INTRODUCTION

Mulching is a forest fuel treatment commonly applied in the WUI to mitigate the risk of wildfire. Mulched fuel treatments attempt to incorporate the following fuel treatment principles:

- Retention of larger, healthier stems
- Reduction of crown bulk density
- Conversion of surface fuels to a less combustible state

Mulched fuel beds vary in volume and nature based on:

- Volume of aerial and surface fuels processed
- Equipment type and treatment intensity

Mulched fuel bed properties such as depth, compaction and particle size can influence moisture retention, ignition potential and fire behaviour.

Canadian Boreal Community Fire Smart Project Fort Providence, NT

2012 **Point source ignitions**

Mulch Fuel Bed Characteristics									
Species	Black Spruce/Jack Pine								
Treatment Date	March 2010								
Depth	15 cm								
Compaction	Loosely co	ompacted	ł						
Size Class	1—2	3—4	<u>></u> 5						
Distribution	40%	50%	10%						

		Weather Conditions				Fire Beł	naviour	Fire Size		
Date	Time	Temp (°C)	RH (%)	Wind (km/h)	ISI	Spread Rate (m/min)	Flame Length (cm)	Growth Time (min)	Overall Length (cm)	
06/22	1540	26	19	2.4G8	7	.15 (avg.) .5 (max.)	40-100	15	220	
06/22	1616	27	17	2G6	7	2.3 (avg.) .5 (max)	45-100	23	350	

2014

Point source ignitions

Mulch Fuel Bed Characteristics										
Species	Black Spruce/Jack Pine									
Treatment Date	March 2010									
Depth	15 cm									
Compaction	Well settle	ed over								
	3 winters									
Size Class	1—2	<u>></u> 5								
Distribution	80%	15%	5%							

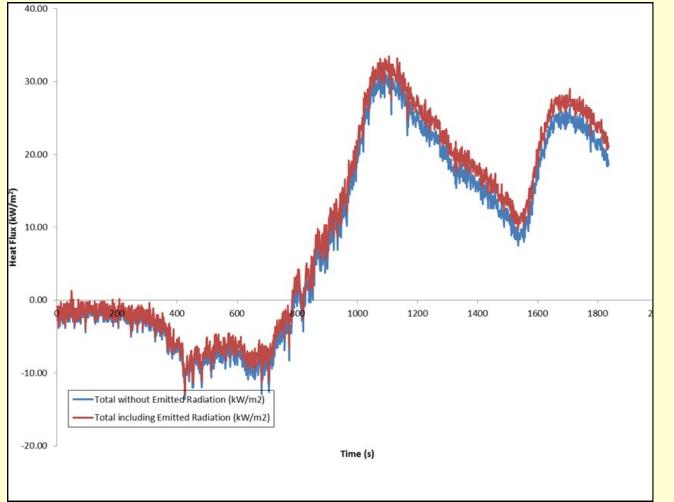
Date		Weather Conditions			Fire	e Behaviour	Fire Size			
	lgnition Time	Temp (°C)	RH (%)	Wind (km/h)	ISI	Spread Rate (m/min)	Flame Length (cm)	Depth of Burn (cm)	Growth Time (min)	Overall Length (cm)
06/23	1628	33	22	1.5G5	6	.14 (avg.) .30 (max.)	15—25	5	34	460
06/24	1300	30	32	3G4	6	.075 (avg.) .29 (max.)	08—15	4	60	450

Fire Behaviour in Mulched Fuel Beds Data Collection in a Unique Fuel Type

ISSUE

- Observations and limited documentation of fire in this unique fuel environment have provided insights into potential fire behaviour.
- Fire managers would like to better understand fire behaviour in mulched fuel in order to appropriately and safely resource fires.
- Fuels managers would like to be able to predict fire behaviour in fuel treatments with mulched fuel beds.
- Existing fuel models do not incorporate mulched fuel beds as a surface fuel.
- Current data is not sufficient to develop valid relationships between mulched fuel characteristics, environmental variables and potential fire behaviour.

Horse Creek Research Area Whitecourt, AB 2014


Line Source Ignitions

Mulch Fuel Bed Characteristics								
Species	Lodgepole Pine/ Black Spruce understory							
Treatment Date	June 2012							
Depth	10 cm							
Compaction	Dense (16	60 kg/m ³)						
Size Class	1—2	<u>></u> 5						
Distribution	60	30	10					

		Weather Conditions				Fire Beł	naviour	Fire Size		
Date	Time	Temp (°C)	RH (%)	Wind (km/h)	ISI	Spread Rate (m/min)	Flame Length (cm)	Growth Time (min)	Overall Length (cm)	
08/13	1420	29	25	5	7	.22 (avg) 1 (max)	20-30	45	1000	
08/14	1133	26	41	3G7	6	.23 (avg) 1.25 (max)	20-30	68	1200	

Visible and infrared images with heat flux data from Horse Creek experimental burn.

APPROACH

Fuels managers from Alberta ESRD and researchers from Canadian Forest Service and FPInnovations have developed a data collection process to document fuel characteristics and fire behaviour in mulched fuel environments.

BC Hydro Northern Transmission Line right-of-way Terrace, BC

September 6, 2013 **Point Source Ignitions**

	0		
Mulch Fuel	Bed Char	acteristi	cs
Species	Cedar/He	mlock/As	pen
Treatment Date	July 2013		
Depth	50—70 cm	n	
Compaction	Dense (17	'0 kg/m ³)	

1-2

90%

	W	eathe	r and Fue	el Conditior	าร	Fire Beł	naviour	Fire Size			
Time	Temp (°C)	RH (%)	Wind (km/h)	Fuel Moisture (%)	ISI	Spread Rate (m/min)	Flame Length (cm)	Growth Time (min)	Overall Length (cm)	Width (cm)	
1328	25	44	7G16	20	1.9	.25	10	20	415	230	
1425	23	43	10G22	15	2.0	.32	15	20	347	120	
1540	24	43	6G13	15	3.3	.59	20	30	900	420	

September 6, 2013 Line Source Ignitions

	W	/eathe	r and Fue	el Condition	S	Fire Beh	naviour	Fire Size			
Time	Temp (°C)	RH (%)	Wind (km/h)	Fuel Moisture (%)	ISI	Spread Rate (m/min)	Flame Length (cm)	Growth Time (min)	Overall Length (cm)	Width (cm)	
1328	25	44	7G16	20	1.9	.26	15	30	610	720	
1425	23	43	10G22	15	2.0	.32	20	20	660	780	
1540	24	43	6G13	15	3.3	1.5	30	25	2330	900	

• This data collection process has been used in experimental burns in mulched fuels at various locations in Western Canada.

• With a consistent approach to data collection, data processing and interpretation will be enhanced.

A broad dataset of documented fire behaviour will aid researchers in developing a fuel model that includes mulched fuel.

OBSERVATIONS

• Fires in mulched fuel exhibit typical elliptical growth patterns and acceleration phase.

• Superficial burns were observed with little consumption in fuel layers deeper than 5 cm.

• Moisture content in surface layers responds quickly to changes in temperature, relative humidity and solar radiation.

• Moisture sampling in mulched fuel bed profiles indicate a high level of moisture retention below 5 cm.

• Moisture retention is greater in compacted fuel beds.

• Burns were contained with Wajax backpack pumps.

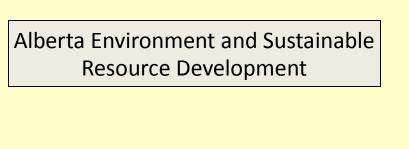
FUTURE WORK

• Continue data collection at higher FWI values to develop a broader data set

• Process fire behaviour data to develop relationships between fire behaviour, fuel consumption and environmental conditions

• Incorporate mulched fuel beds as a surface fuel in fire behaviour models such as CanFIRE or FireTech

Natural Resources


Canada

CONTACT

Dan Thompson Forest Fire Research Scientist danthomp@nrcan.gc.ca 1-780-435-7257 *

Dave Schroeder Prescribed Fire Program Coordinator Dave.Schroeder@gov.ab.ca 1-780-644-1886

Steve Hvenegaard Researcher Steven.hvenegaard@fpinnovations.ca 1-780-740-3310

Wildfire Operations Research FPInnovations

Canada

Ressources naturelles