε0 is the permittivity of free space. Since 
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 can show that
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and    
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· A positive surface charge occurs on the fault when electric current flows from the conductor to the resistor.
· Half a cycle later 
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will be negative and the surface charge will also be negative

· Two factors will cause the electric field from the surface charge to decay with distance:

(1) The charge density on the interface varies with depth, owing to the skin depth of EM signals and presence of the air. If the charge density was uniform over an infinite plane, then there would be no variation in electric field with distance from the fault. This is clearly not the case.

(2) The electric fields oscillate with frequency ω and will attenuate with a length scale related to their skin depth.

· It is not immediately obvious which of these effects will dominate, although the geometric effect from (1) is probably dominant. It is clear that decay distance will increase as frequency decreases.

Question  What simple calculations could we do to determine which of these two effects is dominant?

[image: image53.jpg]Resistivity model (Iog10 Qm)




​​​

· Hx(y) is constant along the transect

· Discontinuous Ey(y) causes a discontinuous apparent resistivity across the interface.
· Far field electric fields change by a factor of 10

· Close to the fault the electric fields change by a factor of 100.
MATLAB :   MT2D_TEM_FD_v5.m
A2.2.2 Quarter space model - TE mode
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· As shown in the MATLAB script, the EM signals penetrate deeper in the resistive quarterspace (1000 Ωm) than the conductive quarterspace (10 Ωm)
· In contrast to the TM mode, the electric field Ex(y) is continuous across the interface.

· The horizontal distance over which apparent resistivity value changes increases as the frequency decreases because of increasing skin depth.

· Apparent resistivity is continuous across the interface.

· The TE mode has an associated vertical magnetic field.

· Physics of the TE mode is purely inductive. Electric current flows parallel to boundaries between regions of different resistivity, so no charges develop on these boundaries.
· Note : Compare above results with Figure 2.6 in Simpson and Bahr (2005)
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· From the split of TE and TM, one can tell if you are on the conductive or resistive side of a fault

[image: image56.jpg]logg(freq) 2 (km)

logg(freq)

log,q(resistivity) (2 m)

0
2
4
5 -4 3 2 -1 0 1 2 3 4 5
y(km)
pyx (@ M)
2
RR——
2
5 -4 3 2 -1 0 1 2 3 4 5
y(km)
Dy (deg)

2
; _ I
-2
5 -4 -3 -2 -1 0 1 2 3 4 5

y(km)

FON

80
60
40
20




[image: image57.jpg]logg(freq) 2z (km)
AN o

logg(freq)

logg(freq)

log g (resistivity) (q m)

-2

&

4 3 2 A 0 1 2 3 4
y(km)
pyy (M)

o

oo N

n
IS
)
N
o
N
w
~
o

y(kam)
0y (deg)

&
ES
&
IN)

0 1 2 3 4
y(km)
real(tipper)

o

-05

oo N Noo N
N B O ®
5533

n
IS

-3 -2 -1 0 1 2 3 4
y(km)

o





A2.3   MT response of a conductive prism
A2.3.1 Conductive prism - TM mode 
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· At f = 1 Hz the EM signals are now penetrating to the depth of the conductor
· The depth of EM signal penetration is reduced over the conductor as seen in the plot of Hx(y,z). This is an inductive effect caused by attenuation.
· When the electric current is flowing from left to right, a negative charge develops on left of conductor and a positive charge develops on the right side.
· Consider the dipole fields generated by these charges. The total electric field will be increased to the left and right of the conductor. Above the conductor, the dipole electric fields will oppose the telluric electric field, causing a decrease in Ey (y, z = 0)
· Since Hx(y) is constant, the effect of the electric charges is to increase ρa on each side of the conductor and to decrease ρa above the conductor.
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· At low frequency (f = 0.01 Hz) the skin depth of the EM signals is much larger than the dimensions of the conductor. Thus there is no inductive response at this low frequency.

· However electric charges develop on the edges of the conductor at all frequencies and their effect is obvious in Ey in the figure above.

· This is an example of a galvanic response, which will be present at all frequencies, including zero frequency (direct current). 
· The inductive responses disappear at low frequency because a time variation of the EM fields is required for the generation of induced currents.
A2.3.2 Conductive prism - TE mode
[image: image60.jpg]log, o (Resistivity) (2 m) f = 100.000Hz

21
w
0.8
5 i
- 0 5 5 12
y (km) b 1
H e 5 5
22 2 18 16
£ 10°
4
TEmode E,(y2) &
5 [i
60
—_ o
£ g
N F 45
5 i
-5 0 5 02
y (km) 5
g0
0 02 04 06 08 1 02
5 i

y (km)




· At high frequency ( f = 100 Hz) the EM signals have almost attenuated before they reach the depth of the conductive prism.
· Ex (y) and Hy (y) are constant along the profile

· The apparent resistivity at this frequency the background halfspace resistivity (100 Ωm)

· Slight increase in ρa is due to the resonance phenomena previously discussed.
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· At intermediate frequencies ( f = 1 Hz) the electromagnetic signals are now penetrating to the depth of the conductive prism.
· Increased attenuation within the conductive prism lowers the value of Ex in the centre of the profile.
· Increased value of  
[image: image62.wmf]z
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above the conductor causes an increase in Hy (see notes on 1-D magnetotellurics in 699)
· These changes in Ex and Hy produce a decrease in apparent resistivity
· The electric current over the conductor is at a shallower depth than to either side. This results in the negative-positive pattern in the vertical magnetic field, as derived from the right hand rule.
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· At low frequency ( f = 0.01 Hz) the electromagnetic signals have a very large depth and minimal attenuation occurs in the prism.

· Horizontal variation in Ex and Hy becomes very small

· Apparent resistivity returns to the background value of 100 Ω 
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A2.4   MT response for a resistive prism

A2.4.1 Resistive prism – TM mode
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· At intermediate frequencies ( f = 1 Hz) the EM signals are sampling the depth of the resistive prism.
· Very little inductive response is observed, as shown by the plot of Hy(y,z) 
· When electric current flows from left-to-right, a positive charge develops on the left side of the resistor and a negative charge develops on the right.

· These electric charges generate a dipolar electric fields. Above the resistor the telluric and dipole fields reinforce and the value of Ey is increased.
· The effect of the surface charges is observed at all low frequencies
A2.4.2 Resistive prism – TE mode
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· At high frequency (f = 100 Hz) the EM signals are only just beginning to sample the resistor.
· Note that the EM signals penetrate slightly deep within the conductor as shown by the plot of Ex(y,z)
· A small resonance effect occurs above the resistor
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· EM signals are now reaching the depth of the resistor.
· Reduced attenuation occurs above the resistor, and this increases Ey
· Decreased 
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above the resistor causes an decrease in Hy 
· Together these effect cause an increase in ρa above the resistor
· Change in penetration depth occurs along profile. This causes a horizontal variation in the vertical distribution of electric current. In turn this causes a non-zero magnetic field. Note that the sign of the vertical magnetic field (tipper) is the opposite of that observed for a conductor in A2.3.2

· The magnitude of the tipper anomaly is also smaller than for the conductive prism
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· At low frequency ( f = 0.01 Hz) the EM signals have a very large depth and minimal attenuation occurs in the prism.

· Inductive response becomes very weak at low frequency and anomaly disappears
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A2.5 Development of numerical methods for 2-D forward modelling
A2.5.1 Finite difference methods

· The first numerical solution to the 2-D magnetotelluric forward problem was published by Jones and Price (1970). 

· The resistivity model they considered was the quarter-space model of d’Erceville and Kunetz (1962).
· Both TE and TM modes were analysed. These are referred to as E-polarization and B-polarization (terminology still used in some countries today)

· Figure 11 on the right shows results for the TE mode of their calculations. Compare this with the results of A2.2.2
· A summary of the computer program was presented by Jones and Pascoe (1971) and also Pascoe and Jones (1972).
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· Jones and Price (1971) applied this method to the study of the coast effect. They considered the three resistivity models shown below.

· As we will see later in this class, the large change in electrical resistivity at a coastline produces an effect that extends far inland. It is also numerically challenging as the major change in resistivity is at the surface, not at depth.
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· Lines and Jones (1973) extended this finite difference modelling into 3-D and considered a square shaped island next to the coast. Their paper was published in CJES in 1973.

· Questions were raised about the accuracy of this method by David Rankin who wrote a response to the CJES regarding the issue of conserving normal electric current. 
· This is indeed a problem in 3-D electromagnetic modelling. In 2-D this issue can be avoided by solving for the along-strike field which is continuous (Ex or Hx).
· This modelling approach does not work in 3D. This because there is no single field component that is spatially continuous. 
· Thus a simple 3D finite-difference algorithm solves for Ex(x,y,z), Ey (x,y,z) and Ez (x,y,z). At the corner of a conductive prism these components will be discontinuous (multi-valued) and a simple numerical solution will smooth out the rapid spatial changes.
· If the contrast in conductivity is small, this may not be a significant problem. This

is especially true when modelling the surface response of a buried conductor. Numerical errors may occur at the corner of the prism, but the high spatial frequencies will attenuate and surface solution MAY be accurate.
· Golden rule of numerical modelling: If you must do something numerically wrong, do it as far as possible from the location at which you want an accurate solution.

· This was not the case with Lines and Jones (1973) where the contrast in conductivity (coastline) was at the surface, close to MT stations.

· Modern 3D finite difference algorithms use staggered grids. Typically the magnetic fields are defined at the corners of cells and electric fields are defined at the middles of the edges.

· Edo Nyland also wrote a comment to CJES about the Lines and Jones (1973) paper. The comment discusses surface electric charges generated at discontinuities, but I am still unclear of his point. Quite why Rankin and Nyland chose to discuss these issues via  journal correspondence, and not person-to-person remains a mystery to me.
· Many of the modelling studies listed above suffered from the use of a coarse finite difference grid. This was a consequence of limited computer memory and speed. Through the 1970’s and 1980’s computers became more powerful and numerical methods improved.

· More refined and stable finite difference schemes were proposed by Brewitt-Taylor and Weaver (1976), Doucet ad Pham (1984) and Weaver et al., (1985)

· Aprea et al., (1997) describe accurate finite-difference approach that works on sloping interface, and which were important for modelling surface topography and seafloor bathymetry (for marine MT).
A2.5.2 Finite elements

· This approach divides the solution domain into a set of arbitrary elements. Major advantage is that these elements do not need to be rectilinear.
· In finite element analysis, variational calculus is used to solve for Ex(y, z) in the TE mode and Hx(y,z) in the TM mode. 
· A number of solutions were developed in the 1970’s. Wannamaker et al., (1987) describe an improvement to these algorithms. This algorithm was used for forward modelling in the GEOTOOLS package. Wannamaker et al., (1986) use the finite element approach to investigate the effect of topography on MT data.
A2.5.3 Symmetry and numerical issues

· Care must be exercised if a numerical method is being applied to a resistivity model that contains a plane of symmetry.

· For example, symmetry predicts that Ex at nodes 1 and 2 will have the same value. This requires that 
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· The set of equations defined by AE = B will contain two identical equations.
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· This can result in the matrix A being singular, or having a low condition number. In either case the inverse matrix is not defined.
· Another related problem in early numerical modelling for MT was the limited precision with which computers stored numbers. REAL*4 did not give enough precision to handle a broad dynamic range. 
· At low frequencies the value of Ex(y,z,) at adjacent nodes could be identical to within machine precision. Double precision (and higher) reduced this problem.
· Thus numerical differentiation (i.e. taking the difference in value between adjacent nodes) could be unstable.

· This problem becomes serious at low frequency when slow spatial variation occurs across the mesh. This results in similar values of Ex at adjacent nodes. A fine mesh/grid is not always a good thing!
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