

Performance Indicators for the Wildfire Prevention Program

Daniel Poirier

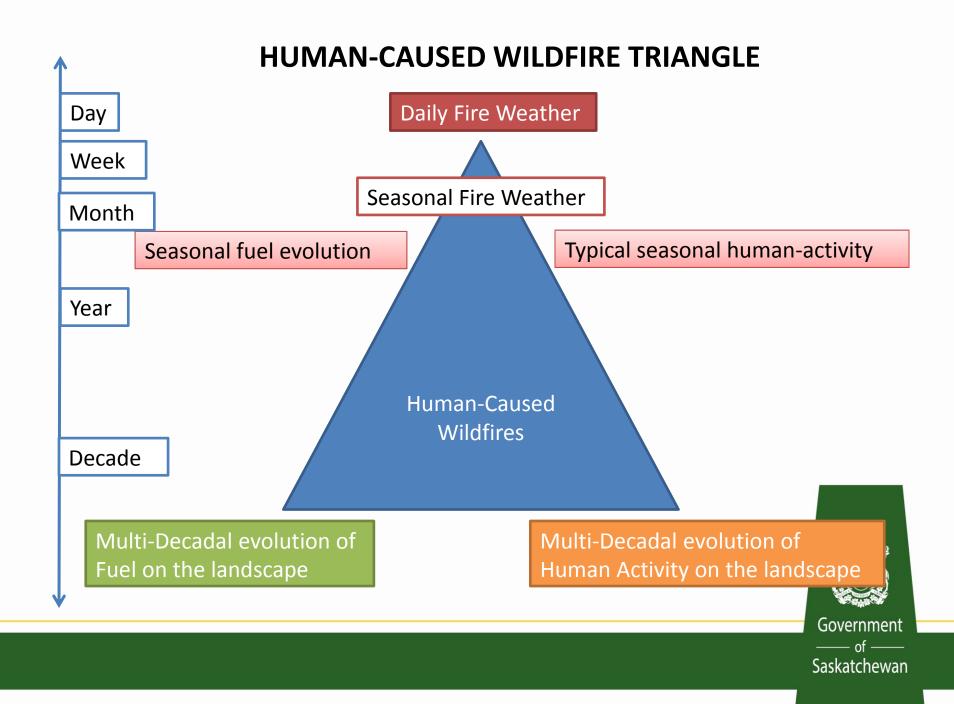
Chief Meteorologist Wildfire Management Branch Saskatchewan Environment

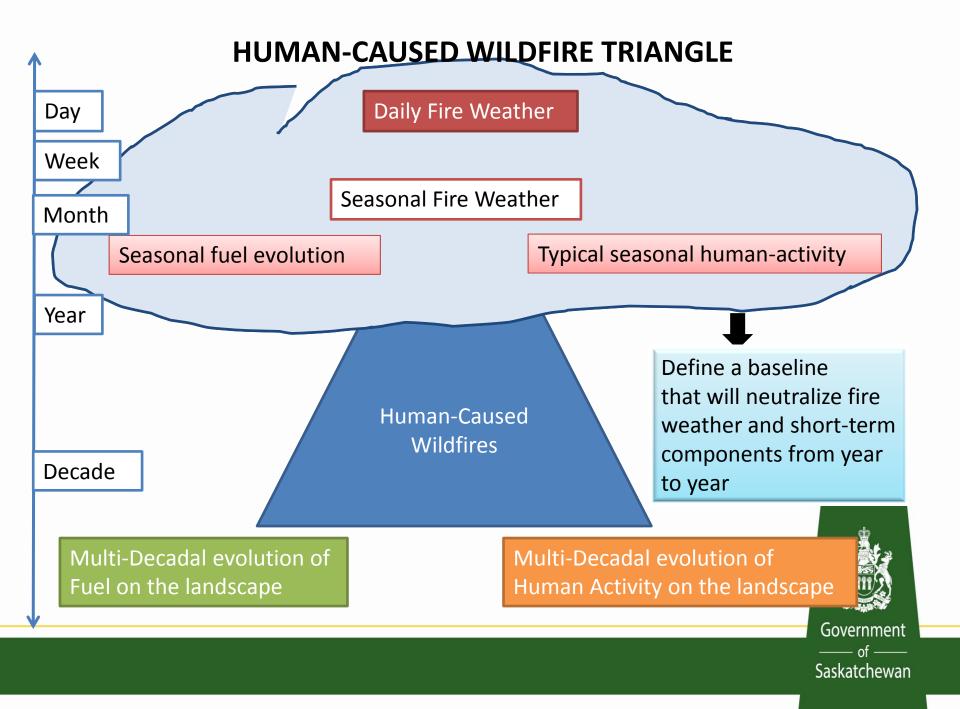
OBJECTIVE:

Provide performance indicators to evaluate Saskatchewan Wildfire Prevention Program

Old traditional way:

- Compare fire season number of human-caused wildfires to decadal or multi-decadal average
- Use fire season ratio human versus lightning caused wildfires
- Comment results versus
 - \rightarrow Severity fire season
 - → Wildfire Threat spring/summer/fall months
 - \rightarrow Change in Human activity on the landscape
 - → Seasonal or decadal evolution of fuel on the landscape


Saskatchewan


Provide performance indicators to evaluate Saskatchewan Wildfire Prevention Program

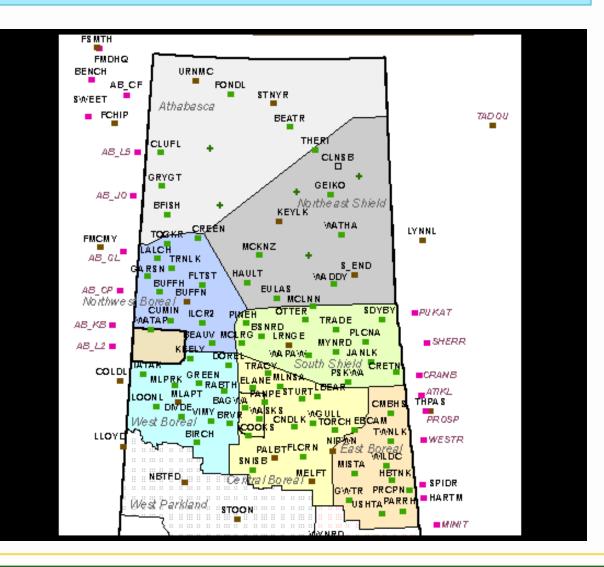
Issues with old traditional way:

- Fire weather varies greatly from year to year
 Human/Lightning Ratio will vary greatly
 - → from wet spring-dry summer to dry spring-wet summer fire seasons
 - jii e seusons
- Difficult to effectively evaluate fire prevention program
 - \rightarrow Was it the fire weather or prevention campaign ?
 - → Was campaign <u>seasonally</u> well focused ?
 - → Was campaign <u>regionally</u> well focused ?
 - \rightarrow Was prevention program <u>\$</u>\$ well spent ?
 - \rightarrow Is it a change in <u>climate</u> or in <u>Human activity</u>?

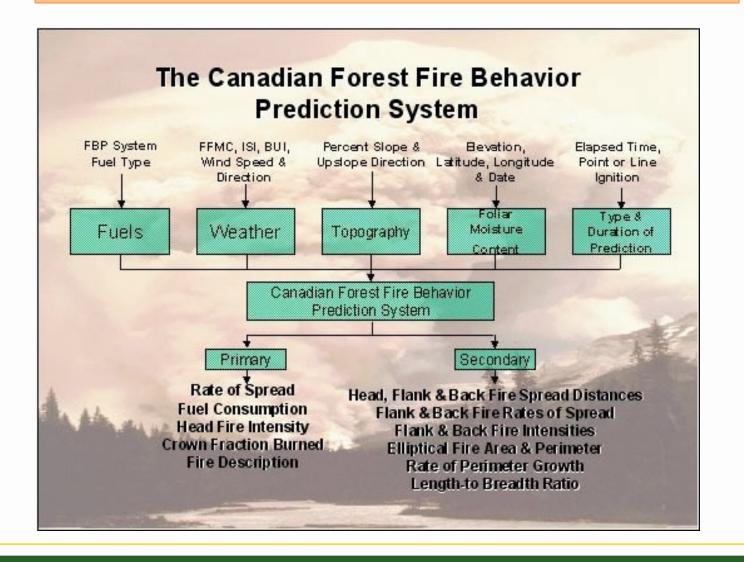
OBJECTIVES:

Project human-caused wildfires specific to

- Regions of Saskatchewan
- Based on fire weather observed daily
- Using multi-decadal years of data


The projection is a <u>baseline</u> that

- → Reflect <u>expected</u> human-caused wildfires based on historical activity for a region
- \rightarrow <u>Varies from year to year</u>
 - Based on observed daily fire weather
 - <u>calendar date specific</u>
 - using multi observations within the region


Gaskatchewan

Saskatchewan Weather Regions

Fire Weather: Daily HFI-C2

Government ______ of _____ Saskatchewan

Fire Weather at locations:

Daily HFI-C2 >> PREP LEVEL

	CRITI	CAL VALUES:			
Categories	Extreme	Very High	High	Moderate	Low
Prep Level	5	4	3	2	1
Head Fire Intensity	HFI > 10,000	10,000 <= HFI < 4,000	4,000 <= HFI < 2,000	2,000 <= HFI < 500	HFI <= 500

- PREP levels are calculated at every weather observing locations
- PREP levels are categories of Head Fire Intensity for C2

		Ac	tual N	oon fo		egions ed on			14-09-:	24 at 12	2:00			
Station	<u>Temp</u>	Dew °C	<u>ВН</u> %	DDir	CDir	Wspd km/h	<u>Rn_24</u> mm	FFMC	<u>DMC</u>	<u>DC</u>	<u>151</u>	<u>BUI</u>	<u>FWI</u>	PREP
Forest-ATH				· ·	·									
DURNMC	12	2	50	70	ENE	5	0.0	88	23	512	- 4	41	10	3
TONDL	13	2	48	67	ENE	13	0.0	86	- 28	521	5	49	13	3
STNYR	12	3	55	70	ENE	6	0.0	87	21	494	- 4	37	9	2
BEATR	15	1	38	72	ENE	8	0.0	89	33	533	6	58	16	- 4
THER I	17	0	32	132	SE	9	0.0	90	33	496	6	56	17	- 4
CLUFL	15	6	56	83	Ε	5	0.0	86	- 24	523	3	43	9	2
CRYGT	16	2	38	125	SE	14	0.0	89	17	499	8	32	15	- 4
MBFISH	16	0	34	159	SSE	18	0.0	89	21	525	10	38	19	- 4

Fire Weather at Regions/Zones: PREP LEVEL >> Level-B Rankings

			Level I	B & SCOI	RE valid or	n 2014-09	9-24				
ZONE LVLB RA				B CATEGOI			% IN		FCST SC	ORE	
ZONE	LVL B	EXTM	VНI	нісн	MED	LOW	p_rgn	tavg	eavg	uavg	xavg
OBS SONE											
*1 <u>1-ATH</u>	3	0	50	25	25	0	100	94	92	91	85
[®] 2−NES	4	33	44	11	11	0	100	85	83	83	36
 ■9-0B3 	3	17	47	18	18	0	100	90	88	87	61
ZONE	LVL B	EXTM	VНI	нісн	MED	LOW	p_rgn	tavg	eavg	uavg	xavg
FRS SONE											
10 <u>3-33</u>	4	8	77	8	8	0	100	87	90	86	31
<u>14-ишв</u>	4	8	58	33	0	0	100	95	96	93	52
₩ <u>5-₩B</u>	4	31	69	0	0	0	100	97	97	96	73
8] ₆ - CB	- 4	12	75	12	0	0	100	98	97	98	95
图 <u>7-EB</u>	3	0	46	55	0	0	100	97	98	99	93
9-FR2	4	12	65	22	1	0	100	95	96	94	69
ZONE	LVL B	EXTM	VHI	нісн	MED	LOW	p_rgn	tavg	eavg	uavg	xavg
AGR SONE											
<u>≋is-wpl</u>	5	67	33	0	0	0	100	97	97	97	82
图 <u>8-EPL</u>	3	0	0	100	0	0	100	96	92	92	96
18 <u>8-GL</u>	4	62	12	25	0	0	100	99	98	96	95
翘 <u>s-CYP</u>	4	25	75	0	0	0	100	98	100	98	93
8 9-AGR	4	38	30	31	0	0	100	98	97	96	92
ZONE	LVL B	EXTM	VНI	нісн	MED	LOW	p_rgn	tavg	eavg	uavg	xavg
AALL PROV											
19-PRU	4	13	58	20	7	0	99	92	92	91	66

Daily Level-B Rankings are calculated for each region/zone

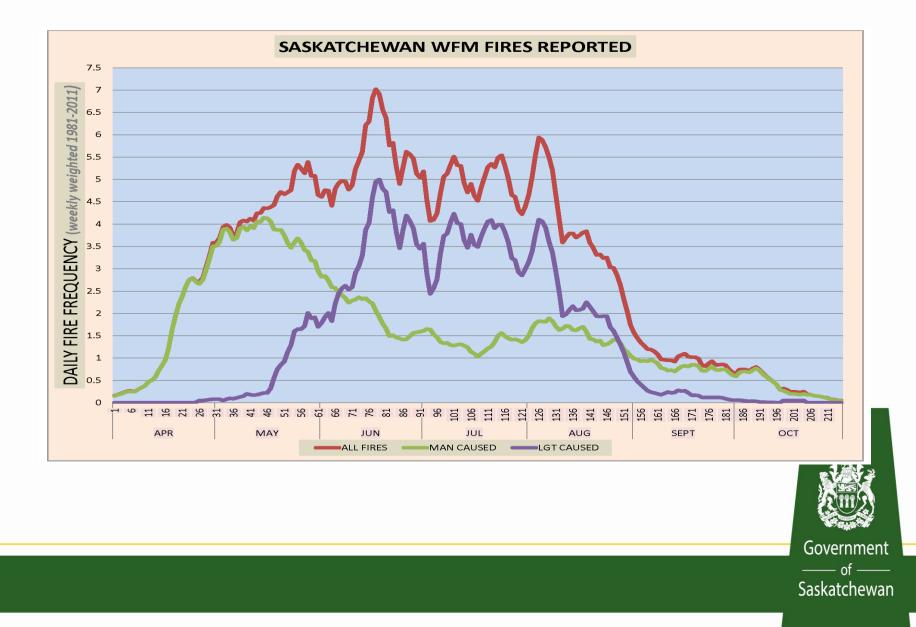
- \rightarrow Using algorithm of Daily PREP levels observed within that region
- \rightarrow Using weighting factor of each regions within zone

Government _____ of _____ Saskatchewan

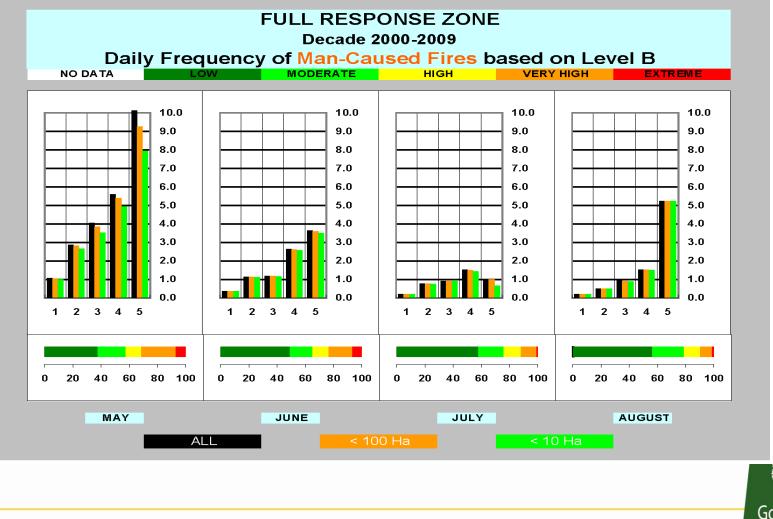
Fire Weather at Regions/Zones: PREP LEVEL >> Level-B Rankings

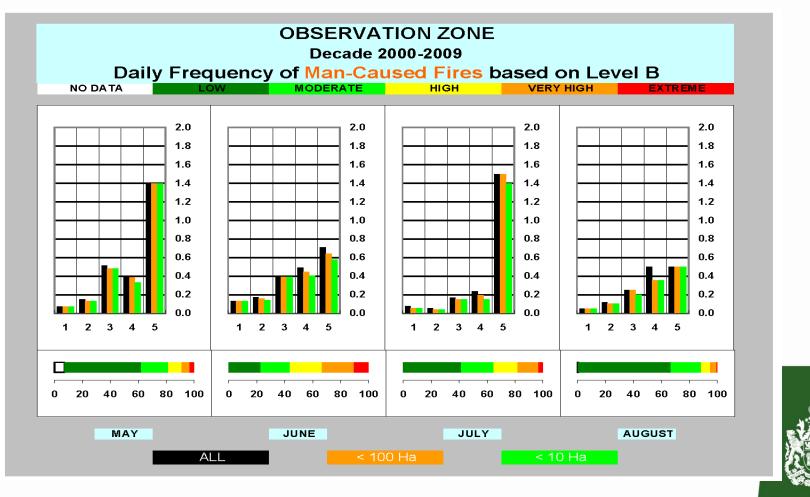
%	6 OF REGION HFI C2	EXTREME	VERY HIGH	HIGH	MODERATE	LOW
	CATEGORY	$HFI \ge 10,000$	$10,000 > \text{HFI} \ge 4,000$	$4,000 > HFI \ge 2,000$	$2,000 > HFI \ge 500$	HFI < 500
	LEVEL 5	> 66.66%				
e P	LEVEL 4	>50.0%				
EL-B		> 6	66.66%			
EV	10	> 33.33%				
SLE	LEVEL 3	>	50.0%			
			> 66.66%			
		> 16.66%				
VRED	LEVEL 2	> 3	3.33%			
	A LEVEL 2		> 50.0%			
PREP.			> 66	.66%		
Ρ	LEVEL 1			REMAINDER		
	LEVEL 0		INSUFFIC	IENT OR NO FPE	B DATA	

		WE	ATHER REG	IONS	
Full Response Zone	SS	NWB	WB	EB	СВ
WEIGHTING FACTOR	20%	20%	20%	20%	20%
Modified Response Zone	ATH	NES			
WEIGHTING FACTOR	50%	50%			


Saskatchewan Wildfire Frequency

Previous studies have shown:


- Human-caused wildfires are predominant in the spring
- Lightning-caused wildfires are predominant in the summer
- There is a secondary peak of human-caused wildfires in the late summer & fall
- Frequency of human-caused wildfires are strongly correlated with Level-B Rankings, especially in May & June


Saskatchewan Wildfire Frequency

Full Response Zone: Monthly Wildfire Frequency

Observation Zone: Monthly Wildfire Frequency

DEFINITION OF FIREDAY:

Firedays are integer numbers that represent calendar days of a fire season. This facilitates database and statistical processing of large numbers. Referenced firedays are defined below:

FIREDAY	DATE
1	April 1 st
31	May 1 st
62	June 1 st
92	July 1 st
123	August 1 st
154	September 1 st
184	October 1st

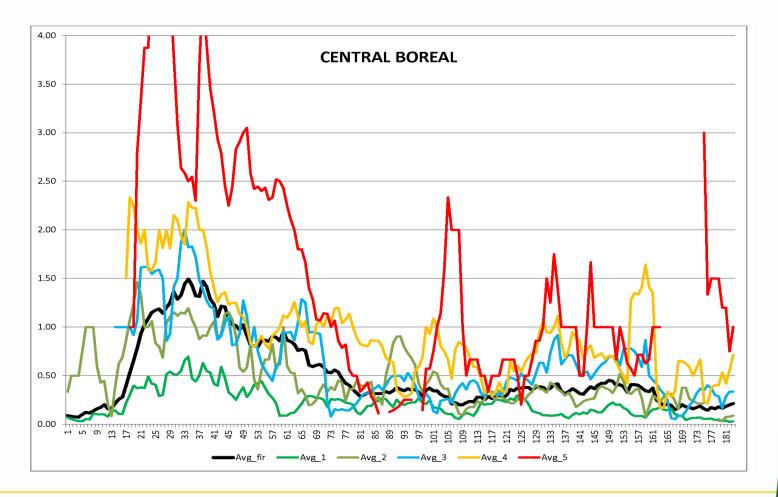
TO DEFINE THE BASELINE

DATASET YEARS: 1989-2008

- Wildfires and Fire Weather records during the 1989-2008 years
- The dataset, much like a climate 30-years normal, should be redefined every 5 or 10 years
- The dataset should capture a slice in the gradual evolution of human activity on the landscape as well as a slow motion snapshot of the state of the fuel evolution on the landscape

NOTE: The dataset was adjusted to 1995-2008 for the Northwest Boreal weather region due to unusually high incidences of arson wildfires during the 1989-1994 years

WEEKLY AVERAGING of FIREDAY Wildfires numbers:


- For <u>each fireday</u>, human-caused wildfires recorded within ±3 firedays were compiled for the <u>1989-2008</u> period
- This result in typically 20 X 7 = 140 years of data if the dataset was complete to evaluate weekly averaged human-caused wildfires for each fireday
- The dataset was further mined to evaluate frequency of human-caused wildfires for each Level-B rankings

REGION	fireday	Level-B	# Years	# Fires	Daily fire frequency
6-CB	61	4	42	46	1.1
6-CB	61	5	20	45	2.25
6-CB	62	0	1	1	1
6-CB	62	1	44	5	0.11
6-CB	62	2	17	9	0.53
6-CB	62	3	20	19	0.95
6-CB	62	4	39	45	1.15
6-CB	62	5	19	40	2.11
6-CB	63	0	1	1	1

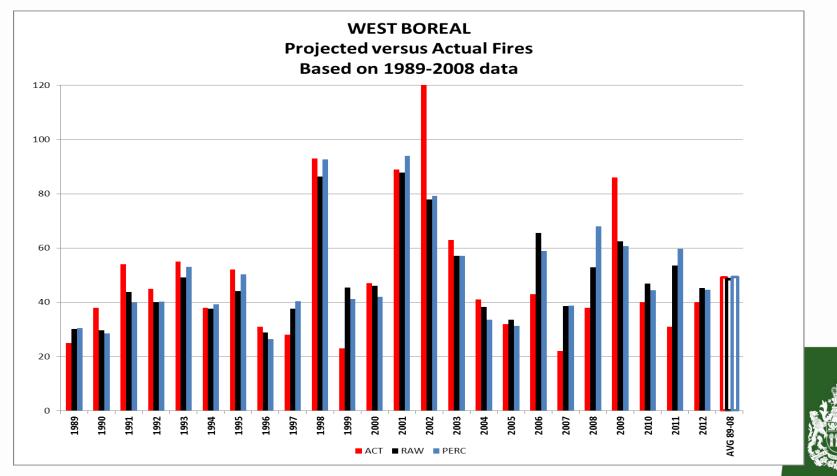
For each weather region: **BASELINE**

A table of <u>fireday dependant</u> and <u>Level-B dependant</u> human-caused wildfire frequencies

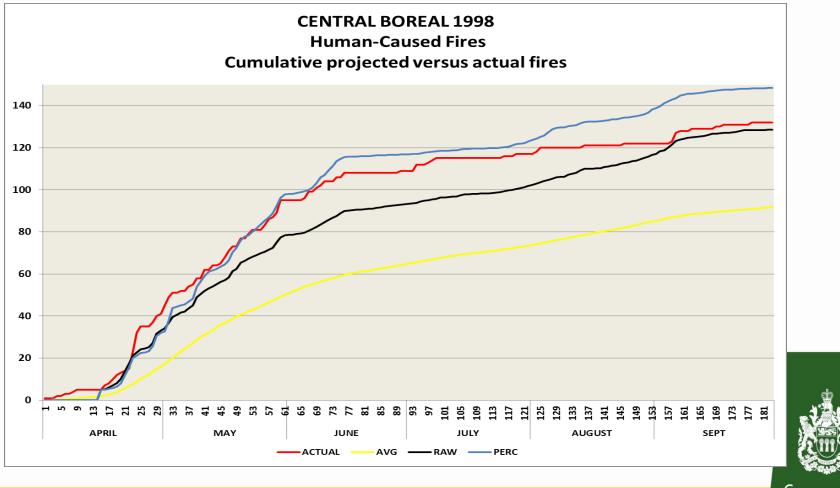
MODEL: RAW BASELINE

- → Does not have a wildfire frequency for each fireday-Level-B cases
- → Best in compiling yearly projections

							SOU	TH SHII	ELD						
		YEAR			MAY			JUN			JUL			AUG	
	ACT	RAW	PERC	АСТ	RAW	PERC	ACT	RAW	PERC	ACT	RAW	PERC	ACT	RAW	PERC
1989	64	52.8	57.6	12	12.9	13.2	17	15.5	22.6	15	10.9	11.2	16	12.5	9.9
1990	90	76.2	77.3	17	23.7	28.1	29	16.7	21.3	6	10.3	9.5	27	17.2	15.1
1991	57	34.8	28.9	9	7.6	6.9	14	6.3	7.5	13	6.9	3.7	12	22.9	6.4
1992	43	50.2	55.3	8	19.6	21.9	14	12.9	18.5	5	7.5	6.4	9	8.5	7.3
1993	67	48.0	45.7	36	22.9	23.1	21	11.2	14.6	3	3.0	2.3	1	3.5	2.6
1994	67	53.9	46.6	9	11.5	11.7	5	12.7	17.2	8	6.0	3.3	17	11.0	9.5
1995	58	72.2	75.3	32	30.1	31.8	19	23.7	31.7	4	8.4	5.3	1	4.6	3.2
1996	43	42.3	38.9	3	10.3	11.4	12	10.3	12.8	19	8.9	6.5	8	8.7	6.3
1997	52	51.6	46.3	22	15.7	13.2	7	12.3	16.2	5	9.1	7.0	17	12.0	8.3
1998	78	83.0	71.9	16	22.2	21.5	13	16.1	20.2	10	12.6	9.2	11	16.0	12.9
1999	33	53.0	50.3	7	12.0	13.9	5	13.2	17.3	8	7.5	5.5	8	9.8	7.9
2000	19	36.7	29.2	4	8.6	6.0	5	8.6	9.4	1	6.5	4.3	3	7.2	5.7
2001	73	75.8	64.6	25	26.3	23.2	12	13.2	16.0	8	8.4	8.2	18	15.9	11.1
2002	35	62.9	79.1	12	25.6	32.8	11	20.5	30.8	4	5.5	7.0	5	6.7	4.7
2003	46	58.4	64.1	14	19.5	25.6	6	10.7	14.2	12	9.4	8.5	12	14.0	12.2
2004	27	47.5	48.0	9	16.6	19.5	6	9.8	12.7	6	9.9	8.2	5	5.5	4.3
2005	36	31.5	31.8	24	13.9	14.0	4	7.0	8.4	7	4.9	4.9	1	3.9	2.8
2006	37	51.9	47.4	12	12.6	13.9	7	12.7	14.5	6	7.5	6.9	2	5.9	4.5
2007	74	58.4	63.3	13	12.6	18.1	21	20.6	26.8	21	12.2	10.2	13	7.4	5.4
2008	118	70.9	84.6	56	22.8	29.6	52	30.6	39.4	7	7.0	7.0	2	7.6	6.2
2009	59	35.7	30.4	29	6.5	6.2	9	10.2	12.4	1	3.9	2.4	4	8.3	5.2
2010	61	51.0	51.1	22	17.7	17.8	27	16.0	20.5	5	8.1	6.0	5	6.3	4.6
2011	57	61.9	69.5	31	23.3	34.4	9	14.5	20.1	2	5.0	5.0	2	6.4	3.8
2012	31	55.0	61.5	4	24.5	31.0	5	10.3	12.2	8	10.1	11.1	12	5.9	4.9
AVG 89-08	55.9	55.6	55.3	17.0	17.4	19.0	14.0	14.2	18.6	8.4	8.1	6.7	9.4	10.0	7.3



_____ of _____ Saskatchewan


MODEL: RAW BASELINE

→ Good in differencing active versus slow years

→ Underestimate short extreme spring events (2002, 2009)

Yearly Projection: CB 1998 ➢ The table is used to project human-caused wildfires on any given year

MODEL: PERCENT-AVERAGED BASELINE

- Evaluate the <u>average fireday wildfire frequency</u> independently of the Level-B
- Associate a percentage of a fireday average frequency to each Level-B Rankings

LVL-B	% of AVERAGE
1	25%
2	50%
3	100%
4	200%
5	400%

→ Will associate a wildfire frequency for all fireday & Level-B cases

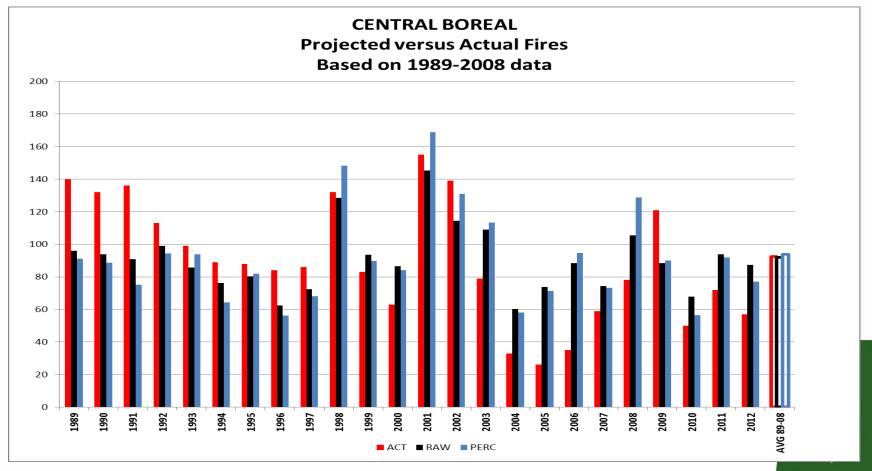
- → Simple methodology to implement
- → Better Representation of years outside dataset years
- → For some weather regions slightly overestimate yearly human-caused wildfires

YEARLY	AVERAGE	ATH	NES	SS	NWB	WB	СВ	EB
1989-2008	ACTUAL	11.6	14.8	55.9	29.4	49.1	92.4	21.5
	RAW	11.0	13.7	55.6	29.0	48.5	91.8	21.1
	PERC	14.0	13.7	55.3	27.0	49.3	93.7	19.0
2009-2012	ACTUAL	10.3	18.3	52.0	22.5	49.3	75.0	11.5
	RAW	13.8	13.9	50.9	33.8	52.0	84.3	17.3
	PERC	18.3	15.6	53.1	32.3	52.4	78.8	15.6

Comparing MODELS:

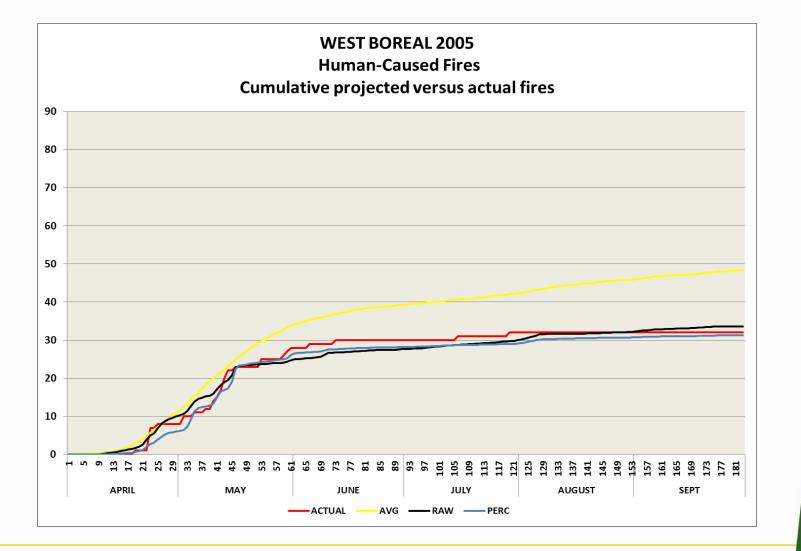
RAW versus Percent-Average Models

MAY-JUN	E AVERAGE	ATH	NES	SS	NWB	WB	СВ	EB
1989-2008	ACTUAL	6.6	7.9	31.0	17.6	28.8	49.2	12.6
	RAW	6.2	7.5	31.6	17.4	29.4	51.3	13.2
	PERC	8.7	8.6	37.6	18.9	35.3	61.6	13.6
2009-2012	ACTUAL	5.8	10.5	34.0	16.3	34.8	47.8	7.8
	RAW	10.2	7.9	30.8	23.6	34.6	44.7	10.1
	PERC	13.7	10.3	38.6	26.4	40.8	54.1	11.4
JULY A	VERAGE	ATH	NES	SS	NWB	WB	СВ	EB
1989-2008	ACTUAL	2.5	2.9	8.4	3.1	3.0	9.1	1.1
	RAW	2.2	2.8	8.1	3.0	2.9	8.9	1.0
	PERC	3.3	2.9	6.7	2.3	1.9	6.3	0.6
2009-2012	ACTUAL	3.0	3.0	4.0	1.3	0.0	2.8	0.0
	RAW	2.1	2.3	6.8	2.6	2.6	8.5	1.1
	PERC	3.3	2.9	6.2	1.8	1.2	4.4	0.6
AUG-SEP	AVERAGE	ATH	NES	SS	NWB	WB	СВ	EB
1989-2008	ACTUAL	2.4	3.9	13.5	4.5	6.5	18.5	3.3
	RAW	2.5	3.4	13.4	4.4	6.2	18.2	3.1
	PERC	1.9	2.1	9.3	2.5	3.9	14.4	2.2
2009-2012	ACTUAL	1.5	4.3	13.0	2.0	1.5	6.5	0.5
	RAW	1.5	3.7	12.1	5.8	5.6	17.5	2.5
	PERC	1.3	2.4	7.4	2.5	3.4	11.4	1.7



Saskatchewan

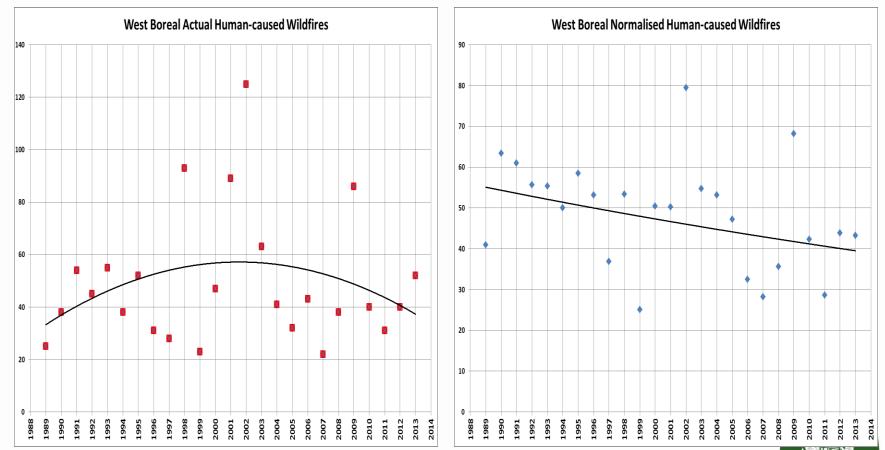
MODELS: RAW Versus Percent-Averaged BASELINE


→ Good in differencing active versus slow years

→ Both Underestimate short extreme spring events (2002, 2009)

Government _____ of _____ Saskatchewan

YEARLY PROJECTION: WB 2005



Model Applications

- Provide better in-context facts to evaluate prevention program performance objectives after individual fire season
- Provide better historical background information to identify prevention program targets and performance objectives
- Provide methodology to evaluate contribution and trends of different humancaused wildfires sources in relation to the evolution of human activities on the landscape
- In combination with fire weather observations and forecast, provide Wildfire Operations with real-time estimate of potential human-caused wildfires

Model Applications: Trends

Model Applications : Web-based Operational Projections

HUMAN CAUSED WILDFIRES PROJECTION BASED ON FORECAST WEATHER

PROJECTED	AVERAGE	FORECAST DATE	VEATHER REGION
	AY177	FIREDA	
0.0	0.0	2014-09-24	1-ATH
0.0	0.0	2014-09-24	2-NES
0.1	0.2	2014-09-24	3-SS
0.1	0.1	2014-09-24	4-NWB
0.1	0.1	2014-09-24	5-WB
0.3	0.2	2014-09-24	6-CB
0.0	0.0	2014-09-24	7-EB

Model Applications : Web-based Cumulative Projections

HUMAN CAUSED WILDFIRES PROJECTION BASED ON ACTUAL WEATHER

	HUMAN-CAUSED WILDFIRES	PROJECTIONS by 2014-09-2	24
WEATHER REGION	ACTUAL TO DATE	AVERAGE TO DATE	PROJECTED TO DATE
	AP	R	
1-ATH		0	
2-NES		0	0
3-55		3	1
4-NWB		4	1
5-WB		11	2
6-CB		16	3
7-EB		4	1
WEATHER REGION	ACTUAL TO DATE	AVERAGE TO DATE	PROJECTED TO DATE
MAY			
1-ATH		3	2
2-NES		4	- 4
3-SS		17	18
4-NWB		12	11
5-WB		23	9
6-CB		23 34	26
6-CB 7-EB		34 10	28
WEATHER REGION	ACTUAL TO DATE	AVERAGE TO DATE	PROJECTED TO DATE
WERTHER REGION	JU		FROJECTED TO DRIE
1-ATH			
2-NES		5	4
3-55		14	7
4-NWB		5	2
5-WB		5	2
6-CB		15	6
7-EB		3	1
WEATHER REGION	ACTUAL TO DATE	AVERAGE TO DATE	PROJECTED TO DATE
	ວບ		
1-ATH		3	3
2-NES		3	5
3-55		8	7
4-NWB		3	3
5-WB		3	1
6-CB		9	4
7-EB		1	0
WEATHER REGION	ACTUAL TO DATE	AVERAGE TO DATE	PROJECTED TO DATE
AUG			
1-ATH		2	3
2-NES		3	2
		9	6
3-55			
4-NWB		3	3
		3 4	1
4-NWB			

Potential Improvements:

Provide performance indicators to evaluate Saskatchewan Prevention Program

Create a PREP Level 6 and LVL-B ranking 6 to take into consideration extreme windy spring days where RH < 20%</p>

> Percent-Averaged Model (Increase complexity) → Could use different Percent-Average values for different weather regions

ightarrow Could use fireday variable Percent-average values

DANIEL POIRIER

CHIEF METEOROLOGIST WILDFIRE MANAGEMENT SASKATCHEWAN ENVIRONMENT

Ministry of Environment Wildfire Management Branch Box 3003, Hwy#2 North Prince Albert, Canada S6V 6G1

www.gov.sk.ca