Appendix C

A Fortran Primer: (and cheat
sheet)

This section will provide a basic intro to most of the comnyootcuring features
of Fortran that you will need for the course. This list is bymeans exhaustive, but
it should be enough to get you where you need to go. For mooenmation, We
have extensive fortran manuals scattered about the olbssrvBy the end of this
section you should understand the basic data types, thestewof arrays, standard
arithmetic operations, loops and conditional statements;outines and functions,
and basic 10. This section will also briefly discuss how tddygrograms using
make and how to debug them usiniipxt ool /debugger .

C.1 Basic Fortran Concepts and Commands

Data types for the most part there will be only three basic types of data will
have to deal with, integers, floating point numbers and dtars. In fortran
these data types are declared as

i nt eger exact whole numbers (-3, 0, 5 234), usually stored in 4 bytes

real inexactrepresentation of decimal numbers (3.1415, 27%23). Usu-
ally stored as 4 bytes, good for about 6-9 significant digisges from
about10—3%-10%®

doubl e precision same as real but much larger range and precision.
Usually stored as 8 bytes, good for about 15-17 significagitsjiranges
from aboutl0~3%%-103%. You can get more precision than this but you
should have a good reason.

character, character*n either a single character or a string of char-
acters of lengtm.

Constant and Variable namesA constant or variable can have any name with
up to 32 characters (To play it safe though, Standard Foelamws only
6 characters). The name must start with a letter, but can imesat of the

19

20

alphanumeric characters in it. Fortran also has the angdgature ofim-
plicit typing so that if undeclared, any variable name that starts with the
lettersi throughn are assumed to be integers, everything else is assumed
real. Rigorous programming practice suggests that you estary program
withi npli cit none and declare every variable. It's annoying but it keeps
you honest. | will try to do this in my programs. A sample prngrdeclara-
tion might look like

inmplicit none

i nteger npnts, n

real c, dcdt

real car(1000),tar(1000)
character*40 fil eout

arrays Perhaps the most important feature for modeling is arrayay& are sim-

ply ordered sets of numbers that can be addressed by indery Biray has
aname (e.gcar ort ar above) and a length (here bathr andt ar are ar-
rays of real numbers of length 1000). Arrays can be of integeals, double
precision or even characteffs (eout is actually an array of 40 characters).
Each member of an array can be addressed as by specifyimgléts in the
array car (10), tar(n) etc.). Arrays can also have up to 7 dimensions.
A two dimensional arrawn(10, 10) can be thought of as 10 1-dimensional
arrays of 10 numbers each (a total of 100 elements). Most itaupky in
fortran, the leading index increases fastest i.eafar, j) , thei =1 andi =2
are next to each other in memory.

Simple operations integer and floating point numbers and arrays of them can all

be operated on by standard mathematical options. The mashoaly used
arithmetic are

= assignmenk=y

** @xponentiab=x**y

[, * divide, multiplya=x/y, or a=x*y

+, - add subtrach=x+y, or a=x-y

The order of evaluation is standard algebraic and paresshesn be used to

group operands. In addition to the simple operations, &omitso has some
built in intrinsic functions. The most commonly occuringgar

trigonometric functions si n(x), cos(x), tan(x),asin(x),acos(x),
at an(x),at an2(x) (inverse trig functions$i nh(x),cosh(x),tanh(x)
etc.

exponential functions exp(x),! og(x) (natural log)) og10(x) (log base
ten),sqrt (x) square-root.

conversion functions these functions will convert one data type to another,
e.g.i nt (x) returns the integer value &fr eal (?) converts anything

Fortran 21

to a real,dbl e(?) converts anything to a double (also operations for
complex numbers)

misc. functions see table 6.1

Program flow control Any program will just execute sequentially one line at a
time unless you tell it to do something else. Usually theeearly one of
two things you want it to do, loop and branch. The control cands for
these are

do loops Do loops simply loop over a piece of internal code for a fixed
number of loops and increment a loop counter as they go. dusloo
come in the standard line number flavour

do 10 i=1,n, 2
j=i+1
other stuff to do
10 conti nue

(note the spacing of the line number and starting commanksst 6
characters over is important (stupid holdover from punadsia Or in
the non-standard but more pleasant looking form

doi=1,n,2

j=i+1

other stuff to do
enddo

Do loops can be nested a fair number of times (but don’t oveydo

conditional statements Being able to make simple decisions is what sepa-
rates the computers from the calculators. In fortran sépararts of
the code can be executed depending on some condition beind hee
statements that control this conditional execution are

i f asingle line of the form
if (iameg.crazy) x=5.
will assign a 5. to the variabbe if the expression in parentheses is
true, otherwise it will simply skip the statement.
block if statements More useful blocks of execution can be delimited
by block ifs of the form
if (noon.eq.full) then
call how (gi nsberg)
x=exp(gi nsher g)
endi f
the block if statements can also be extended to have a nurhber o
condition statements. If there are only two, it looks like
if (noon.eq.full) then
call how (gi nsberg)
x=exp(gi nsberg)

22

Table 6-1 Arithmetic Functions (continued)

Intrinsic Definition No. of Generic Specific Type of
Function Args Name Name Argument Function
Absolute lal 1 ABS | ABS Integer Integer
Value ABS Real Real
Read Note 6 DABS Double Double
CABS Complex Real
(ar? + ai®)**(1/2) CQABSe Complex*32 | Real*16
QABS ¢ Real*16 Real*16
ZABS ¢ Complex*16 | Double
CDABS+ Complex*16 | Double
Remainder al-int(al/a2)*a2 2 MOD MoD Integer Integer
Read Note 1 AMOD Real Real
DMOD Double Double
QVOD « Real*16 Real*16
Transfer lall ifa2 2 0 2 SI GN I SI GN Integer Integer
of Sign -lall ifa2< 0 SI GN Real Real
DSI GN Double Double
QSIGN ¢ Real*16 Real*16
Positive al-a2 if al > a2 2 DI M I DI M Integer Integer
Difference 0if al <a2 DI M Real Real
DDI M Double Double
Q@IM ¢ Real*16 Real*16
Double al * a2 2 DPROD Real Double
and Quad QPROD ¢ Double Real*16
Products
Choosing max(al, a2, ...) >2 MAX MAXO0 Integer Integer
Largest ANVAX1 Real Real
Value DVAX1 Double Double
QVAXL ¢ Real*16 Real*16
ANMAXO Integer Real
MAX1 Real Integer
Choosing min(al, a2, ...) >2 M N M NO Integer Integer
Smallest AM N1 Real Real
Value DM N1 Double Double
QM NL Real*16 Real*16
AM NO Integer Real
M N1 Real Integer

280 FORTRAN 2.0.1 Reference Manual—October 1992

Fortran 23

el se
call wait (1, nonth)
endi f
or if there are several conditions
if (expression) then
statenents galore....
el seif (expression2)
nore statenents
el seif (expression3d)
are you tired of this yet
el se
default statenents
endi f

Note: a block if of this type will execute the first true exsies
and the jump to the end if (even if several conditions are)true

relational operators The statementnoon. eq. f ul | is a conditional
statement that evaluatesttoue if the variablenoon is logically
equivalent to the variabléul I (don't use= for . eq. very dif-
ferent animals). The operatoeq. is a relational operator that
tests for equivalence. Other relational operators.are. (less-
than), | e. (less-than-or-equal-to) ge. (greater-than-or-equal-
to),. gt] (greater-than). Individual conditional statements cigo a
be linked together using the operatoesd. ,. or.,. not. (anda
few less useful things like exclusive oxor . . Examples include

if ((noon.eq.full).and. (i.eq.werewlf))

& call runlikehell ()
if ((x.eq.0.5).or.(i.le.2)) then
X=X*i
endi f

Subroutines and Functions Subroutines and functions are separate pieces of code
that are passed arguments, do something and return. Suesand func-
tions are similar except that functions return a value amdused like the
intrinsic functions i.e.

i nteger nmyfunction, Kk,j
external myfunction
real x

k=nyfunction(x,j)

and are declared like
i nteger function nyfunction(r,i)
real r

i nteger i
myfuncti on=nod(int(r),i))

24

return
end

Note the variables andi are “dummy variables” that hold the placeof
andj in the main routine. Subroutines also have dummy variablésie

“called” and don't return a value (although it will often aige the values of
what it is passed). Example subroutine call would be

i nteger Kk,j

real x(100), a

j =10

a=2.5

call arrmult(x,j,a)

and the subroutine itself would look like

subroutine arrmult(ar, n, con)
i nteger n
real ar(n),con
i nteger i
do i=1,n
ar(i)=ar(i)*con
enddo
return
end

Note that arrays are passed to subroutines and functionsatmg.n Most
importantly, the dimension of the array within the subroatcan be passed.
In the above routine, only the first 10 elementsadre multiplied by2. 5.

If we wanted to multiply the elements from 6 to 16 we could also

call arrmult(x(6), 11, a)

Note that there are actually 11 elements between indexes @@&nin ad-
dition, arrays that are declared as 1-D arrays in the maigrprmo can be
operated on as variable length n-d arrays in a subrouting \(Ee-versa).
E.g.

integer i,j
real x(1000), a

i =10
j =10
a=2.5
call arrmultij(x,i,j,a)

Fortran 25

subroutine arrmultij(ar, mn,con)

integer mn

real ar(mn), con

i nteger i,]j

do j=1,n
do i=1,m

ar(i,j)=ar(i,j)*j*con

enddo

enddo

return

end

We will make extensive use of this feature for efficient pesgming in n-
dimensions. This is the one thing you cannot do well in C which real
shame.

Input/Output The last important thing you might want to do is actually réad
formation into a program and spit it out. This is perhaps tlestvpart of
fortran, particularly when dealing with character strinievertheless, with
a few simple commands and unix, you can do most anything. Airfgvor-
tant io concepts

logical units and open uggh, in fortran, files are referred to by “logical
units” which are simply numbers. To open a file calieghk. t xt
with logical unit 9 you would do something like

| u=9
open(lu,file="junk.txt")

The two most important filest di n andst dout already have logical
units associated with therat di n is 5 andst dout is 6.

reading a file to read data from a file you use thead statement. The
principal version of this you will need to read things frone tteyboard
or from stdin looks like

read(5,*) tmax, npnts, (ar(i),i=1,3)

the 5 is the logical unit and the says to just read in each datatype
as whatever it was declared as sonifax andar are real andhpnt s

is an integer it will assume that the numbers in stdout wilirbthose
formats. Note the funny way of reading 3 items of areayis known
asan nplicit do | oop useful but clunky.

writing to a file to write data from a file you use the i t e statement which
works just like read i.e.

wite(6,*) 'here are sone nunbers ', tmax, npnts, (ar(i),i=1,3)
wite(9,*) 'Howdy '’

a synonym fomri t e(6, *) is thepri nt statementi.e.

26

print *, 'here are some nunbers

is equivalent to the first of the above two lines.

C.2 A Few pointers to good coding

Comment liberally Always write your code so that 6 months (or two weeks) from
now you know what it does. comment lines start wit ia the first column
or after a in any column (the comment is non-standard so be careful).

make 1 code to do 1 thing, Super-duper multi-purpose codes with hundreds of
options become a nightmare to maintain and debug. Sinceeyouly writ-
ing private code for yourself, | find it is most sensible toateeseparate pro-
grams for each difference in boundary or initial conditiets. Usingmake
andnakef i | es can simplify this process immensely. This way if you try
something and it doesn’t work, you can just go back to a presvigrsion.

Write your loops right Always write your loops with the computer in mind. i.e.
your inside loop should always be over the fastest incrgaaifex. This will
give the biggest increase in performance for the least ahafumork.

NO GOTO’s except in dire need avoid uncontrolled use of glo¢ o statement as
it will lead to immense confusion. See the first chapter of Mtioal Recipes
for the few necessary controlled usegof o.

limit i f s and functional calls within array loops If aloop is designed to quickly
handle an array, an embeddetl statement or heavy function calls can
destroy performance (although many optimizing compileit do some
strange things to try and prevent this).

keep it simple and conservativeThere are loads of fancy extensions in Sun for-
tran that might not work on other machines. The less fancyggees you
use the less you have to replace when you change platforms

usedbxt ool /debugger and make see below and man pages, these tools will
make your life much easier for organizing and debugging code

C.3 A sample program

program eulerl
Gk sk sk ok sk sk ok sk e ksl ok sk e ok sk s sk ok sk s ke sk sk e ke sk s ok sk sk ke sk sk sk sk sk sk ke sk sk sk sk sk ok sk sk ok
c eulerl: program to calculate the concentration of a
c single radioactive element with time using an
¢ euler method
Gk ki ok sk sk ok sk e ksl sk sk e ok sk s sk ok sk sk ke sk ok o ke sk s ok sk sk ke sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

implicit none

integer nmax 'maximum array size
parameter (NMAX=500) ! set nmax to 500
integer npnts, n ! number of steps, counter

real c, dcdt ! concentration, decay rate,

, tmax, npnts, (ar(i),i=1, 3)

Fortran 27

real tmax, t,dt ! max time,time, timestep

real car(NMAX),tar(NMAX) ! arrays for concentration and time

character*40 fileout ! character array for output filename

integer kf, lu ! integer for character index, output file

integer iprinttrue, iprinterr ! flag for calculating true solution,
! or error (1 yes, O no)

integer mylnblnk ! even functions need to be typed

external mylnblnk

c
c —mmm== read input
c
read(5,*) fileout
read(5,*) tmax, npnts, iprinterr, iprinttrue
c
c ——————- set up initial parameters
c
dt = tmax/ (npnts - 1) ! set the time step (why is it n-17)
c =1. ! initial concentration
t =0. ! initial time
car(1l)=c ! store in arrays car and tar
tar(1)=t
c
c——————- loop over time steps with an euler method
c
do n=1,npnts-1 !start the loop
call decayl(t,c,dcdt) ! get the decay rate at the present step
c=c + dcdt*dt ! take an euler step
t = dt*n ! calculate the time for the next step
car(n+l)=c ! store in array car
tar(n+1)=t ! store the time in array tar
enddo ! end the loop
c
C—====== write the solution to fileout_c.xy
c
1lu=9 ! set the fortran logical unit (ugh!) to any number
kf=mylnblnk(fileout,len(fileout)) ! find the last blank space in string
print *, ’Writing file ’,fileout(1:kf)//’_c.xy’
call writexy(lu,fileout(1:kf)//’_c.xy’,tar,car,npnts) !writem-out
c
c—————-- if iprinterr=1, then calculate and write out fractional error between
C——————= solution and true solution to fileout_cerr.xy
c
if (iprinterr.eq.1) then
do n=1,npnts
car(n)=car(n)/exp(-1.*tar(n)) - 1. ! calculate error
enddo
print *, ’Writing file ’,fileout(1:kf)//’_cerr.xy’
call writexy(lu,fileout(1:kf)//’_cerr.xy’,tar,car,npnts)
endif
c
C——————= if iprinttrue=1, then calculate and write out true solution
c——————- to fileout_ctrue.xy
c
if (iprinttrue.eq.1) then
do n=1,npnts
car(n)=exp(-1.xtar(n)) ! calculate true concentration
enddo
print *, ’Writing file ’,fileout(1:kf)//’_true.xy’
call writexy(lu,fileout(1:kf)//’_ctrue.xy’,tar,car,npnts)
endif
c
C——————= exit the program
c
end

Ckskokstokk stk ok sk stk ok sk ok ks ke oksk sk ok stk sk ok sk ok sk sk sk sk sk ok skl sk ok skl sk ok stk ok sk sk sk ok sk sk sk ok sk sk ksl sk oksk sk ok
c decayl: subroutine that returns the rate of decay of a radioactive
c substance as a function of concentration (and time)

28

c is concentration
dcdt is the change in ¢ with time
t is time
here, dcdt= -c
sk o ok ok ok ok ok o ok ok oK oK ok o ok ok ok sk K o ok ok ok ok sk ok ok ok sk ok ok ok K 3 ok ok ok oK 3k ok ok K 3 ok ok Kk o ok ok sk ok o ok ok ok ok ok ok ok ok 3 ok ok ok ok ok

Ooo0oo0ooo

subroutine decayl(t,c,dcdt)
implicit none
real t, c, dcdt

dcdt= -c

return
end

Gtttk ok stk kskoksk ok sk stk ksl sk ok stk sk ok sk sk ke ksl kst sk sk ksl sk stk sk ok sk sk sk sk sk sk sk o ok ok ok
c mylnblnk integer function to return position of last non-character

c in a string
Cokokkokkok koo sk ok sk sk ko sk sk sk ko sk sk ok sk ks sk ok sk sk sk sk sk ok sk sk ok sk ok sk ok sk s ko ok sk ok ok

integer function mylnblnk(str,lstr)
character str(lstr),space
integer 1
space=’ "’
1=1str
10 if (str(l).eq.space) then
1=1-1
goto 10
endif
mylnblnk=1
return
end
Cotestesskeoksksk ok stk stk s o sk stk s ok sk ok st sk stk sk kst sk ok stk e kst ok sk etk sk stk ok stk stk sk sk sk ok sk
C writexy: writes 2 1-d arrays (x,y) to output file luout of name

C fname.xy
Gtk ok ok o sk ok ok ok ook o ok ok o ok ook o sk o ok ok o sk o ok ok o sk o ok ok o sk ok ok ok o sk o ok ok o sk o ok ok o sk o ok o ok ok ok o ok ok ok o ok ok o

subroutine writexy(luout,fname,xarr,yarr,npnts)
integer luout

character *(*) fname

real xarr(npnts), yarr(unpnts)

open(luout,file=fname)
do 10 j=1,npnts
write(luout, *) xarr(j), yarr(j)
10 continue
close(luout)
return
end

C.4 A sample makefile

R

makefile for the program eulerl which calculates

radioactive decay for a single element using an euler method
uses suns xtypemap to make double precision

##

PROGRAM=eulerl

OBJECTS=$ (PROGRAM) .0 decayl.o writexy.o lnblnk.o
OPTLEVEL= -g

FFLAGS= $(OPTLEVEL) -xtypemap=real:64,double:64,integer:64
DESTDIR=$ (HOME) /$ (ARCH)

$ (PROGRAM) : $(OBJECTS)
$(FC) $(FFLAGS) $(0BJECTS) -o $(PROGRAM)

$(0BJECTS) :

Fortran
install: $(PROGRAM)
mv $(PROGRAM) $(DESTDIR)

clean:
rm -f *.0 *.a core

cleanall:
rm -f *.0 *.a core $(PROGRAM)

29

